
ON THE FEASIBILITY OF RUNNING

ENTITY -L EVEL SIMULATIONS ON GRID PLATFORMS

Alan Su∗ Fran Berman†‡ Henri Casanova†‡

∗ Laboratoire de l’Informatique du Parallélisme
École Normale Suṕerieure de Lyon, Lyon, France

alan.su@ens-lyon.fr

† San Diego Supercomputer Center‡ Dept. of Computer Science and Engineering
University of California, San Diego, U.S.A.
{berman,casanova }@sdsc.edu

Abstract

Scientists have long relied on abstract models to study phe-
nomena that are too complex for direct observation and ex-
perimentation. As new scientific modeling methodologies
emerge, new computing technologies must be developed.
In this paper, we focus onentity-level modeling, a mod-
eling approach that is gaining prevalence in many scien-
tific fields. Although the principles of entity-level model-
ing are straightforward, entity-level simulations require a
large amount of compute resource and grid platforms can
meet such resource needs. Unfortunately, efficient large-
scale distributed entity-level simulations have proven elu-
sive, typically due to non-determinism that renders clas-
sical distributed application deployment strategies ineffec-
tive. In this work, we propose a method for dynamically
remapping application tasks to cope with this inherent non-
determinism. We evaluate the efficacy of this method in a
simulated grid computing environment and discuss the fea-
sibility of executing entity-level applications on grids.

1 Introduction

High-performance computing technology long played an
critical role in scientific research as scientists often turn to
modelingas a means to indirectly describe and study other-
wise intractable problems. One popular approach issystem-
level modeling, which relies on abstraction: abstraction:
significant aggregate properties of the system under study
are identified, and the fundamental behavior of the system
are manifested as mathematical relationships between these

properties. For example, system-level vehicular traffic mod-
els characterize flows of traffic as fluid flows, using proper-
ties such as density (i.e., how tightly vehicles are packed)
and velocity (i.e., average speed of traffic) and linking them
via partial differential equations (PDEs) [8]; such models
have proven highly valuable in many fields (e.g., [8,19,31]).

However, a number of emerging scientific models are
increasingly focused on the importance of understanding
emergent behaviors – the mechanisms by which individual
actors in a system interact to give rise to observed system-
level behavior. Consequently, efforts to explicitly describe
complex systems using relatively simple descriptions of en-
tities which comprise the systems being studied are growing
progressively more prevalent (e.g., [1,3,5,15,27]). We term
this approachentity-level modeling. For instance, an entity-
level vehicular traffic model could consider cars as individ-
uals with possibly complex and diverse behaviors that may
be vehicle- and driver-specific. Such a modeling approach
has been cited in a number of fields in which system-level
models are undesirable or insufficient (e.g., [7,9,12]).

Entity-level simulations typically have much higher
computational requirements than their system-level coun-
terparts. This is because each individual entity is modeled
separately, and thus requires memory (e.g., to store a po-
tentially large data structure) and computation (e.g., to treat
large numbers of entities running potentially complex al-
gorithms). Therefore, running on grid platforms that aggre-
gate large amounts of resources is promising. Unfortunately
a critical factor that limits the utility of entity-level mod-
eling is the fact that the issues regarding computer-based
entity-level simulations are not well-understood. The main
difficulties are model structure irregularity due to the het-
erogeneity of entities in the model, and the fact that en-

1

tity behaviors can be arbitrary, non-deterministic, and com-
plex. The heterogeneous and non-uniform structure of grids
themselves exacerbate this complexity.

In this paper, continuing our study of entity-level appli-
cations in distributed environments [25, 26], we focus on
the problem of application non-determinism on grid plat-
forms: the behavior of an entity-level application (and cor-
respondingly, its computational resource requirements) typ-
ically changes during run-time. Based on our prior parallel
task mapping work, we propose atask remapping strategy.
We use an entity-level model from ecology to study the effi-
cacy of this strategy in a realistic context, and we show that
the approach yields measurable improvements in simulated
application performance on grid platforms.

2 Background

2.1 Entity-level Application Template

The entity-levelmodeling idea has been proposed in
many scientific fields (e.g., [1,3,5,6,15]). Examples of these
efforts range from creating large-scale traffic systems from
models of individual vehicles, to studying the biological im-
mune response from the perspective of interactions between
immune cells and foreign bodies (e.g. viruses and bacteria).
From a computer science perspective, entity-level models
logically correspond to iterative applications in which enti-
ties are represented by parallel tasks, each of which exhibits
computational and communication requirements based on
the fundamental properties of the entity itself. Based on
a careful examination of entity-level models from numer-
ous application domains, we believe that it is possible to
design strategies that are generally applicable across appli-
cation domains. Guided by these commonalities, we have
defined anentity-level application template, which serves
to specify the model-specific properties that impact applica-
tion performance (see [24] for all details). These common
properties are the basis for the entity-level template:
• State information: Most entity-level models we re-

viewed involve entities that encapsulate state data that
differentiate individuals in the system. Collectively,
these data represent the state of the system.

• Entity interactions : Large-scale emergent behaviors
result from the combination of many small-scale in-
teractions; entities in our template exhibit interaction
models that effect appropriate modifications to enti-
ties’ states. In the context of simulation, these mecha-
nisms generally correspond to inter-entity (and poten-
tially inter-processor) communication operations.

• Internal behavior : Internal behaviors represent the
mechanisms by which entities respond to environmen-
tal factors. Effectively, these behaviors specify the
state-change operations that each entity should un-

Start
sentinel

End
sentinel

i’

i

ci

∞

∞

(a) Comp.
node sequence

Start
sentinel

End
sentinel

j’

i

Ti,j

∞

∞

0

0

(b) Comm.
node sequence

Start
sentinel

End
sentinel

i’

ci

pii⇒

Xi

∞

(c) Comp.
node sequence,
modified for
remapping

Figure 1. DAG node sequences correspond-
ing to computational operations in entity-
level models

dergo as the simulation progresses from iteration to it-
eration. Internal behaviors would primarily correlate
to computational load incurred by the entity task.

• External behavior: Environmental properties of the
system iften affect entity behavior. External behaviors
of entities are essentially algorithms that govern the en-
vironmental effects on entities and the effects of enti-
ties on the environment. These functions would nor-
mally result in a mixed workload of entity task com-
putation and inter-task communication.

2.2 DAG Representation of Entity-level Models

We have previously studied the viability of employ-
ing well-known DAG (Directed Acyclic Graph) schedul-
ing heuristics to find effective mappings of entity-level ap-
plication tasks to computational resources. We thus ex-
pressed instances of entity-level models as DAGs [26]; the
basic components of the DAG representation for instances
of entity-level models are:

• unique root and end nodes: common ancestor and de-
scendant, respectively, for all DAG nodes;

• sentinel nodes, of which there are two for each entity
in the entity-level model, and from which entity task
mappings are constructed by assigning each entity to
the processor corresponding to the one chosen for its
sentinel node by the DAG scheduling heuristic;

2

• infinite-weight edges, a specialized edge that is used to
link DAG nodes that must be co-scheduled on the same
processor in order to ensure that the DAG scheduling
algorithm generates a feasible entity task mapping; and

• computation and communication node sequences,
which are DAG subgraphs (depicted in Figures 1(a)
and 1(b), respectively) that correspond to each en-
tity computation and inter-entity communication op-
erations warranted by the current state of the model.

Our DAG construction proceeds as follows:

1. The distinguished root and end nodes are instantiated.
2. Sentinel nodes are created for each entity in the sys-

tem. Start sentinelsare connected by zero-weight
edges from the root node;End sentinelsare connected
by zero-weight edges to the end node.

3. Computational node strands (with node weightci rep-
resenting the complexity of entity computation) are
created for each entityi and are linked to that entity’s
start and end sentinel nodes by infinite-weight edges.

4. Communication node strands (with edge weightTi,j

corresponding to the amount of data to be transfered)
are created for each pair of entities(i, j). These strands
are linked to the sender’s start sentinel and receiver’s
end sentinel by infinite-weight edges.

A DAG thus constructed encapsulates all relevant computa-
tion and communication costs dependencies exhibited by an
entity-level simulation. In [26], we found that by creating
such DAGs based on the initial states of entity-level models,
invoking DAG scheduling algorithms on these graphs, and
creating entity-level task mappings based on the results of
the DAG scheduling algorithm, we were able to deliver sub-
stantially improved performance to entity-level simulations
(e.g., over traditional space-partitioning techniques).

2.3 DAG Scheduling Heuristics

Using the DAG transformation methodology introduced
in Section 2.2 effectively generates DAG-structured repre-
sentations of entity-level simulation workloads. This en-
ables the use of numerous well-known DAG-based paral-
lel application scheduling heuristics for entity-level appli-
cations. In this paper, we focus specifically on two heuris-
tics that we have previously shown to be efficacious in this
context [24]: the “earliest task first” (ETF [14]) and the “dy-
namic level scheduling” (DLS [23]) strategies.

2.4 Related Work

The problem of deploying entity-level applications in
grid environments is closely related to the problems of dy-
namic load balancing [4, 29, 30] and irregular workload

scheduling [2, 18]. Compared to the dynamic load balanc-
ing literature, our work considers an application model that
exhibits a qualitatively greater degree of dynamism in two
aspects. First, the costs of rebalancing workload (i.e., mi-
grating an entity’s data and computation) may vary signif-
icantly depending on runtime factors. Second, in the pro-
cess of modeling emergent behaviors, the performance of
entity-level applications may fluctuate significantly more
than application models in much of the load balancing lit-
erature. Of particular relevance from the irregular work-
load scheduling literature are graph scheduling problems,
which include the DAG scheduling heuristics, as mentioned
in Section 2.3; and irregular mesh applications, which re-
semble entity-level models insofar as the workload is dis-
tributed non-uniformly over the problem space.

Several efforts have examined the problem of entity-level
simulations; an example of such an effort is the Swarm
project [20]. Although Swarm is essentially based on the
entity-level model, efforts to realize parallel implementa-
tion have not generally been scalable. Our work seeks to
provide practical parallel task management strategies that
could make a Swarm implementation targeted to grid plat-
forms feasible. We also seek to benefit from work be-
ing done in the areas of molecular dynamics [21, 22] and
particle-in-cell [11] methods. These application models,
for which effective parallel implementations have been re-
alized, are based on the same basic premise of emergent
behaviors. These parallel applications rely on specific prop-
erties exhibited by the fundamental entities to facilitate effi-
cient and scalable methods for managing large-scale paral-
lel simulations.

3 Entity-level Task Remapping

3.1 DAG Representation for Remapping

To preserve application performance in the face of non-
determinism, we seek to adapt the DAG-based entity task
mapping approach discussed in Section 2.2 to performap-
plication task remapping– dynamic reassignment of entity
tasks according to changes in the entity-level model state.
The problem of remapping primarily differs from the map-
ping problem in that, in a remapping scenario, entity tasks
are already deployed on platform resources. This factor has
a critical impact on application performance when remap-
ping: a new mapping that is similar to the current mapping
will require far less time to implement than one that is dis-
similar. Moreover, entity tasks may need to be remapped
several times over the course of a single application execu-
tion, making efficient remapping schemes even more criti-
cal. To enable remapping that accounts for the existing task
mapping, we propose two modifications to the DAG con-
struction: (i) We let the start sentinel nodes of the DAG con-

3

struction represent theexistingentity task mapping. Thus,
when the remapping scheme is invoked, we construct the
DAG and pre-assign the start sentinels nodes according to
the current entity task mapping. (ii) We assign a weight of
Xi, based on the size of the entity state data, to the edge
from the node in the entity’s computational node sequence
to its end sentinel. This weight is considered by the DAG
scheduling routine to account for the costs of remapping an
entity. The resulting computational DAG node sequence is
shown in Figure 1(c).

To effect a remapping using such DAGs, we simply in-
voke a DAG scheduling algorithm to obtain a mapping of
DAG nodes to platform resources. The new entity task map-
ping is constructed by assigning each entity to the processor
on which its end sentinel DAG node is scheduled.

3.2 DAG Unrolling

Multi-iteration task remappings can be achieved via
DAG unrolling – extending the DAG to encapsulate mul-
tiple application iterations – in a straightfoward fashion:

1. Start with the basic DAG, constructed as in in [26]. We
term this aone-iteration DAG.

2. To construct ann-iteration DAG, we createn−1 repli-
cas of all DAG node sequences corresponding to com-
putation and communication operations required in the
current entity-level application state. We also create
n− 1 additional sets ofinternal sentinel nodes.

3. Edges (with weights for computational strands equal to
the remapping cost, as depicted in Figure 1(c)) connect
each set of replicated DAG node sequences to a set of
internal sentinel nodes, as detailed in [26].

4. Then − 1 new blocks of DAG nodes are inserted into
the DAG by breaking the links between the existing
end sentinels and the terminal DAG node, and succes-
sively inserting edges from those nodes to the DAG
node sequences of the newly created DAG subgraph
blocks. Finally, the edges from the sentinel nodes in
the last block are connected to the end DAG node.

The n-iteration remapping event is realized by (i) ini-
tially assigning start sentinels to processors according to
pre-remapping entity assignments, (ii) executing the DAG
scheduling heuristic on the unrolled DAG, and (iii) gener-
ating successive task remappings from each set of end sen-
tinel nodes in the DAG. The task mapping is obtained using
a process analogous to the one described in Section 3.1: for
the first iteration after the remapping event is triggered, en-
tity tasks are assigned to processors based on the first set
of internal sentinel nodes. Each successive set of sentinel
nodes denotes the task mapping for the subsequent itera-
tion, yielding ann total task mappings.

3.3 Triggering Remapping Events

To determinewhen to perform a remapping event, we
need a metric to measure the extent to which current appli-
cation performance is degraded due to non-determinism in
the entity-level model. First, we define

NormIterT ime =
IterationT ime

WorkloadMetric

to represent application performance for the current itera-
tion normalized for the amount of “work” in the system;
for the application model used in this paper, we use the
aggregate amount of data to be transfered in a given iter-
ation asWorkloadMetric. During the simulated execu-
tion of the application, we maintain a running average of
NormIterT ime values for all iterations immediately fol-
lowing a remapping event. We then define the current per-
formance degradation factor as

CurDeg =
(CurNorm−AvgNorm)

AvgNorm

whereCurNorm is the current value ofNormIterT ime,
andAvgNorm is the running average ofNormIterT ime
values. TheCurDeg metric serves as an indicator of the cu-
mulative effects of entity non-determinism (e.g., movement,
state changes, etc.) on execution performance. For each run,
we also define a performance degradation threshold; when
CurDeg exceeds this threshold, a remapping event is trig-
gered. In this paper, we consider two threshold values: 10%
and 25%.

4 Experimental Results

To test the efficacy of our remapping strategy, we use a
popular entity-level model from the field of ecology. Ecol-
ogists have long utilized modeling techniques to abstractly
study the interactions between animals, plants, and their en-
vironments. Traditionally, these models (e.g., the Lotka-
Volterra model [19, 28]) have been based on the system-
level approach mentioned in Section 1. However, recent
work has recognized the value of the entity-level approach
in ecological modeling [12].

4.1 Entity-level Application Case Study: ATLSS

We base our studies on an instance of our application
template corresponding to the ATLSS [13] entity-level eco-
logical model of an ecosystem in the Florida Everglades.
The principal features of this model are

• predator entities– representing the Florida panther,
the focus of the ATLSS model – each of which is de-
scribed by its movement behavior (the maximum dis-

4

1 Gb/s LAN
16 nodes, 500 Mhz

8 nodes, 550 Mhz
100 Mb/s LAN

8 nodes, 266 MHz
100 Mb/s LAN

...

...

...}

400 MHz

700 MHz

6.0 Mb/s

}

}

UTK

100 Mb/s LAN

5.9 Mb/s

1.5 Mb/s

3.0 Mb/s

2.7 Mb/s
4.4 Mb/sUIUC

UCSD

Figure 2. Grid platform: GrADS testbed

tance a predator entity moves in a single model iter-
ation) and its predation behavior (the distance within
which a predator entity hunts for prey);

• prey entities– representing the white-tailed deer, a
common prey for the Florida panther – each of which
is described primarily by its movement behavior; and

• anenvironment, defined by the physical extents of the
model and characterized byfood sites, which are ef-
fectively randomly located points that are designed to
create realistic foraging behavior in the prey entities by
introducing bias into their movement patterns.

To instantiate the model for the purposes of simulation, an
ecologist would typically specify the size of the environ-
ment, the locations food sites, and the number and initial lo-
cations of predator and prey entities in the system. Based on
our experience with this model we determined that the two
main factors affecting application performance are the num-
ber of predators and the degree of physical mobility [24],
which we study in this paper.

4.2 Different Platform Configurations

While in [24] we focused on cluster environments, here
we target grid platforms. We simulate a grid testbed used
in the Grid Application Development Software (GrADS)
project [10] composed of clustered computing resources
and network infrastructure from three participants in the
project: the University of California, San Diego (UCSD);
the University of Tennessee, Knoxville (UTK); and the Uni-
versity of Illinois, Urbana-Champaign (UIUC), as depicted
in Figure 2. In this context, we are particularly interested
in the disparity between cluster-level interconnection net-
works (LANs with capacities of 100 Mb/s and 1 Gb/s in the
example given) and the inter-cluster networks (commodity

Remapping UTK UTK and UTK, UIUC,
Heuristic only UIUC and UCSD

Spatial 1.00 0.89 0.48
ETF 1.43 1.62 1.59

ETF, 2-iter unroll – – 1.84
DLS, 2-iter unroll – – 1.90

Table 1. Application speedup

Internet links). With such a wide range of processor and net-
work capacities, we suspect that complex task remapping
events may potentially overtax low-capacity links, limiting
its effectiveness. Moreover, note that the capacity of the
network between the UCSD and UTK sites is lower than
the other two wide-area connections; in this case, this indi-
cates that the throughput of data transfers may actually be
higher if data are routed through the UIUC network.

Based on the above platform configuration, we designed
an application performance simulator using the SIM GRID

grid simulation toolkit [17]. Using this tool, we first ana-
lyze the application performance using a spatial remapping
strategy using only the UTK resources (i.e. 24 relatively ho-
mogeneous nodes with LAN interconnection networks) in
the GrADS testbed depicted in Figure 2. We run a small
suite of application executions using representative config-
urations, take the average execution time for these runs, and
define this as the reference value for the speedup analysis.
We then run the same experiments, using the same platform
and application configurations, for the basic ETF remap-
ping heuristic without unrolling. The application iteration
times are averaged and an effective “speedup” is computed.
The leftmost column of Table 1 indicate that on a tightly
coupled cluster, the using the DAG-based task remapping
approach yields a measurable benefit over the naı̈ve spatial
remapping, due to the fact that the former is able to account
for inter-entity communication costs.

We then add the UIUC computational resources into the
platform, and re-ran the same two suites of experiments; the
resulting speedup values are given in the second column of
Table 1. We immediately observe the effects of introducing
lower-performance wide-area links into the scenario on the
efficacy of spatial remappings: because it does not account
for the potentially significant variation of network perfor-
mance between arbitrary nodes in the platform, the overall
application execution time actually increases. On the con-
trary, the ETF DAG remapping heuristic accounts for the
disparity in network link performanceand the communi-
cation operations incurred by the application. Combining
these, the DAG approach is able to effectively utilize the
additional resources to improve execution time.

Finally, we add the UCSD resources to the modeled
computational platform and again perform the same exper-

5

iments. We expect and observe a sharp decline in perfor-
mance using the spatial remapping scheme. However, we
also note that the execution time using the DAG-based ap-
proach is essentially unchanged in most cases, and even de-
graded in others. On average, the entire suite of experiments
using the ETF remapping heuristic ran slightly slower after
adding the third site. By unrolling the DAGs before invok-
ing the DAG-based remapping routines, remapping events
that make more effective use of the additional resources are
generated, and overall application execution times improve.

4.3 Efficacy of DAG Unrolling

We speculate that DAG unrolling would limit perfor-
mance degradation on grids. Using our simulation frame-
work we consider the DLS and ETF algorithms, deriving
an initial entity task mapping using the methodology de-
scribed in [26]; for each heuristic, we consider runs using
remapping DAGs corresponding to one-, two-, and three-
iteration unrolled application instances. We compare these
to the “näıve” spatial approach, which neglects communi-
cation costs when assigning entity tasks to processors.

Figures 3(a) and 3(b) depict two typical application exe-
cution time traces corresponding to runs utilizing the DLS
and ETF heuristics, respectively. In general, we find that for
most application instances, a measurable performance im-
provement in terms of decreased overall application execu-
tion time (up to 12%) is achieved using a two-iteration un-
rolled DAG compared to a basic one-iteration DAG. Com-
pared to their two-iteration counterparts, the overall execu-
tion times using one-iteration DAG remappings are 7.0%
slower with DLS and 6.8% slower with ETF. Using a three-
iteration unrolling yielded considerably lesser benefit; for
example, for the DLS and ETF runs depicted in Figure 3,
an additional level of DAG unrolling improved execution
time by 0.4% and 0.7%, respectively.

4.4 Application Volatility

We identified several instances of volatile application
configurations in which application performance modulates
constantly and dramatically. In these instances, the efficacy
of “smart” schedulers is limited, as the task mapping deci-
sions they make are based on snapshots of application state
that become inaccurate relatively quickly. In both cases, it is
apparent that minimal benefit is derived from using a multi-
iteration unrolled DAG to perform the remapping events. In
particular, the overall projected execution time of the appli-
cation using the three-iteration DAG compared to the one-
iteration DAG was 0.9% faster for the DLS heuristic and
1.1% faster for the ETF heuristic. Furthermore, we con-
ducted a minimal set of experiments with the same DAG
remapping heuristics using four-iteration DAG unrolling.

As expected, no significant overall performance benefit was
observed. We believe the diminishing benefit of additional
DAG unrolling is due to the baseline level of volatility in
the entity-level model, and the effects of “shape” of the grid
platform on the complexity of remapping events that are
likely to be advantageous. By studying these factors, we
hope to develop a methodology to automatically determine
the appropriate degree of DAG unrolling, given an instance
of an application and a targeted grid platform.

4.5 Aggregate Results

In aggregate, we ran three simulation runs for each of 64
applications configuration, totaling 192 runs. In each run,
the entity-level model is evaluated for 100 iterations, and
seven task mapping/remapping heuristics are compared:
spatial decomposition, the ETF and DLS heuristics with
one-, two-, and three-iteration DAGs. We evaluate the sim-
ulated performance using a metric commonly used to com-
pare scheduling strategies known asaverage degradation
from best[16]. For each run, the best scheduling strategy
is noted and assigned a degradation value of 0%. All other
execution times are compared to this value, and degrada-
tion values, corresponding to the differences in execution
times, are assigned to each heuristic. Table 2 gives aver-
age degradation over the three runs for each configuration,
categorized by values of application parameters (see Sec-
tion 4.1).

Above all, we observe that a task remapping using a
spatial decomposition results in application execution times
that are substantially higher than those observed with DAG-
based heuristics. This performance degradation is explained
by the fact that the spatial decomposition focuses on load
balancing the computational workload of a parallel appli-
cation; communication costs incurred by the remapping
events and the application itself are not considered. In the
ecological entity-level model presented, there are thousands
of individual entities that incur extensive interaction oper-
ations and that transfer substantial amounts entity-specific
data, rending remapping costs non-negligible. Also, spatial
decomposition fundamentally relies on the assumption that
application workload is distributed fairly uniformly over the
application space; in the ecological model, there exist nu-
merous factors that may cause entities to cluster spatially,
affecting the validity of this assumption from run to run.

In the ecology model, the “volatile” configurations (as
mentioned in Section 4.4), were generally those with the
smaller number (i.e., 50) of highly-mobile (i.e., predator
movement index = 80) predator entities. In these runs, en-
tity interaction patterns change quickly and dramatically as
the application progresses. This volatility exacerbates the
fact that remapping heuristics using unrolled DAGs effec-
tively assume that entities maintain the same state for the

6

 0

 5

 10

 15

 20

 25

 0 10 20 30 40 50 60 70 80 90 100

Ite
ra

tio
n

Ti
m

e
(s

ec
.)

Iteration Number

Application Iteration Times

dls, no unrolling
dls, 2-iter unrolling
dls, 3-iter unrolling

(a) DLS

 0

 5

 10

 15

 20

 25

 30

 35

 0 10 20 30 40 50 60 70 80 90 100

Ite
ra

tio
n

Ti
m

e
(s

ec
.)

Iteration Number

Application Iteration Times

etf, no unrolling
etf, 2-iter unrolling
etf, 3-iter unrolling

(b) ETF

Figure 3. Application performance under a typical application configuration

Remap # Pred. DLS ETF
Threshold predators mvmt. Spatial 1-iter 2-iter 3-iter 1-iter 2-iter 3-iter

0.10
50

20 62.52 5.66 2.71 1.61 13.09 10.05 8.77
80 40.22 1.67 1.66 1.66 5.17 5.16 5.18

100
20 68.43 3.36 0.69 0.18 15.50 12.57 11.96
80 35.88 4.08 0.80 0.00 12.86 9.27 8.43

0.25
50

20 57.79 8.69 2.83 1.56 13.36 7.37 5.84
80 42.84 1.38 0.67 0.26 11.94 11.20 10.70

100
20 66.44 7.89 0.94 0.40 19.65 12.02 11.35
80 42.80 8.42 2.61 0.93 14.20 8.07 6.19

Table 2. Aggregate data: average percentage degradation from best

duration of the remapping event. In these cases, we find
that the error introduced by this faulty assumption nullifies
much of the benefit of using these methods.

In all cases, remapping time is included in the execu-
tion time corresponding to the iteration immediately pre-
ceding the remapping event. In most cases, we found that
the benefit of performing the remapping using a DAG-based
heuristic outweighed the cost of migrating entity data be-
tween nodes in the platform. Moreover, we observed that
the heuristics using multi-iteration unrolled DAGs gener-
ally resulted in fewer remapping events over the entire run
and in aggregate; although the time spent transferring entity
data on a per-remapping basis were marginally greater, the
benefit of having fewer remapping events generally meant
that a comparable (if not smaller) amount of time was spent
remapping when using multi-iteration unrolled DAGs. Ad-
ditionally, although the remapping costs proved to have a
negligible overall effect on iteration time for our ecology
application, these factors may significantly affect aggregate
application performance in models composed of “large” en-

tities (in terms byte size of each entity’s state).

5 Conclusion and Future Work

As researchers in numerous scientific domains continue
to turn towards entity-level models, the lack of appropri-
ate scientific computing technologies to realize large-scale
entity-level simulations is increasingly apparent. We be-
lieve grid platforms are well-suited to deliver the extraordi-
nary aggregate computational power needed by entity-level
applications, but to realize this potential, further study of the
challenges faced by those seeking to implement entity-level
grid applications is needed. In this paper, we showed that
näıve distributed computing strategies are ineffective in re-
alizing high-performance entity-level grid applications. Our
simulation results indicate that application- and platform-
sensitive task remapping strategies are needed.

We plan to continue experimenting with the approach de-
scribed in this paper to determine if the application deploy-
ment process can be further automated. For example, in this

7

paper, we considered various values for the unrolling level
and remapping threshold parameters. Although we identi-
fied efficacious values for our experiments, we recognize
that these are tailored to the specific entity-level model we
consider and the grid platform we chose. We intend to ex-
periment with other entity-level models and consider other
grid platforms to determine if the effectiveness of our appli-
cation task remapping strategies can be improved through
algorithmic tuning according to these factors.

References

[1] C. A. Abbott, M. W. Berry, E. J. Comiskey, L. J. Gross,
and H.-K. Luh. Parallel Individual-based Modeling of Ev-
erglades Deer Ecology.IEEE Computational Science and
Engineering, 4(4):60–78, 1997.

[2] M. J. Berger and J. Oliger. Adaptive Mesh Refinement for
Hyperbolic Partial Differential Equations.Journal of Com-
putational Physics, 53:484–512, 1984.

[3] S. Brunett, D. Davis, T. Gottschalk, P. Messina, and
C. Kesselman. Implementing Distributed Synthetic Forces
Simulations in Metacomputing Environments, 1998.

[4] G. Cybenko. Load balancing for distributed memory pro-
cessors. 2(7):279–301, 1989.

[5] P. de Vries. An Individual Oriented Approach to Modelling
Demography, Malaria and Illness. InProceedings of the
Workshop on Spatial Aspects of Demography, 2001.

[6] K. Erol, R. Levy, and J. Wentworth. Application of Agent
Technology to Traffic Simulation,http://www.tfhrc.
gov/advanc/agent.htm , 1998.

[7] N. H. Gartner, C. J. Messer, and A. Rathi. Revised Mono-
graph on Traffic Flow Theory. Technical report, Oak Ridge
National Laboratory. Available athttp://www.tfhrc.
gov/its/tft/tft.htm .

[8] D. L. Gerlough and M. J. Huber. Traffic Flow Theory: A
Monograph. Technical Report Special Report 165, Trans-
portation Research Board, 1975.

[9] N. Gilbert and K. G. Troitzsch.Simulation for the Social
Scientist. Open University Press, 1999.

[10] GrADS webpage athttp://www.hipersoft.rice.
edu/grads/ , 2004.

[11] Y. N. Grigoryev, V. Vshivkov, and M. P. Fedoruk.Numer-
ical “Particle-in-cell” Methods: Theory and Applications.
Utrecht, 2002.

[12] V. Grimm. Ten Years of Individual-based Modelling in Ecol-
ogy: What Have We Learned, and What Could We Learn in
the Future?Ecological Modelling, 115:129–148, 1999.

[13] L. J. Gross, D. L. DeAngelis, and M. A. Huston. Ap-
proaches to Large-scale Ecosystem Modeling Across Mul-
tiple Trophic Levels: Some Early Lessons from the South
Florida ATLSS Experience. InProc. of the Workshop on
Aquatic Ecosystem Modeling and Assessment Techniques
for Application within the U.S. Army Corps of Engineers,
1998.

[14] J.-J. Hwang, Y.-C. Chow, F. D. Anger, and C.-Y. Lee.
Scheduling Precedence Graphs in Systems with Interproces-
sor Communication Times.SIAM Journal on Computing,
18(2):244–257, 1989.

[15] S. H. Kleinstein and P. E. Seiden. Simulating the Immune
System.Computing in Science and Engineering, pages 69–
77, Jul–Aug 2000.

[16] Y. Kwok and I. Ahmad. Benchmarking and Comparison of
the Task Graph Scheduling Algorithms .Journal of Parallel
and Distributed Computing, 59(3):381–422, 1999.

[17] A. Legrand, L. Marchal, and H. Casanova. Scheduling Dis-
tributed Applications: The SimGrid Simulation Framework.
In Proceedings of the 3rd IEEE Symposium on Cluster Com-
puting and the Grid, 2003.

[18] K. Li. Analysis of the List Scheduling Algorithm for Prece-
dence Constrained Parallel Tasks.Journal of Combinatorial
Optimization, 3(1):73–88, 1999.

[19] A. J. Lotka. Elements of Physical Biology. Williams and
Wilkins, 1926.

[20] N. Minar, R. Burkhart, C. Langton, and M. Askenazi. The
Swarm Simulation System: A Toolkit for Building Multi-
agent Simulations. Technical Report 96-06-042, The Santa
Fe Institute, 1996.

[21] L. Nyland, J. Prins, R. H. Yun, J. Hermans, H.-C. Kum, and
L. Wang. Modeling Dynamic Load Balancing in Molecular
Dynamics to Achieve Scalable Parallel Execution. InPro-
ceedings of the International Symposium on Solving Irregu-
larly Structured Problems in Parallel, 1998.

[22] D. C. Rapaport.The Art of Molecular Dynamics Simulation.
Cambridge University Press, 1997.

[23] G. C. Sih and E. A. Lee. A Compile-Time Scheduling
Heuristic for Interconnection-Constrained Heterogeneous
Processor Architectures. 4(2):175–187, 1993.

[24] A. Su. Task Mapping and Remapping Strategies for Parallel
Entity-level Simulations. Dissertation, University of Cali-
fornia, San Diego, 9500 Gilman Dr., La Jolla, CA 92093,
2003.

[25] A. Su, F. Berman, and H. Casanova. Performance Modeling
for Entity-Level Simulations. InProceedings of the Work-
shop on Parallel and Distributed Scientific and Engineering
Computing Applications, Apr 2003.

[26] A. Su, H. Casanova, and F. Berman. Utilizing DAG Schedul-
ing Algorithms for Entity-Level Simulations. InProc. of the
Tenth High Performance Computing Symposium, Apr 2002.

[27] C. Ünsal and J. S. Bay. Spatial Self-Organization in Large
Populations of Mobile Robots. InProceedings of the IEEE
International Symposium on Intelligent Control, 1994.

[28] V. Volterra. Variazioni e fluttuazioni del numero d’individui
in specie animali conveiventi.Memorie della R. Accademia
Nazionale dei Lincei, Ser. VI, (2):31–113, 1926. (Transla-
tion in Chapman, Royal N. Animal Ecology. McGraw-Hill,
1931. pp. 409–448).

[29] C. Walshaw, M. Cross, and M. G. Everett. Parallel
Dynamic Graph Partitioning for Adaptive Unstructured
Meshes. 47:102–108, 1997.

[30] R. D. Williams. Performance of Dynamic Load Balancing
Algorithms for Unstructured Mesh Calculations.Concur-
rency: Practice and Experience, 3:457–481, 1991.

[31] R. Zvan, K. R. Vetzal, and P. A. Forsyth. PDE methods for
pricing barrier options.Journal of Economic Dynamics and
Control, 24:1563–1590, 2000.

8

