
Towards a parallel analysis phase for a multifrontal sparse
solver

Alfredo Buttari

INRIA Rhône-Alpes

5th International Workshop on
Parallel Matrix Algorithms and Applications (PMAA’08)

20-22 June 2008, Neuchtel, Switzerland

Sparse direct solvers: the three phases

The solution of a sparse system
with the MUMPS solver is
achieved in three phases:

1. The Analysis phase
◦ Scaling and Max-Trans
◦ Fill-reducing pivot order
◦ Symbolic factorization

2. The Factorization phase
◦ LU = PA

3. The Solve phase
◦ Forward/backward substitutions

2 of 16

Sparse direct solvers: the three phases

The solution of a sparse system
with the MUMPS solver is
achieved in three phases:

1. The Analysis phase
◦ Scaling and Max-Trans
◦ Fill-reducing pivot order
◦ Symbolic factorization

2. The Factorization phase
◦ LU = PA

3. The Solve phase
◦ Forward/backward substitutions

2 of 16

Sparse direct solvers: the three phases

The solution of a sparse system
with the MUMPS solver is
achieved in three phases:

1. The Analysis phase
◦ Scaling and Max-Trans
◦ Fill-reducing pivot order
◦ Symbolic factorization

2. The Factorization phase
◦ LU = PA

3. The Solve phase
◦ Forward/backward substitutions

2 of 16

An approach to parallelization of the analysis

The parallelization is based on the coupling of a parallel graph
ordering tool and a parallel symbolic factorization
algorithm [Grigori et al., 2007] :

• PT-SCOTCH: “A tool for efficient parallel graph
ordering” [Chevalier and Pellegrini, 2006]

• Quotient graph based symbolic factorization with
restarting [George and Liu, 1980, Amestoy et al., 1996,
Amestoy, 1997]

3 of 16

The PT-SCOTCH parallel ordering tool

4 of 16

The symbolic factorization: quotient graphs

A ∈ <nxn ⇒ G = (V ,E) V = {1, ..., n} E = {(i , j)|aij 6= 0}

- variables:non-eliminated nodes

- elements: eliminated nodes

• Quotient graphs: elimination graphs G k can be implicitly
represented by quotient graphs Gk = (V k , V̄ k ,E k , Ē k)
◦ V k : set of variables
◦ V̄ k : set of elements
◦ E k ⊆ V k × V k : set of edges between variables
◦ Ē k ⊆ V k × V̄ k : set of edges between variables and elements

5 of 16

The symbolic factorization: quotient graphs

The symbolic factorization computes:

dk =

Ak−1
k

⋃
e∈Ek−1

i

Lk−1
e

 \ {k}
where

• Ak
i = {j : (i , j) ∈ E k} ⊆ V

• Ek
i = {e : (i , e) ∈ Ē k} ⊆ V̄ k

• Lk
e = {i : (i , e) ∈ Ē k} ⊆ V k

6 of 16

The symbolic factorization: quotient graphs

The symbolic factorization computes:

dk =

Ak−1
k

⋃
e∈Ek−1

i

Lk−1
e

 \ {k}
where

• Ak
i = {j : (i , j) ∈ E k} ⊆ V

• Ek
i = {e : (i , e) ∈ Ē k} ⊆ V̄ k

• Lk
e = {i : (i , e) ∈ Ē k} ⊆ V k

6 of 16

The symbolic factorization: quotient graphs

The symbolic factorization computes:

dk =

Ak−1
k

⋃
e∈Ek−1

i

Lk−1
e

 \ {k}
where

• Ak
i = {j : (i , j) ∈ E k} ⊆ V

• Ek
i = {e : (i , e) ∈ Ē k} ⊆ V̄ k

• Lk
e = {i : (i , e) ∈ Ē k} ⊆ V k

6 of 16

The symbolic factorization: quotient graphs

The symbolic factorization computes:

dk =

Ak−1
k

⋃
e∈Ek−1

i

Lk−1
e

 \ {k}
where

• Ak
i = {j : (i , j) ∈ E k} ⊆ V

• Ek
i = {e : (i , e) ∈ Ē k} ⊆ V̄ k

• Lk
e = {i : (i , e) ∈ Ē k} ⊆ V k

6 of 16

The symbolic factorization: quotient graphs

The symbolic factorization computes:

dk =

Ak−1
k

⋃
e∈Ek−1

i

Lk−1
e

 \ {k}
where

• Ak
i = {j : (i , j) ∈ E k} ⊆ V

• Ek
i = {e : (i , e) ∈ Ē k} ⊆ V̄ k

• Lk
e = {i : (i , e) ∈ Ē k} ⊆ V k

6 of 16

The symbolic factorization: quotient graphs

The usage of quotient graphs can benefit from a number of
simplifications

• Nodes Absorption All the elements in
Ek−1

k will be removed from Gk and all
the variables in Lk−1

e for each
e ∈ Ek−1

k will be included in Lk
k

• Redundant Edges Elimination Any
edge (i , j) where i , j ∈ Lk

k will be
suppressed

7 of 16

The symbolic factorization: quotient graphs

The usage of quotient graphs can benefit from a number of
simplifications

• Nodes Absorption All the elements in
Ek−1

k will be removed from Gk and all
the variables in Lk−1

e for each
e ∈ Ek−1

k will be included in Lk
k

• Redundant Edges Elimination Any
edge (i , j) where i , j ∈ Lk

k will be
suppressed

7 of 16

The symbolic factorization: quotient graphs

The usage of quotient graphs can benefit from a number of
simplifications

• Nodes Absorption All the elements in
Ek−1

k will be removed from Gk and all
the variables in Lk−1

e for each
e ∈ Ek−1

k will be included in Lk
k

• Redundant Edges Elimination Any
edge (i , j) where i , j ∈ Lk

k will be
suppressed

7 of 16

The symbolic factorization: quotient graphs

The usage of quotient graphs can benefit from a number of
simplifications

• Nodes Absorption All the elements in
Ek−1

k will be removed from Gk and all
the variables in Lk−1

e for each
e ∈ Ek−1

k will be included in Lk
k

• Redundant Edges Elimination Any
edge (i , j) where i , j ∈ Lk

k will be
suppressed

7 of 16

The symbolic factorization: quotient graphs

The usage of quotient graphs can benefit from a number of
simplifications

• Nodes Absorption All the elements in
Ek−1

k will be removed from Gk and all
the variables in Lk−1

e for each
e ∈ Ek−1

k will be included in Lk
k

• Redundant Edges Elimination Any
edge (i , j) where i , j ∈ Lk

k will be
suppressed

7 of 16

The symbolic factorization: quotient graphs

The usage of quotient graphs can benefit from a number of
simplifications

• Nodes Absorption All the elements in
Ek−1

k will be removed from Gk and all
the variables in Lk−1

e for each
e ∈ Ek−1

k will be included in Lk
k

• Redundant Edges Elimination Any
edge (i , j) where i , j ∈ Lk

k will be
suppressed

7 of 16

The symbolic factorization: restarting

The technique of restarting is based on a
combination of left- and right-looking
updates of the quotient graph:

1. in pivotal steps 1, ..., τ are processed
and only the adjacency information for
variables 1− τ is updated in a
right-looking way

2. restart: the adjacency information of
variables τ − n is updated with respect
to elements 1− τ in a left-looking way

3. apply steps 1 and 2 recursively on
variables τ − n

8 of 16

The symbolic factorization: restarting

The technique of restarting is based on a
combination of left- and right-looking
updates of the quotient graph:

1. in pivotal steps 1, ..., τ are processed
and only the adjacency information for
variables 1− τ is updated in a
right-looking way

2. restart: the adjacency information of
variables τ − n is updated with respect
to elements 1− τ in a left-looking way

3. apply steps 1 and 2 recursively on
variables τ − n

8 of 16

The symbolic factorization: restarting

The technique of restarting is based on a
combination of left- and right-looking
updates of the quotient graph:

1. in pivotal steps 1, ..., τ are processed
and only the adjacency information for
variables 1− τ is updated in a
right-looking way

2. restart: the adjacency information of
variables τ − n is updated with respect
to elements 1− τ in a left-looking way

3. apply steps 1 and 2 recursively on
variables τ − n

8 of 16

The symbolic factorization: restarting

The technique of restarting is based on a
combination of left- and right-looking
updates of the quotient graph:

1. in pivotal steps 1, ..., τ are processed
and only the adjacency information for
variables 1− τ is updated in a
right-looking way

2. restart: the adjacency information of
variables τ − n is updated with respect
to elements 1− τ in a left-looking way

3. apply steps 1 and 2 recursively on
variables τ − n

8 of 16

Coupling the two steps

The ordering and the symbolic factorization are performed on the
graph built from |A|+ |AT |
• run PT-SCOTCH on the graph and get a separator’s tree

• leaf subtrees are processed independently by processors

• the top of the tree is processed sequentially by a “root” node

9 of 16

Coupling the two steps

The ordering and the symbolic factorization are performed on the
graph built from |A|+ |AT |
• run PT-SCOTCH on the graph and get a separator’s tree

• leaf subtrees are processed independently by processors

• the top of the tree is processed sequentially by a “root” node

9 of 16

Coupling the two steps

The ordering and the symbolic factorization are performed on the
graph built from |A|+ |AT |
• run PT-SCOTCH on the graph and get a separator’s tree

• leaf subtrees are processed independently by processors

• the top of the tree is processed sequentially by a “root” node

9 of 16

Coupling the two steps

The ordering and the symbolic factorization are performed on the
graph built from |A|+ |AT |
• run PT-SCOTCH on the graph and get a separator’s tree

• leaf subtrees are processed independently by processors

• the top of the tree is processed sequentially by a “root” node

9 of 16

Coupling the two steps

The symbolic factorization of the top of the tree is modeled as a
restarting step

10 of 16

Coupling the two steps

The symbolic factorization of the top of the tree is modeled as a
restarting step

10 of 16

Coupling the two steps

The symbolic factorization of the top of the tree is modeled as a
restarting step

10 of 16

Coupling the two steps

The symbolic factorization of the top of the tree is modeled as a
restarting step

10 of 16

NICE-7: N=8159758, NNZ=669172552

1 2 4 8 16 32 64 128
0

1

2

3

4

5

6
x 10

4 NICE−7 −− Max front size

processors

AMD

Metis

SCOTCH

PT−SCOTCH

1 2 4 8 16 32 64 128
0

0.5

1

1.5

2

2.5

3
x 10

10 NICE−7 −− Factor size

processors

AMD
Metis
SCOTCH
PT−SCOTCH

1 2 4 8 16 32 64 128
0

1

2

3

4

5

6
x 10

14 NICE−7 −− Flops

processors

AMD
Metis
SCOTCH
PT−SCOTCH

8 16 32 64 128
0

5

10

15

20
NICE−7 −− Scalability

processors

Time
Memory

11 of 16

BRGM: N=3699643, NNZ=307580395

1 2 4 8 16 32 64 128
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4 BRGM −− Max front size

processors

AMD
Metis
SCOTCH
PT−SCOTCH

1 2 4 8 16 32 64 128
0

2

4

6

8

10
x 10

9 BRGM −− Factor size

processors

AMD
Metis
SCOTCH
PT−SCOTCH

1 2 4 8 16 32 64 128
0

2

4

6

8

10

12
x 10

13 BRGM −− Flops

processors

AMD
Metis
SCOTCH
PT−SCOTCH

8 16 32 64 128
0

5

10

15

20
BRGM −− Scalability

processors

Time
Memory

12 of 16

CONESHL: N=1262212, NNZ=84753352

1 2 4 8 16 32 64 128
0

0.5

1

1.5

2
x 10

4 CONESHL −− Max front size

processors

AMD
Metis
SCOTCH
PT−SCOTCH

1 2 4 8 16 32 64 128
0

5

10

15
x 10

8 CONESHL −− Factor size

processors

AMD
Metis
SCOTCH
PT−SCOTCH

1 2 4 8 16 32 64 128
0

2

4

6

8

10

12
x 10

12 CONESHL −− Flops

processors

AMD
Metis
SCOTCH
PT−SCOTCH

8 16 32 64 128
0

5

10

15

20
CONESHL −− Scalability

processors

Time
Memory

13 of 16

10millions: N=10423737, NNZ=167722005

1 2 4 8 16 32 64 128
0

1

2

3

4

5

6
x 10

4 10millions −− Max front size

processors

AMD
Metis
SCOTCH
PT−SCOTCH

1 2 4 8 16 32 64 128
0

0.5

1

1.5

2
x 10

10 10millions −− Factor size

processors

AMD
Metis
SCOTCH
PT−SCOTCH

1 2 4 8 16 32 64 128
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

14 10millions −− Flops

processors

AMD
Metis
SCOTCH
PT−SCOTCH

8 16 32 64 128
0

2

4

6

8

10
10millions −− Scalability

processors

Time
Memory

14 of 16

Future work

• Parallelize top-of-the-tree symbolic factorization

• Experiment with multisector ordering
schemes [Ashcraft and Liu, 1998]

• Parallelize amalgamation

• Parallelize scaling [Amestoy et al., 2008]

• Parallelize maximum transversal

15 of 16

Thanks

16 of 16

[Amestoy, 1997] Amestoy, P. R. (1997).
Recent progress in parallel multifrontal solvers for unsymmetric sparse matrices.
In Proceedings of the 15th World Congress on Scientific Computation, Modelling and Applied Mathematics, IMACS
97, Berlin.

[Amestoy et al., 1996] Amestoy, P. R., Davis, T. A., and Duff, I. S. (1996).
An approximate minimum degree ordering algorithm.
17:886–905.

[Amestoy et al., 2008] Amestoy, P. R., Duff, I. S., Ruiz, D., and car, B. U. (2008).
A parallel scaling algorithm.
In VECPAR 08, Lecture Notes in Computer Science. Springer.
To appear.

[Ashcraft and Liu, 1998] Ashcraft, C. and Liu, J. W. H. (1998).
Robust ordering of sparse matrices using multisection.
SIAM J. Matrix Anal. Appl., 19(3):816–832.

[Chevalier and Pellegrini, 2006] Chevalier, C. and Pellegrini, F. (2006).
PT-Scotch: A tool for efficient parallel graph ordering.
In Proceedings of PMAA2006, Rennes, France.

[George and Liu, 1980] George, A. and Liu, J. W. H. (1980).
An optimal agorithm for symbolic factorization of symmetric matrices.
SIAM Journal on Computing, 9(3):583–593.

[Grigori et al., 2007] Grigori, L., Demmel, J. W., and Li, X. S. (2007).
Parallel symbolic factorization for sparse lu with static pivoting.
SIAM J. Sci. Comput., 29(3):1289–1314.

16 of 16

