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Abstract

The continuing deployment of high-performance network
technology enables the development of computing platforms
that aggregate widely distribute hardware resources. The vi-
sion for such a Computational Gridpromises computational
platforms of unprecedented power for scientific applications.
However, application developers need to rethink implemen-
tation paradigms in order to realize this potential. In this pa-
per, we identify a class of increasingly important applications,
entity-level simulations, which currently cannot use large-
scale computing platforms effectively. We will show how
careful application-aware scheduling can enable such appli-
cations to utilize large distributed heterogeneous platforms.
Our initial approach is to exploit the structure of entity-level
applications and leverage existing Directed Acyclic Graph
(DAG) scheduling techniques. We validate our approach by
simulating a realistic application scenario on several syn-
thetic platforms, including a representative Computational
Grid testbed.

I. INTRODUCTION

A common approach to studying large systems is to ex-
press the aggregate behavior of groups of individuals as a
mathematical function. The interaction between multiple
such phenomena can be characterized by solving for the
steady-state behavior of a system of simultaneous partial dif-
ferential equations. By contrast, the goal of entity-level mod-
els is typically to study the behavior of complex systems at
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the level of interacting entities, rather than the level of aggre-
gate behaviors. In implementations of such models, each ap-
plication task typically represents an entity in the system and
encapsulates the necessary computation and communication
operations that task must perform. This approach has been
used in many fields, including traffic studies [6, 15], popu-
lation studies [5, 9], and ecology [10]. These efforts have
found that the behavior of complex processes can often be
accurately predicted by the emergent behavior of entities in
entity-level models.

However, efforts to utilize entity-based implementations
have been limited to simple, homogeneous computing plat-
forms. Noting the dramatic improvement in computing tech-
nology, application scientists are now considering entity-
based implementations in large-scale distributed computing
environments. In particular, the Computational Grid[7, 8],
or Grid, seeks to enable ensembles of distributed resources
to be used as a unified computing platform. To realize the
potential of such platforms for entity-level applications, the
principal challenge is the scheduling problem: assigning ap-
plication tasks to available resources in a manner which pro-
motes performance.

Section II presents an application model which captures
the resource requirements of an entity-level application. Sec-
tion III describes a process to express instances of this appli-
cation model as directed acyclic graphs (DAGs). We con-
ducted experiments to determine the efficacy of applying
DAG scheduling algorithms to entity-level applications; re-
sults of these efforts are shown in Section IV. Finally, we
conclude with a discussion of future work in Section V.

II. APPLICATION MODEL

A. Formal Model Definition

Entity-level model implementations are iterative applica-
tions composed of a set of entities with associated state in-
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Figure 1. Entity-level Application Example

formation and behavior models. The stateencapsulates static
and dynamic properties of the entity in the application do-
main. An entity’s behavior modelsgovern interactions with
other entities and state changes. An entity’s interest set(the
set of all other entities which influence that entity’s behavior)
can be derived from its behavior models. At every iteration,
each entity takes into account its own state and the states of
entities in its interest set, and evaluates its behavior models.
In entity-level applications, this process results in some inter-
nal computation, communication with other application tasks,
and state update operations. Once all entities have completed
this process, the application is ready to proceed to the next
iteration. Formally, our application model is composed of

� �, a set of entities;
� ��, the amount of computation work for entity � in the

current iteration, derived from the computational behav-
ior model for entity �;

� ���� the amount of data entity � must transfer to entity �
in the current iteration, derived from the communication
behavior model for entity � (and may be equal to 0 if
entity � is not in the interest set of entity �);

B. Entity-level Application Example

To illustrate our model, we present a simple example of a
four-entity system. In this system, the state of each entity is a
set of coordinates in some Cartesian coordinate system. With-
out loss of generality, we assume a two-dimensional space.

Figure 1 depicts a snapshot of an instance of this model. In
this example, entities have constant computational costs and
communication costs determined by a “neighborhood” area in
the application space. For example, entity task � computes
�� units of work and transfers ���� and ���� units of data
to the tasks corresponding to entities � and �, respectively.
Figure 2 summarizes the computation and communication re-
quirements of this example.
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Figure 2. Computation and Communication Tasks

C. Scheduling
Given this application model, the job of a scheduler is to as-

sign each application task to an available computing resource.
The scheduling problem is known to be NP-complete [18],
with exponential complexity in the number of computing re-
sources; this is clearly infeasible for realistic platform sizes.
Moreover, the number of entities and their computation and
communication requirements are not known until run-time,
making it difficult to employ compile-time heuristics.

Our goal is to develop computationally tractable run-time
scheduling heuristics which yield good application perfor-
mance. In the following sections, we describe a process to
transform instances of the entity-level application model into
DAGs and show results of scheduling the resulting DAGs
with classical DAG scheduling algorithms.

III. DAG TRANSFORMATION FOR ENTITY-
LEVEL APPLICATIONS

Little work has been done to develop scalable and gen-
eral scheduling strategies for parallel implementations of
entity-level applications. However, the problem of scheduling
DirectedAcyclic task precedenceGraphs, known as DAGs,
on distributed computational platforms has been deeply ex-
plored [11, 19, 16, 20, 14]. Tasks in a parallel application
are represented as nodes, with node costs indicating the mag-
nitude of processing that task requires. Edges represent the
precedence relationships between tasks, with edge weights
corresponding to the magnitude of inter-task communication.
To enable DAG scheduling algorithms for entity-level appli-
cations, we propose a transformation to express instances of
an entity-level model as a DAGs. The basic elements of this
construction are:

� Root and end nodes: Our construction creates a single
root node of which all other nodes are descendents, and a
single end node which is the only node without children.

� Sentinel nodes: We define a set of nodes which map di-
rectly to the set of entities in the entity-level application
model. The root node is connected to each sentinel node
with a zero-weight edge (signifying precedence but no



data transfer). These are the only children of the root
node and represent the mapping of entities to Grid re-
sources at the beginning of the iteration. A set of sen-
tinel nodes are connected to the end node in a similar
fashion, representing the mapping of entities to Grid re-
sources for the following iteration. All sentinel nodes
have a zero cost.

� Infinite-weight edges: The DAG transformation cre-
ates several nodes in the DAG to represent the same en-
tity in the entity-level model. In order to prevent the
DAG scheduling algorithms from producing impossible
schedules, we introduce the notion of an infinite-weight
edge in the DAG to represent scheduling constraints.

� Computation and communication sub-graphs: The
core of the DAG transformation algorithm converts each
task (as depicted in Figure 2) into a “strand” of DAG
nodes. These strands are then connected with other
strands and the sentinel nodes to form the complete
DAG. The strands that are constructed for computation
and data transfer tasks are shown in Figure 3.

The transformation begins by instantiating the distin-
guished root and end nodes. A set of start sentinel nodes,
one corresponding to each entity, is constructed. A set of end
sentinel nodes is similarly constructed. Finally, each com-
putation and communication task is transformed into an ap-
propriate DAG strand. To compose the DAG from the sen-
tinel nodes and strands, we use a combination of zero-weight
edges, to indicate task precedence (but no real data transfers),
and infinite-weight edges to reflect entity-based scheduling
constraints. The basic methodology follows these steps:

1. Connect the root node to each start sentinel with a zero-
weight edge.

2. Connect each end sentinel with a zero-weight edge to
the end node.

3. Using an infinite-weight edge, connect each start sen-
tinel node to the head of the computation strand derived
from the same entity, as indicated in Figure 3. Similarly,
connect the last node in the strand with the end sentinel
node. This ensures that the computational task is sched-
uled on the correct Grid resource.

4. For each communication strand, connect the sentinel
node corresponding to the source entity task to the head
of the strand. Connect the last node in the strand with
the end sentinel node corresponding to the target of the
communication. Both edges are infinite-weight edges.
This ensures the communication will occur on the ap-
propriate network link.

5. Finally, for every entity with multiple communication
strands, the communication strands must be connected
in order to express serialization of communication. This
is done by connecting the trailing node of each commu-
nication strand (except the last) to the leading node of
the subsequent communication strand.
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Figure 3. Computation and Communication Strands: (a) the compu-
tation strand resulting from the transformation of an entity computa-
tion task of magnitude �� and (b) the communication strand resulting
from the transformation of an entity communication task of magni-
tude ���� from entity � to entity �.

Applying this transformation to the entity-level model in
Figure 1 results in the DAG shown in Figure 4. Under this
transformation, an �-entity system in which each entity com-
municates with an average of � other entities results in a
DAG containing � � ��� � ��� vertices. Since each entity
communicates with at most � � � other entities, the max-
imum size of a DAG generated by this transformation is
� � ��� � ��� � ��� � 	����. Our experimental results
indicate that the overhead of applying DAG scheduling algo-
rithms to DAGs generated from fairly large entity-level appli-
cations is quite minimal. However, we realize that an 	����
growth in DAG size may be a significant limitation to scal-
ability as we consider larger application problem sizes and
more sophisticated DAG scheduling algorithms.

IV. RESULTS

Our intent is to test and validate our approach in the con-
text of real applications. We derive our application model
from IMMSIM, a simulation package for the human immune
system [13, 12]. IMMSIM is a basic entity-level applica-
tion targeted for homogeneous clusters of workstations. From
our analysis of the software, we created a simple entity-level
model for a small subset of functionality available in the
IMMSIM simulator. Specifically, we model T-cell and B-
cell movements and interactions. Using our simplified entity
model, we instantiated environments with a realistic mixture
of B- and T-cells and computed the corresponding initial task
graphs. Using those graphs, we generated DAGs by apply-
ing the transformation described in Section III. From initial
task graphs of 110 nodes, we obtained DAGs consisting of
approximately 6500 vertices.

In the remainder of this section, we present results of sim-
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Figure 4. DAG Equivalent of the Application Model in Figure 1

ulations based on instances of our entity-level application
model. The initial simulations were conducted for a collec-
tion of synthetic computational platform models composed
of homogeneous resources. Our experimental results are dis-
cussed in Section IV-A. To investigate the possibility of us-
ing a Grid platform, we studied simulated application perfor-
mance based on a model of an existing Grid testbed. These
results are presented in Section IV-B.

A. Preliminary Results
To evaluate the utility of the DAG transformation, we based

our initial study on instantiations of 11 basic computing plat-
forms. The first 5 models describe single clusters with 2, 3, 4,
8, and 16 homogeneous computing nodes and a shared low-
bandwidth local network. The next 5 models describe clusters
with shared high-bandwidth local networks (with capacity 3
orders of magnitudes greater than that of the low-bandwidth
networks).

Our results are based on a simulator built for those plat-
form models using the Simgrid toolkit [2, 17]. In that simu-
lator, we implemented numerous well-studied DAG schedul-
ing algorithms (ETF [11], HLFET [16], HDLFET [16], and
DLS [16]). We also implemented RAND, a scheduling algo-
rithm which randomly assigns computational tasks to Grid re-
sources, and RR, a scheduling algorithm which assigns tasks
to Grid resources in a round-robin fashion. For each Grid
model, we generated 60 randomized instantiations of our ap-
plication model. We then simulated runs of each application
instance for 1000 iterations with each scheduling algorithm.

For each run and for each scheduling algorithm we compute
a standard metric: the percentage degradation from the ap-
plication execution time achieved by the best scheduling al-
gorithm for that run [14]. A degradation of 0% means that
the algorithm was best for that run. Table 1 shows average
degradation from best over 60 runs for each platform model
and for each scheduling algorithm.

A few key observations can be made from Table 1. First,
the performance results obtained with the DLS and ETF al-
gorithms are identical. A similar observation can be made for
HDLFET and HLFET (except for 2-node clusters). This is
due to the fact that our experiments use homogeneous com-
puting resources. We opted for that approach as a first step
in order to understand behaviors of the algorithms in sim-
ple environments. Another key observation is that both the
RAND and RR algorithms are impractical in any scenario
where more than 2 compute resources are available. This
is due to the fact that they do not account for communica-
tion costs adequately, as can be observed in Table 1(a) for
low-bandwidth networks. Naturally, that effect is not as pro-
nounced for high-bandwidth environments as performance is
not as heavily dependent on communication costs. The final
observation is that the DLS and ETF algorithms seem to be
the most appropriate in almost all scenarios.

These results show that (i) DAG scheduling algorithms
yield a tremendous improvement over scheduling techniques
that do not take into account the structure of the entity-to-
entity communication patterns; (ii) among those algorithms
DLS and ETF seem to be the most promising. In addition,



Table 1. Percentage degradation from the best application execution time (1000 iterations)

Cluster size 2-node 3-node 4-node 8-node 16-node

DLS/ETF 571.8 4.0 0.1 0.0 0.0
HDLFET 579.3 12.6 28.7 39.3 43.8
HLFET 4.5 12.6 28.7 39.3 43.8
RAND 2554.2 1124.5 1288.3 1680.3 2050.5
RR 2575.7 1133.0 1298.9 1696.3 2070.0

(a) Low-bandwidth cluster configurations

Cluster size 2-node 3-node 4-node 8-node 16-node

DLS/ETF 30.8 3.2 0.9 2.2 1.3
HDLFET 30.3 3.8 0.2 0.7 0.0
HLFET 39.7 4.1 0.2 0.7 0.0
RAND 0.6 7.6 20.7 43.2 44.6
RR 1.3 8.7 21.9 44.4 45.8

(b) High-bandwidth cluster configurations

these results justify our DAG transformation algorithm as it
enables the use of numerous heuristics developed in the ex-
tensive DAG scheduling literature.

B. Results for GrADS Testbed Model
To evaluate the potential of our approach in a Computa-

tional Grid setting, we extended our simulation framework to
include a model based on the testbed used by the Grid Ap-
plication Development Software (GrADS) Project [1]. 1 The
GrADS resources included in our model are

� a cluster of eight Pentium III 550 MHz nodes, connected
with a 100 Mb/s switch, located at the University of Ten-
nessee, Knoxville;

� a cluster of 16 Pentium III 500 MHz nodes, connected
with a 1 Gb/s switch, also located at the University of
Tennessee, Knoxville;

� a cluster of 3 Athlon 700 MHz and 3 Pentium III 400
MHz nodes, connected with a 100 Mb/s switch, located
at the University of California, San Diego; and

� a cluster of 8 Pentium II 266 MHz nodes, connected with
a 100 Mb/s switch, located at the University of Illinois,
Urbana-Champaign.

Based on our inspection of data transfer behavior between
the two clusters hosted at the University of Tennessee, we
concluded the network linking these clusters had a capacity of
100 Mb/s. We modeled the remaining links between the three
sites using a snapshot of network bandwidth measurements

� Although the GrADS testbed contains some nodes with more than one
processor, our model treats each of these as a single-processor node.

...

...

...

}

}

}
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Figure 5. GrADS testbed platform model

corresponding to typical network conditions [3]. A depiction
of the model we used is shown in Figure 5.

To evaluate the effect of using a distributed and heteroge-
neous computing platform, we modified the Simgrid-based
simulation framework described in Section IV-A to use the
GrADS testbed platform model instead of the 11 synthetic
models previously used. The same set of six scheduling
heuristics were considered: four DAG scheduling heuristics
(ETF, HLFET, HDLFET, and DLS), RAND, and RR. We
generated 500 randomized instantiations of our application
model and simulated the application performance achieved
with each of the scheduling heuristics. Table 2 presents re-



Table 2. Percentage degradation from the best application execution
time for GrADS testbed model (1000 iterations)

Algorithm Avg. % Degradation
DLS 0.0
ETF 19.9
HDLFET 18.0
HLFET 18.0
RAND 40.5
RR 19.9

sults of these experiments.
These results demonstrate the limitations of three of the

four DAG scheduling algorithms considered in this paper.
These algorithms assume that computational nodes are homo-
geneous and dedicated. Although our experimental results for
the GrADS testbed do not address the issue of potential ambi-
ent computational load on processors, the computational ca-
pacities of nodes in this model vary. DLS was the only DAG
scheduling algorithm designed to account for heterogeneity
among computational resources, and was thus able to signif-
icantly outperform the other scheduling heuristics presented
in this study. These results demonstrate that DAG scheduling
algorithms which take into account platform heterogeneity
are important if the DAG transformation strategy described
in this paper is applied in a Grid environment. Moreover,
we surmise that adapting such algorithms to also incorporate
dynamic resource availability information may dramatically
improve the quality of the resulting application schedules by
accounting for the dynamic nature of Grid resources.

V. CONCLUSION AND FUTURE WORK

Our initial experiments have proven encouraging, indicat-
ing that sophisticated scheduling heuristics may yield sub-
stantial performance gains for entity-level applications on the
Computational Grid. In particular, our DAG transformation
allowed us to leverage proven DAG scheduling heuristics, re-
sulting in dramatically reduced execution times.

Our initial results suggest several directions for future
work. Although strict synchronization at the end of every
application iteration is a common requirement, the overhead
costs of synchronization grow significantly as the number of
entities increases. The potential for improved performance
by relaxing synchronization constraints is great, despite the
added complexity to the simulation model. For example, the
DaSSF project [4] has recently proposed composite synchro-
nizationas a technique to synchronize less frequently based
on application-specific characteristics.

We also plan to investigate other scheduling techniques
which we can apply to entity-level applications. In partic-
ular, genetic algorithms have been shown to deal well with

problems which are computationally difficult. To leverage
this work, we plan to design a representation for entity-level
application schedules as “chromosomes” for use in existing
genetic models. We believe that this approach may yield ef-
fective application schedules at reasonable scheduling cost.
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