Towards a parallel analysis phase for a multifrontal sparse solver

Alfredo Buttari

INRIA Rhône-Alpes

5th International Workshop on
Parallel Matrix Algorithms and Applications (PMAA'08)
20-22 June 2008, Neuchtel, Switzerland

Sparse direct solvers: the three phases

The solution of a sparse system with the MUMPS solver is achieved in three phases:

1. The Analysis phase

- Scaling and Max-Trans
- Fill-reducing pivot order
- Symbolic factorization

2. The Factorization phase

- $L U=P A$

3. The Solve phase

- Forward/backward substitutions

Sparse direct solvers: the three phases

The solution of a sparse system with the MUMPS solver is achieved in three phases:

1. The Analysis phase

- Scaling and Max-Trans
- Fill-reducing pivot order
- Symbolic factorization

2. The Factorization phase

- $L U=P A$

3. The Solve phase

- Forward/backward substitutions

Sparse direct solvers: the three phases

The solution of a sparse system with the MUMPS solver is achieved in three phases:

1. The Analysis phase

Scaling and Max-Trans

- Fill-reducing pivot order
- Symbolic factorization

The Solve phase

An approach to parallelization of the analysis

The parallelization is based on the coupling of a parallel graph ordering tool and a parallel symbolic factorization algorithm [Grigori et al., 2007] :

- PT-SCOTCH: "A tool for efficient parallel graph ordering" [Chevalier and Pellegrini, 2006]
- Quotient graph based symbolic factorization with restarting [George and Liu, 1980, Amestoy et al., 1996, Amestoy, 1997]

The PT-SCOTCH parallel ordering tool

- Runs on any number of processors
- Nested Dissection does not stop at NP subdomains
- Quality of the ordering is virtually independent from NP

The symbolic factorization: quotient graphs

$A \in \Re^{n \times n} \Rightarrow G=(V, E) \quad V=\{1, \ldots, n\} \quad E=\left\{(i, j) \mid a_{i j} \neq 0\right\}$

- Quotient graphs: elimination graphs G^{k} can be implicitly represented by quotient graphs $\mathcal{G}^{k}=\left(V^{k}, \bar{V}^{k}, E^{k}, \bar{E}^{k}\right)$
- V^{k} : set of variables
- \bar{V}^{k} : set of elements
- $E^{k} \subseteq V^{k} \times V^{k}$: set of edges between variables
- $\bar{E}^{k} \subseteq V^{k} \times \bar{V}^{k}$: set of edges between variables and elements

The symbolic factorization: quotient graphs

The symbolic factorization computes:

$$
d_{k}=\left(\begin{array}{lll}
\mathcal{A}_{k}^{k-1} & \bigcup_{e \in \mathcal{E}_{i}^{k-1}} \mathcal{L}_{e}^{k-1}
\end{array}\right) \backslash\{k\}
$$

where

The symbolic factorization: quotient graphs

The symbolic factorization computes:

$$
d_{k}=\left(\begin{array}{lll}
\mathcal{A}_{k}^{k-1} & \bigcup_{e \in \mathcal{E}_{i}^{k-1}} \mathcal{L}_{e}^{k-1}
\end{array}\right) \backslash\{k\}
$$

where

- $\mathcal{A}_{i}^{k}=\left\{j:(i, j) \in E^{k}\right\} \subseteq V$

The symbolic factorization: quotient graphs

The symbolic factorization computes:

$$
d_{k}=\left(\begin{array}{lll}
\mathcal{A}_{k}^{k-1} & \bigcup_{e \in \mathcal{E}_{i}^{k-1}} \mathcal{L}_{e}^{k-1}
\end{array}\right) \backslash\{k\}
$$

where

- $\mathcal{A}_{i}^{k}=\left\{j:(i, j) \in E^{k}\right\} \subseteq V$
- $\mathcal{E}_{i}^{k}=\left\{e:(i, e) \in \bar{E}^{k}\right\} \subseteq \bar{V}^{k}$

The symbolic factorization: quotient graphs

The symbolic factorization computes:

$$
d_{k}=\left(\begin{array}{lll}
\mathcal{A}_{k}^{k-1} & \bigcup_{e \in \mathcal{E}_{i}^{k-1}} \mathcal{L}_{e}^{k-1}
\end{array}\right) \backslash\{k\}
$$

where

- $\mathcal{A}_{i}^{k}=\left\{j:(i, j) \in E^{k}\right\} \subseteq V$
- $\mathcal{E}_{i}^{k}=\left\{e:(i, e) \in \bar{E}^{k}\right\} \subseteq \bar{V}^{k}$
- $\mathcal{L}_{e}^{k}=\left\{i:(i, e) \in \bar{E}^{k}\right\} \subseteq V^{k}$

The symbolic factorization: quotient graphs

The symbolic factorization computes:

$$
d_{k}=\left(\begin{array}{lll}
\mathcal{A}_{k}^{k-1} & \bigcup_{e \in \mathcal{E}_{i}^{k-1}} \mathcal{L}_{e}^{k-1}
\end{array}\right) \backslash\{k\}
$$

where

- $\mathcal{A}_{i}^{k}=\left\{j:(i, j) \in E^{k}\right\} \subseteq V$
- $\mathcal{E}_{i}^{k}=\left\{e:(i, e) \in \bar{E}^{k}\right\} \subseteq \bar{V}^{k}$
- $\mathcal{L}_{e}^{k}=\left\{i:(i, e) \in \bar{E}^{k}\right\} \subseteq V^{k}$

The symbolic factorization: quotient graphs

The usage of quotient graphs can benefit from a number of simplifications

- Nodes Absorption All the elements in \mathcal{E}_{k}^{k-1} will be removed from \mathcal{G}^{k} and all
the variables in \mathcal{L}_{e}^{k-1} for each
$e \in \mathcal{E}_{k}^{k-1}$ will be included in \mathcal{L}_{k}^{k}
- Redundant Edges Elimination

The symbolic factorization: quotient graphs

The usage of quotient graphs can benefit from a number of simplifications

- Nodes Absorption All the elements in the variables in \mathcal{L}_{e}^{k-1} for each $e \in \mathcal{E}_{k}^{k-1}$ will be included in \mathcal{L}_{k}^{k}
- Redundant Edges Elimination edge (i, j) where $i, j \in \mathcal{L}_{k}^{k}$ will be suppressed

The symbolic factorization: quotient graphs

The usage of quotient graphs can benefit from a number of simplifications

- Nodes Absorption All the elements in \mathcal{E}_{k}^{k-1} will be removed from \mathcal{G}^{k} and all the variables in \mathcal{L}_{e}^{k-1} for each $e \in \mathcal{E}_{k}^{k-1}$ will be included in \mathcal{L}_{k}^{k}
- Redundant Edges Elimination
suppressed

The symbolic factorization: quotient graphs

The usage of quotient graphs can benefit from a number of simplifications

- Nodes Absorption All the elements in \mathcal{E}_{k}^{k-1} will be removed from \mathcal{G}^{k} and all the variables in \mathcal{L}_{e}^{k-1} for each $e \in \mathcal{E}_{k}^{k-1}$ will be included in \mathcal{L}_{k}^{k}
- Redundant Edges Elimination

The symbolic factorization: quotient graphs

The usage of quotient graphs can benefit from a number of simplifications

- Nodes Absorption All the elements in \mathcal{E}_{k}^{k-1} will be removed from \mathcal{G}^{k} and all the variables in \mathcal{L}_{e}^{k-1} for each $e \in \mathcal{E}_{k}^{k-1}$ will be included in \mathcal{L}_{k}^{k}
- Redundant Edges Elimination Any edge (i, j) where $i, j \in \mathcal{L}_{k}^{k}$ will be suppressed

The symbolic factorization: quotient graphs

The usage of quotient graphs can benefit from a number of simplifications

- Nodes Absorption All the elements in \mathcal{E}_{k}^{k-1} will be removed from \mathcal{G}^{k} and all the variables in \mathcal{L}_{e}^{k-1} for each $e \in \mathcal{E}_{k}^{k-1}$ will be included in \mathcal{L}_{k}^{k}
- Redundant Edges Elimination Any edge (i, j) where $i, j \in \mathcal{L}_{k}^{k}$ will be suppressed

The symbolic factorization: restarting

The technique of restarting is based on a combination of left- and right-looking updates of the quotient graph:
in pivotal steps $1, \ldots, \tau$ are processedand only the adjacency information forvariables $1-\tau$ is updated in aright-looking way
restart: the adjacency information of variables $\tau-n$ is updated with respect
to elements $1-\tau$ in a left-looking way
apply steps 1 and 2 recursively on
variables $\tau-n$

The symbolic factorization: restarting

The technique of restarting is based on a combination of left- and right-looking updates of the quotient graph:

1. in pivotal steps $1, \ldots, \tau$ are processed and only the adjacency information for variables $1-\tau$ is updated in a right-looking way

to elements $1-\tau$ in a left-looking way
apply steps 1 and 2 recursively on
variables $\tau-n$

The symbolic factorization: restarting

The technique of restarting is based on a combination of left- and right-looking updates of the quotient graph:

1. in pivotal steps $1, \ldots, \tau$ are processed and only the adjacency information for variables $1-\tau$ is updated in a right-looking way
2. restart: the adjacency information of variables $\tau-n$ is updated with respect
 to elements $1-\tau$ in a left-looking way
apply steps 1 and 2 recursively on
variables $\tau-n$

The symbolic factorization: restarting

The technique of restarting is based on a combination of left- and right-looking updates of the quotient graph:

1. in pivotal steps $1, \ldots, \tau$ are processed and only the adjacency information for variables $1-\tau$ is updated in a right-looking way
2. restart: the adjacency information of variables $\tau-n$ is updated with respect
 to elements $1-\tau$ in a left-looking way
3. apply steps 1 and 2 recursively on variables $\tau-n$

Coupling the two steps

The ordering and the symbolic factorization are performed on the graph built from $|A|+\left|A^{T}\right|$

- run PT-SCOTCH on the graph and get a separator's tree
- leaf subtrees are processed independently by processors
- the top of the tree is processed sequentially by a "root" node

Coupling the two steps

The ordering and the symbolic factorization are performed on the graph built from $|A|+\left|A^{T}\right|$

- run PT-SCOTCH on the graph and get a separator's tree
- leaf subtrees are processed independently by processors
- the top of the tree is processed sequentially by a "root" node

Coupling the two steps

The ordering and the symbolic factorization are performed on the graph built from $|A|+\left|A^{T}\right|$

- run PT-SCOTCH on the graph and get a separator's tree
- leaf subtrees are processed independently by processors
- the top of the tree is processed sequentially by a "root" node

Coupling the two steps

The ordering and the symbolic factorization are performed on the graph built from $|A|+\left|A^{T}\right|$

- run PT-SCOTCH on the graph and get a separator's tree
- leaf subtrees are processed independently by processors
- the top of the tree is processed sequentially by a "root" node

Coupling the two steps

The symbolic factorization of the top of the tree is modeled as a restarting step

Coupling the two steps

The symbolic factorization of the top of the tree is modeled as a restarting step

Coupling the two steps

The symbolic factorization of the top of the tree is modeled as a restarting step

Coupling the two steps

The symbolic factorization of the top of the tree is modeled as a restarting step

NICE-7: N=8159758, NNZ=669172552

BRGM: N=3699643, NNZ=307580395

CONESHL: $\mathrm{N}=1262212, \mathrm{NNZ}=84753352$

10millions: $\mathrm{N}=10423737, \mathrm{NNZ}=167722005$

Future work

- Parallelize top-of-the-tree symbolic factorization
- Experiment with multisector ordering schemes [Ashcraft and Liu, 1998]
- Parallelize amalgamation
- Parallelize scaling [Amestoy et al., 2008]
- Parallelize maximum transversal

Thanks

[Amestoy, 1997] Amestoy, P. R. (1997).
Recent progress in parallel multifrontal solvers for unsymmetric sparse matrices.
In Proceedings of the 15th World Congress on Scientific Computation, Modelling and Applied Mathematics, IMACS 97, Berlin.
[Amestoy et al., 1996] Amestoy, P. R., Davis, T. A., and Duff, I. S. (1996).
An approximate minimum degree ordering algorithm.
17:886-905.
[Amestoy et al., 2008] Amestoy, P. R., Duff, I. S., Ruiz, D., and car, B. U. (2008).
A parallel scaling algorithm.
In VECPAR 08, Lecture Notes in Computer Science. Springer.
To appear.
[Ashcraft and Liu, 1998] Ashcraft, C. and Liu, J. W. H. (1998).
Robust ordering of sparse matrices using multisection.
SIAM J. Matrix Anal. Appl., 19(3):816-832.
[Chevalier and Pellegrini, 2006] Chevalier, C. and Pellegrini, F. (2006).
PT-Scotch: A tool for efficient parallel graph ordering.
In Proceedings of PMAA2006, Rennes, France.
[George and Liu, 1980] George, A. and Liu, J. W. H. (1980).
An optimal agorithm for symbolic factorization of symmetric matrices.
SIAM Journal on Computing, 9(3):583-593.
[Grigori et al., 2007] Grigori, L., Demmel, J. W., and Li, X. S. (2007).
Parallel symbolic factorization for sparse lu with static pivoting.
SIAM J. Sci. Comput., 29(3):1289-1314.

