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Sparse direct solvers: the three phases

The solution of a sparse system
with the MUMPS solver is
achieved in three phases:

1. The Analysis phase
◦ Scaling and Max-Trans
◦ Fill-reducing pivot order
◦ Symbolic factorization

2. The Factorization phase
◦ LU = PA

3. The Solve phase
◦ Forward/backward substitutions
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An approach to parallelization of the analysis

The parallelization is based on the coupling of a parallel graph
ordering tool and a parallel symbolic factorization
algorithm [Grigori et al., 2007] :

• PT-SCOTCH: “A tool for efficient parallel graph
ordering” [Chevalier and Pellegrini, 2006]

• Quotient graph based symbolic factorization with
restarting [George and Liu, 1980, Amestoy et al., 1996,
Amestoy, 1997]
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The PT-SCOTCH parallel ordering tool
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The symbolic factorization: quotient graphs

A ∈ <nxn ⇒ G = (V ,E ) V = {1, ..., n} E = {(i , j)|aij 6= 0}

- variables:non-eliminated nodes

- elements: eliminated nodes

• Quotient graphs: elimination graphs G k can be implicitly
represented by quotient graphs Gk = (V k , V̄ k ,E k , Ē k )
◦ V k : set of variables
◦ V̄ k : set of elements
◦ E k ⊆ V k × V k : set of edges between variables
◦ Ē k ⊆ V k × V̄ k : set of edges between variables and elements
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The symbolic factorization: quotient graphs

The symbolic factorization computes:

dk =

Ak−1
k

⋃
e∈Ek−1

i

Lk−1
e

 \ {k}
where

• Ak
i = {j : (i , j) ∈ E k} ⊆ V

• Ek
i = {e : (i , e) ∈ Ē k} ⊆ V̄ k

• Lk
e = {i : (i , e) ∈ Ē k} ⊆ V k
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The symbolic factorization: quotient graphs

The usage of quotient graphs can benefit from a number of
simplifications

• Nodes Absorption All the elements in
Ek−1

k will be removed from Gk and all
the variables in Lk−1

e for each
e ∈ Ek−1

k will be included in Lk
k

• Redundant Edges Elimination Any
edge (i , j) where i , j ∈ Lk

k will be
suppressed
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The symbolic factorization: restarting

The technique of restarting is based on a
combination of left- and right-looking
updates of the quotient graph:

1. in pivotal steps 1, ..., τ are processed
and only the adjacency information for
variables 1− τ is updated in a
right-looking way

2. restart: the adjacency information of
variables τ − n is updated with respect
to elements 1− τ in a left-looking way

3. apply steps 1 and 2 recursively on
variables τ − n

8 of 16



The symbolic factorization: restarting

The technique of restarting is based on a
combination of left- and right-looking
updates of the quotient graph:

1. in pivotal steps 1, ..., τ are processed
and only the adjacency information for
variables 1− τ is updated in a
right-looking way

2. restart: the adjacency information of
variables τ − n is updated with respect
to elements 1− τ in a left-looking way

3. apply steps 1 and 2 recursively on
variables τ − n

8 of 16



The symbolic factorization: restarting

The technique of restarting is based on a
combination of left- and right-looking
updates of the quotient graph:

1. in pivotal steps 1, ..., τ are processed
and only the adjacency information for
variables 1− τ is updated in a
right-looking way

2. restart: the adjacency information of
variables τ − n is updated with respect
to elements 1− τ in a left-looking way

3. apply steps 1 and 2 recursively on
variables τ − n

8 of 16



The symbolic factorization: restarting

The technique of restarting is based on a
combination of left- and right-looking
updates of the quotient graph:

1. in pivotal steps 1, ..., τ are processed
and only the adjacency information for
variables 1− τ is updated in a
right-looking way

2. restart: the adjacency information of
variables τ − n is updated with respect
to elements 1− τ in a left-looking way

3. apply steps 1 and 2 recursively on
variables τ − n

8 of 16



Coupling the two steps

The ordering and the symbolic factorization are performed on the
graph built from |A|+ |AT |
• run PT-SCOTCH on the graph and get a separator’s tree

• leaf subtrees are processed independently by processors

• the top of the tree is processed sequentially by a “root” node
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Coupling the two steps

The symbolic factorization of the top of the tree is modeled as a
restarting step
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NICE-7: N=8159758, NNZ=669172552
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BRGM: N=3699643, NNZ=307580395
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CONESHL: N=1262212, NNZ=84753352
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10millions: N=10423737, NNZ=167722005
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Future work

• Parallelize top-of-the-tree symbolic factorization

• Experiment with multisector ordering
schemes [Ashcraft and Liu, 1998]

• Parallelize amalgamation

• Parallelize scaling [Amestoy et al., 2008]

• Parallelize maximum transversal

15 of 16



Thanks
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