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Abstract

Computational Grids, composed of distributed and often hetero-
geneous computing resources, have become the platform-of-choice for
many performance-challenged applications. Proof-of-concept imple-
mentations have demonstrated that both Grids and clustered environ-
ments have the potential to provide great performance bene�ts to dis-
tributed resource-intensive applications. However, at the present time,
careful staging, scheduling, and/or reservation of resources is essen-
tial in order for applications to achieve performance in Grid environ-
ments. If Computational Grids and shared computational clusters are
to achieve their full potential, it must be possible for users to achieve
application performance at any given time, and when other users are
present in the system.

In this paper, we describe the initial development of an AppLeS

(Application-Level Scheduler) for the resource selection portion of the
Synthetic Aperture Radar Atlas (SARA) application, developed at
JPL.We demonstrate the e�ectiveness of application scheduling for dis-
tributed data applications such as SARA by providing a performance-
eÆcient strategy for retrieving SARA data �les in everyday, multiple-
user Grid environments.
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1 Introduction

Distributed resources are becoming an increasingly important platform for
computation. Both clusters of workstations and Computational Grids pro-
vide a way to aggregate the computational power supplied by collections
of resources to provide execution performance for large-scale and resource-
intensive computations.

Achieving application performance on such platforms can be challenging.
Contention for shared resources has considerable impact on the performance
such resources can deliver to an application. In addition, the heterogeneity
of the underlying resources makes performance hard to predict. Currently,
large-scale applications may achieve performance by careful staging of data
and/or computation, as well as scheduling of application tasks and commu-
nication. However, for the ordinary user seeking application performance,
such measures are often impractical and/or infeasible. The challenge for
application developers and users is to develop applications which can be
scheduled at execution-time to achieve performance under ordinary condi-
tions, and in shared and dynamic production computational environments.

Experience shows that adaptive techniques are a promising way to sched-
ule applications in Grid and clustered environments [9]. In this paper, we
use such techniques to develop an application scheduler for the data transfer
phase of the SARA application, a distributed data image acquisition appli-
cation developed at JPL and SDSC. In Section 2, we briey outline the basic
concepts behind AppLeS application schedulers. In Section 3, we describe
an AppLeS application scheduler for a simpli�ed version of SARA, and in
Section 4, we provide performance results. Some relevant work is discussed
in Section 5, and in Section 6, we touch on future work by outlining an
\end-to-end" SARA AppLeS and our plans to use it as a template for the
larger class of distributed data applications of which SARA is a member.

2 AppLeS

The focus of the AppLeS (Application-Level Scheduling) project [3] is to de-
sign and develop custom application-level scheduling agents for distributed
applications. Each application is integrated with its own AppLeS scheduler
which develops and implements a custom application schedule, which can
adapt to forecasts of deliverable resource performance at execution time.
AppLeS agents use performance prediction models, dynamic information,
and application-speci�c information to determine an adaptive custom sched-
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Figure 1: AppLeS Architecture. Subsystems include the Resource Selec-
tor, Schedule Planner and Application Actuator. Information is provided by
the user, the system, and by facilities such as the Network Weather Service.

ule for their application.
AppLeS schedulers are based on the principle that every potential

scheduling decision has a performance impact on the applica-

tion [2]. An AppLeS agent uses performance models and resource perfor-
mance forecasts to derive an adaptive custom schedule for its application,
and to choose the schedule from among a set of possible candidates that
best optimizes the user's performance criteria. To do so, the agent must

� select potentially useful sets of resources,

� derive an application schedule that uses the resources in each set,

� predict the performance an application would attain if it used these
resources and schedule, and

� compare di�erent combinations of resources and schedules (based on
the performance predicted for each) to choose the one that is likely to
yield the best performance.

These functions are implemented by the subsystems depicted in Figure 1.

3 SARA

The Synthetic Aperture Radar Atlas (SARA) is a web-based distributed
data application which allows users with access to the World-Wide Web
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and the Internet to view images of the Earth's surface taken by a synthetic
aperture radar [13]. The data upon which these images are generated are
collected by satellites as they pass over the Earth, resulting in long, rect-
angular regions, or tracks of data. Because these data are stored in raw
uncompressed SAR format, it is partitioned and replicated across several
high-capacity storage sites. Via a web page and a Java applet, users of the
SARA system can request an image of an arbitrary sub-region of the track
with certain features of the data highlighted.

The SARA application is essentially comprised of three logical phases,
the �rst of which is the data retrieval phase. During data retrieval,
raw SAR data corresponding to the requested region of a track is located
and retrieved, usually from a high-capacity storage subsystem like the High-
Performance Storage System (HPSS) �lesystem. This is done with the help
of a metadata server which maps data tracks to sets of servers which have
the data. Data stored in these �lesystems achieves access times ranging
from seconds (if the �les are in a disk cache) to perhaps even hours (if the
�les are not in disk cache and require operator intervention to mount a set
of tapes). The �nal step of this phase requires moving the raw data to a
processing node in preparation for processing the image.

In the data processing phase, raw data is converted into an image
�le. The data is �ltered, reduced, and encoded, based on two user inputs:
the features the user wishes to highlight, and the image format the user
requests. The �nal logical phase of the application begins when the image
�le is prepared.

The image transfer phase involves moving the image �le from the
processing node to the user's machine. The current SARA application has
only a Web-based interface, meaning that the image transfer is done via an
HTTP connection, and the image is displayed in a web browser.

The job of scheduling an application such as SARA can be logically per-
formed in a hierarchical and distributed fashion: scheduling decisions made
at one phase can be used to make subsequent choices. No scheduling is
required of the data server node, since a single data server needs only fetch
data from the storage subsystem which it serves and transfer it back to the
requester. However, during the data retrieval phase, processing nodes act
as resource selectors and schedule planners in deciding which data servers
should be employed to retrieve which data sets. These results can then be
used by the Java client to make a similar decision about which processing
node should be responsible for generating which parts of the requested im-
age. In the next sections, we describe our initial implementation of and
results from the resource selection and planning components of the AppLeS
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agent which operate at the processing node level. A description of further
plans for the development of an \end-to-end" SARA AppLeS are described
in Section 6.

3.1 Simple SARA

As the initial stage of the development of an \end-to-end" SARA AppLeS,
we implemented an AppLeS scheduling agent for the data retrieval phase
of the SARA application only (which we term \Simple SARA"). Figure 2
illustrates the basic structure of the SARA application, with the component
to which this work applies shown in bold. In particular, we focused on the
transfer of raw data for some region of a single track from the storage site to
a processing node. Since some of the data may be stored in multiple archives,
we concentrated on the more diÆcult case where data can be retrieved from
multiple servers. (If data can be accessed only from a single server, the
SARA tool would of course access it from there). In the multiple data
server case, wide performance variations on the networks between the data
servers and the processing node have considerable impact on data transfer
rates. The selection of which data server to use for the fastest transfer of
remote data is the focus of the Simple SARA AppLeS.

For the initial prototype, we assumed that the �les to be retrieved were
on disk rather than tape, so access time to the data is uniform for each of
the potential data servers. This is consistent with the SARA application as
it is currently used. The performance model used for resource selection by
the Simple SARA AppLeS is straightforward:

T ime =
DataSize

Bandwidth

Given a user request, the AppLeS agent can calculate DataSize and get a
forecast of Bandwidth from the Network Weather Service (NWS) [14,
15]. Since DataSize is �xed based on the data SARA needs to process a
request, Time is inversely proportional to Bandwidth. The Simple SARA
AppLeS selects the server with the highest forecasted bandwidth and re-
trieves its data �le.

4 Simple SARA Results

In the current implementation of SARA, the user selects the desired data
server based on his/her intuition about which site is \closest", i.e. which site
will transfer remote data the most quickly. TraÆc on shared networks can
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Figure 2: General architecture used in the design of an \end-to-end" SARA
AppLeS agent. The portion targeted by Simple SARA is shown in bold.
The \end-to-end" SARA AppLeS agent's performance prediction model will
account for performance-driving factors: (a) storage access times, (b) data
processing and image generation times, and (c) HTTP-based data transfer
times.

substantially impact performance and can render a non-intuitive choice of
data server to be the \closest". Our goal for the Simple SARA AppLeS was
to develop a strategy for determining the \closest" data server based on dy-
namic information and prediction provided by the Network Weather Service,
and to test our approach in ordinary shared, distributed environments.

To do so, we distributed �les representative in size and structure of
SARA data �les to a variety of geographically distributed sites connected
by a diverse set of networks. The machine used as the processing node was
alicatado.ucsd.edu, a Pentium class x86 machine running Linux 2.0.34.
The data servers we used included

� lolland.cc.gatech.edu: an x86 PC running PC Solaris 2.5, routed
to UCSD from Georgia Tech via vBNS,

� mead2.u.washington.edu: an IBM AIX 4.2 machine, routed to UCSD
from University of Washington, Seattle via general Internet media,1

� perigee.chpc.utah.edu: a Sun Ultra-2 workstation running Sun So-

1Since the time when our initial experiments were run, the vBNS connection to the
University of Washington has been activated.
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laris 2.6, routed to UCSD from University of Utah via vBNS,

� sitar.cs.uiuc.edu: a Sun Ultra-30 running Sun Solaris 2.6, routed
to UCSD from University of Illinois, Urbana-Champaign via vBNS,
and

� spin.cacr.caltech.edu: an IBM SP2 running IBM AIX 4.2, routed
to UCSD from CalTech via general Internet media.2

We implemented two prototype modules: a data server and a processing
server. Our experimental data server is virtually unchanged from the data
server used in the actual SARA application.3 Our processing server is based
on the actual SARA processing server module, but is modi�ed to skip the
data �ltering and image encoding phases. The AppLeS agent is coded into
the processing server.

The experiments consisted of trials, during which the AppLeS agent con-
tacted the NWS to obtain bandwidth forecasts between each of the potential
data servers and the processing node. The server with the highest bandwidth
forecast is designated the selected server. We assessed the e�ectiveness of
the AppLeS selection of a data server by performing the data transfer from
all available data servers and comparing the resulting transfer times.4 We
considered the AppLeS scheduler successful for a given trial if the selected

server yielded the lowest transfer time for that trial.
Figure 3 shows a representative Simple SARA experiment, performed

during a normal workday. Each trace represents a series of trials using
a particular server, and the server selected by the AppLeS agent is indi-
cated (with a � symbol) for each trial. We see that during this experiment,
the AppLeS scheduler selected the fastest server in 80% of the trials. Fur-
thermore, the AppLeS agent never does worse than an \intuitive" static
scheduler which selects the server based on geographical distance between
the client PC and the remote data server.

In the next subsection, we discuss the idea of \network closeness" and
show some results which suggest that it can be used to construct eÆcient
application schedules.

2At the time of these experiments, CalTech's vBNS connection had been approved.
3The only di�erence is that the experimental data server outputs to a socket, whereas

the production server runs as a CGI-bin script (and therefore outputs to standard output).
4Comparison experiments were run back-to-back and multiple times on transfer sizes

ranging from 1.5 to 3 megabytes (corresponding to a typical SARA user request). Each
comparison run executed for between 15 seconds and 2 minutes with the majority of runs
being on the lower end of the range. On average, comparison runs for a single trial enjoyed
roughly similar load conditions.
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Figure 3: SARA AppLeS performance under typical network behavior

4.1 Observations on What is \Close"

As described previously, the current version of SARA relies on the user to
choose the \closest" data server. Typically, many users assume that transfer
times increase with geographical distance. That is, the farther away a server
is on a map, the longer data transfers will take. However, it is becoming
increasingly true that network characteristics between two sites depend less
on actual distance and more on the media which connect them. Our Simple
SARA experiments led to several interesting observations about what is
\close" on the network:

� \Close" network sites may have little correlation with \close"

geographical sites.

Fast networks, like the vBNS, make it diÆcult to determine \closeness"
based solely on geographical distance. Sites that may be separated by
thousands of miles may be \close" in the network sense, whereas sites
separated by only a few hundred miles may be \far".

Consider experiments run between UCSD, the University of Washing-
ton (which was on the general Internet), Georgia Tech (which was on
the vBNS), and the University of Illinois (also on the vBNS). During
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Figure 4: Experiments between UCSD, UW, GeorgiaTech, and UIUC on
8/23/98.

the time frame shown in Figure 4, data �les from both Georgia Tech
and UIUC enjoy more bandwidth than data �les from UW (on average
36.9% and 42.4% respectively) and thus, arrive at UCSD sooner. In
this experiment, the AppLeS agent, with the help of NWS forecasts, is
able to detect that the UW server, although geographically the closest
to UCSD, is not the site that yields the shortest network transfer time.

� Dynamic factors inuence what is \close".

In the Internet, network links may be added, removed, and changed on
a daily, and often more frequent basis. In addition, the great majority
of network links are used by multiple users at any given time. All of
these factors contribute to wide uctuations in the performance of the
network. As this happens, the relative network \distance" between
sites can change dramatically.

Although both sitar.cs.uiuc.edu and lolland.cc.gatech.edu are
supposedly connected to the vBNS, we found that Georgia Tech's
vBNS connection was subject to intermittent failures during the time
frame of our experiments. Figure 4 shows that bandwidth from both
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Figure 5: Experiments on 9/21/98 between UCSD, CalTech and University
of Utah.

of these two machines is roughly the same. However, at trial 17,
we see that bandwidth to the Georgia Tech server is signi�cantly in-
creased, and we conjecture that this is due to the vBNS link being re-
established.5 The NWS measurements and forecasts correctly detect
the change allowing the AppLeS agent to pro�tably switch servers.

Also, consider the experiments performed in the morning on 9/21/98
between CalTech, the University of Utah, and UCSD (Figure 5). Dur-
ing this time frame, the general Internet (to CalTech) provided better
performance until trial 26 (approximately 9 AM), at which time the
webcast of the Grand Jury testimony of President Clinton commenced.
At this point, bandwidth on the general Internet began to uctuate
greatly, and the vBNS connection to Utah provided superior perfor-
mance.

5When this phenomenon was �rst noticed, we began running traceroutes to each ma-
chine to determine if network traÆc at any given time was using the vBNS. In one instance,
when the NWS reported a sudden increase in bandwidth, traceroute indicated that the
vBNS link was being used. Closely monitoring the link, we found that approximately two
hours later, the routing changed from vBNS to the general Internet, accompanied by a
sudden decrease in bandwidth.
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� What is \close" may not be obvious to the user.

Whereas a user can fairly easily determine the geographical distance
between two points, network \closeness" is often an opaque concept
to the user. Because of considerable performance variation, and the
diÆculty in determining the di�erence between \noise" and \trends"
in network performance, it is not straightforward for users to deter-
mine which network link will provide the best performance for their
application [14].

5 Related Work

\Network distance" in various forms has been studied by a number of groups.
For example, NLANR's Measurement and Operations Analysis Team mea-
sured web server and cache performance, recognizing the e�ects of network
and server load on e�ective performance [6]. The multimedia community
is also examining this notion extensively, especially in the area of video-on-
demand service. Such projects include [5, 11]. We believe that the network
behavior exhibited during the Simple SARA experiments support these no-
tions of \network distance" and can be viewed within a larger framework.

Note that SARA is also related to digital library applications which share
the goal of accessing �les over shared networks. The Alexandria Digital Li-
brary Project at UCSB has studied the performance of Web-based applica-
tions in the context of digital library and information access systems [1, 16].
This work addresses issues of load balancing among clustered digital library
server nodes to improve throughput in response to client requests.

Other web proxy caching work in [4, 8] examines the use of document
caches to improve performance for web clients. This work focuses on schedul-
ing in a slightly di�erent context: the process of deciding what and where
to perform caching and the subsequent decision of which of several potential
caches to use for future queries. These papers are representative of a growing
body of work focusing on the development of performance-eÆcient strategies
for accessing and processing remote �les in multi-user environments.

6 Future Work

The Simple SARA AppLeS demonstrates that application-level scheduling
is a useful strategy for data retrieval. We are currently extending the Sim-
ple SARA AppLeS to provide performance for an \end-to-end" SARA tool.
Figure 2 illustrates the application architecture being used to develop the

11



SARA AppLeS agent. In particular, our \end-to-end" SARA AppLeS fo-
cuses on applications which require multiple �les per image, and may process
the image at a variety of di�erent sites (at the data server, at an interme-
diate compute server, at the web site, etc.). The Simple SARA resource
selection strategy will provide a basic building block for an \end-to-end"
SARA AppLeS.

Note that the performance model will be more complex for the \end-to-
end" SARA. In particular, the interactions of the client and the compute
server(s), the compute servers and data servers, as well as data servers of
various sorts of media will all have to be modeled. Scheduling the \end-
to-end" application will involve decisions about which compute server(s) to
use, whether to move the computation to the data, the data to the compute
server, or to compute at an intermediate site, and which of the di�erent data
servers to target. Optimizing each of these activities individually may not
necessarily optimize the execution performance of the \end-to-end" appli-
cation, so the application must be scheduled as whole.

We also note that SARA is representative of a larger class of distributed
data applications. High energy physics applications from the Cleo/Nile
project [10], Digital Sky [7], San Diego Supercomputer Center's Storage
Resource Broker (SRB) [12], and other applications have a similar compu-
tational structure to SARA and similar computational goals, although the
size of the data �les, location of client, servers and visualization sites, com-
putation to be performed on the data, and other details may di�er. We plan
to use the \end-to-end" SARA AppLeS as a model for the development of
a distributed data AppLeS template which can be used for scheduling other
distributed data applications on the Grid.
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