
PERFORMANCE MODELING FOR ENTITY-LEVEL SIMULATIONS

Alan Su� Fran Berman�� Henri Casanova��

� Computer Science and Engineering Department,
University of California, San Diego.

alsu@cs.ucsd.edu

� San Diego Supercomputer Center,
University of California, San Diego.
�berman,casanova�@sdsc.edu

Abstract

Advances across many fields of study are driving changes in
the basic nature of scientific computing applications. Scien-
tists have recognized a growing need to study phenomena
by explicitly modeling interactions among individual enti-
ties, rather than by simply modeling approximate collec-
tive behavior. This entity-level approach has emerged as a
promising new direction in a number of scientific fields.

One of the challenges inhibiting the entity-level ap-
proach is the substantial resource requirements it entails.
Unfortunately, such applications exhibit characteristics and
behaviors which render traditional parallel computing tech-
niques ineffective. Well-defined methodologies for achiev-
ing scalable performance on distributed computing plat-
forms are needed. As an important first step, we present an
abstract application model for entity-level applications, and
we instantiate it for a case-study immunology application.
Our experiments confirm that this model tracks applica-
tion performance trends sufficiently well to study scheduling
issues pertaining to entity-level applications. We identify
a scalability problem inherent to the entity-level approach
and use our model to quantify the potential performance
improvements that remapping strategies may yield.

1 Introduction

Computer simulation offers many benefits to scientists
studying the phenomena which define their fields. One ap-
proach involves identifying global parameters and proper-
ties of the studied system and defining mathematical mod-
els to describe how properties are inter-related. We term

this a system-level model. System-level approaches have
been widely applied to scientific problems in many fields.
However, as researchers learn more about the fundamental
phenomena that define their field, they often develop new
theories and technologies which exceed the capabilities of
system-level approaches. For example, scientists in several
fields are beginning to recognize the importance of study-
ing the mechanisms by which behaviors of individual enti-
ties aggregate to form the large-scale emergent phenomena
they observe in real environments [8, 11, 12, 19]. We term
this an entity-level model. Such models can provide greater
insight into the studied phenomena, achieve improved accu-
racy, and make the scientific modeling task more intuitive.

Efforts to design and implement instruments to observe,
analyze, and study entity-level properties are becoming in-
creasingly prevalent [2, 9, 12]. In conjunction with these ad-
vances in theory and technologies, entity-based algorithms
and applications that require massive parallel computing
platforms are being developed. Although the behavior of
a single entity may be much simpler than the aggregate
system-level model, the behavior of each entity in an entity-
level model must be tracked individually. Thus, the compu-
tational resource requirements of entity-level applications
increase as the size of the simulated populations increase.
As scientists seek to study larger entity populations, the re-
source demands of these scientific computing applications
are growing dramatically. Unfortunately, the structure of
entity-level applications renders traditional parallel com-
puting techniques ineffective or unusable. Traditional ap-
proaches fail to effectively cope with the non-deterministic
behavior and non-uniform work distribution exhibited by
entity-level approaches.

In this paper, we describe a model for the general study

1



of entity-level applications. As a case-study, we demon-
strate and evaluate our model for IMMSIM, an entity-level
application in the field of immunology. Our experimen-
tal results show that our model tracks application perfor-
mance trends appropriately. This model is an important
first step towards developing effective task mapping strate-
gies for entity-level applications. In this context, we ob-
serve that non-deterministic properties of entity-level appli-
cations may cause performance to markedly degrade over
time. This degradation gives rise to a potential benefit from
remapping – modifying the application task mappings as
the application is executing. Using simulation based on the
entity-level model, we quantify the potential benefit from
remapping for our case-study application.

2 Modeling Entity-Level Simulations

2.1 Abstract Model

The basic structure of an entity-level simulation is a par-
allel iterative application. In each iteration, computation
and communication tasks are determined based on the states
and locations of entities in the simulation. For this work,
we target tightly-coupled parallel architectures (e.g. clus-
ters, MPPs).

In this context, we begin studying entity-level applica-
tions by constructing an application model. Our primary
goal in constructing this model is to build a tool to analyti-
cally study the impact of task mapping heuristics on appli-
cation performance. To meet this goal, the model is spec-
ified to satisfy two critical properties. First, the primary
function of an application model is to serve as a valid pre-
dictor of application performance. Secondly, a model must
be widely applicable to be effective: it must be both suf-
ficiently general and expressive to describe entity-level ap-
plications from many domains.

We designed our initial model to meet these require-
ments by analyzing applications described in the literature
of various scientific domains. The model essentially de-
scribes a collection of entities which exist within some ap-
plication space. Entities may (i) move within the applica-
tion space, (ii) incur some computational cost, and (iii) re-
quire data be transferred to/from other entities. The move-
ment, computation, and communication each entity per-
forms may depend on the entity’s internal state, the state of
surrounding entities, or factors present in the environment.
Each entity also has a processor assignment that represents
the computational node at which the entity’s data are stored.
In our model, computational cycles are spent at nodes that
host entities, and bandwidth is consumed on network links
connecting nodes that host communicating entities. Finally,
entities’ internal states are updated at each iteration until the

application terminates. The details of the model are fully
described in [22].

2.2 Case Study: Immunology

2.2.1 The IMMSIM Framework

Traditional immunological models seek to describe the
gross behavior of the human immune system by charac-
terizing it as a set of interdependent equations governing
various system-level properties. For example, an immu-
nologist could express the birth- and death-rates of differ-
ent types of immune system cells as differential equations.
Such system-level models are widely used in various sci-
entific domains other than immunology, and efficient algo-
rithms for using distributed computing environments to at-
tack such problems have been identified [15]. As scientific
simulations grow larger and more detailed, effective paral-
lel and distributed computing techniques are critically im-
portant.

As immunologists continue to discover new factors
which contribute to phenomena they study, they are finding
that defining system-level models is becoming increasingly
challenging. In an effort to address this difficulty, the IMM-
SIM simulation model of the human immune response [16,
17] has been proposed. In contrast to system-level mod-
els, IMMSIM (IMMunology SIMulator) describes the im-
mune system at the entity level: the system dynamics are
expressed through behavior algorithms for individual cells
and molecules. The system is then described as a collec-
tion of independent entities, each associated with appropri-
ate behaviors. Efforts to gain a greater understanding about
the behaviors of these fundamental entities have made great
strides recently. For example, instruments that allow fine-
grained details of live immunological specimens to be ob-
served have recently been developed [23]. Increased atten-
tion is being given to cellular- and molecular-level analysis
as important tools for the future of immunological research.

2.2.2 Entity-Level Implementation of IMMSIM

Castiglione et. al. [5] have realized a parallel IMMSIM im-
plementation, which structured as a modified cellular au-
tomata model: the simulated space is divided into discrete
“sites” which contain the immune cells and molecules. En-
tities move about the space in discrete increments (between
site locations), and entity interactions occur only between
cells and molecules occupying the same site. Applica-
tion performance was shown to be scalable for a significant
range of parallel computing platforms.

The IMMSIM framework enables scientists to describe
immunological systems by modeling individual cells and
then replicating them throughout the system. Such an

2



0 100 200 300 400 500
0

50

100

150

200

250

300

350
Epitope 1
Epitope 2
Epitope 3
Epitope 4
Epitope 5
Epitope 6

(a) Original cellular automata code

0 100 200 300 400 500
0

50

100

150

200

250

300

350
Epitope 1
Epitope 2
Epitope 3
Epitope 4
Epitope 5
Epitope 6

(b) Modified code

Figure 1. Simulated � -cell counts using cellular automata and entity-level versions of the IMMSIM
simulator

entity-level approach is more intuitive than traditional mod-
eling techniques. The site-based modified cellular au-
tomata implementation is scalable, but substantially lim-
ited in the range of entity behaviors that can be expressed.
To study entity-level properties without these constraints,
we modified the IMMSIM application to allow entities
to move freely about the simulated space and interact
across site boundaries. We also implemented and studied
modified codes based on both the PVM (Parallel Virtual
Machine) [10] and MPI (Message Passing Interface) [21]
inter-processor communication libraries. We found that the
results obtained using the PVM and MPI codes were in-
distinguishable. Our modifications result in two significant
changes in the application. First, cell and molecule move-
ment through the simulated space now occurs in a continu-
ous fashion, allowing for more realistic movement patterns.
Second, interactions between cells and molecules are no
longer constrained by arbitrary site boundaries. Rather, in-
teractions are determined solely based on entity proximity,
enabling more expressive and general interaction patterns.

Our implementation effectively preserves the fundamen-
tal scientific properties of cells and molecules described in
the original IMMSIM model, but relaxes the site-based con-
straints on movement and interactions. In experiments com-
paring our modified code to the cellular automata code, we
made three significant findings.

1. For the same values of application parameters, both
applications yielded substantially similar system-level
results. Figure 1 presents a comparison of sample runs

using the two versions of the code. These graphs depict
� -cell counts, a commonly measured property in im-
munological simulations. In both cases, the simulation
involves an initial injection of antigens into the sys-
tem, causing a spike in � -cell presence, followed by a
gradual return to lower levels. We also determined our
entity-level code produces results which represent sci-
entifically valid scenarios after consulting with immu-
nologists at the Scripps Research Institute. They con-
ducted experiments infecting mice with lymphocytic
choriomeningitis virus (LCMV). Figure 2 presents � -
cell counts in infected tissue measured in these experi-
ments [14]. Although the data differ in scale and gran-
ularity, the entity-level simulation captures the funda-
mental character of the immune response.

2. Using the cellular automata model, entity-level obser-
vations are somewhat limited. In contrast, using our
modified code, entities move through the space con-
tinuously, achieving much more realistic entity behav-
ior. As mentioned in Section 2.2.1, instrumentation
technology in the field of immunology is advancing
rapidly, driving the need for realistic simulations at the
cellular level.

3. Our continuous-space implementation performs much
worse than the unmodified version. The parallel appli-
cation scheduler in the original code is able to capital-
ize on properties of site-limited cell and molecule in-
teractions. For example, in a set of 500-iteration runs

3



0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

3.5
x 10

7

Time (days after LCMV exposure)

T
−

ce
lls

NP396
NP205
GP33
GP276
GP92

Figure 2. Sizes of T-cell populations observed
by immunology group at the Scripps Re-
search Institute

with cell counts ranging from 5,000 to 20,000 cells
and platforms ranging in size from 2 to 16 nodes, the
execution time of the site-based implementation was
between 25 and 75 times faster. We plan to use the
model developed in this work to better understand and
address these performance challenges.

The entity-level approach is a promising paradigm for
applications in immunology, as well as a number of other
scientific fields. However, unlike more traditional designs,
there are no techniques which have been shown to enable
high-performance entity-level applications on distributed
computing platforms. Strategies to negotiate the perfor-
mance challenges inherent to the entity-level approach are
needed to make these applications feasible.

2.3 Model Validation

Although entity-level scientific computing is becoming
increasingly important in many domains, it is evident that
achieving good application performance will be challeng-
ing. As a first step towards gaining a better understanding
of the issues, we describe the instantiation of the model in-
troduced in Section 2.1 for the modified IMMSIM applica-
tion described in Section 2.2. We also show that the perfor-
mance projected by the model correlates with actual appli-
cation performance.

2.3.1 Model Parameters

The instantiation of our abstract model for the IMMSIM
application has the following properties:

1. Entity Classes: We define five classes of entities, cor-
responding to the five major immune system cell types

found in the application: �-cells, CD4 “helper” � -
cells, CD8 “killer” � -cells, antigen-presenting cells,
and epithelial cells. Their role in the IMMSIM frame-
work is described in [17].

2. Entity Computation Models: In each loop iteration
of the IMMSIM application, entities perform compu-
tation operations according to their state at that time
step.

3. Entity Communication Models: Inter-cellular mech-
anisms are simulated in the interaction phase of the
IMMSIM code. In our model, we project the amount
of data each entity sends and receives in this phase.

Our primary modeling technique is based on detailed
analyses of the actual application code. We observe that the
computation and communication kernels used in IMMSIM
operate on individual instances of cells. Although this struc-
ture is not surprising, it impacts the process of application
modeling substantially. In particular, the model behavior
cannot be evaluated based solely on static code analysis.
Since each segment of code only governs the behavior of a
single entity (instead of an aggregate system-level feature),
much more information is needed to determine its impact on
application performance. For example, factors such as the
number, density, and locations of specific entities may affect
the performance of entity-level computation and communi-
cation kernels. Consequently, we incorporate entity-level
factors into our model in order to achieve more accurate
performance projections.

Furthermore, as observed in Section 1, entity-level appli-
cations often exhibit non-deterministic behavior. The same
code may perform differently depending on the specific en-
tities involved in the behavior the kernel represents. Incor-
porating such detailed information into the entity-level ap-
plication model would render the model prohibitively com-
plex. Consequently, we seek to effectively capture the be-
havior of each kernel by using a probabilistic representation
of its expected performance. This is done by analyzing the
initial parameters of the IMMSIM application to estimate
the relative frequency of particular events. The cost of each
possibility is weighted by the probability of that outcome,
resulting in a composite probabilistic model of the expected
application behavior.

2.3.2 Validation Methodology and Results

The utility of our model for studying entity-level applica-
tions depends on its ability to predict application perfor-
mance. Essentially, we seek to answer the following ques-
tion: does the model accurately track the application per-
formance when properly instantiated for the current state
of the application entities? To answer this question, we in-
strument our code to evaluate the model accuracy at each

4



iteration of the application. The performance evaluation
methodology is based on the framework used in [22]: we
instantiate entities based on the active cells in the applica-
tion and build a simulator to project the application perfor-
mance. Our simulator employs the Simgrid [3, 20] simula-
tion toolkit, which provides a rich set of facilities for eval-
uating parallel mapping and scheduling heuristics in dis-
tributed computing environments. To determine the accu-
racy of the model, we measure the time needed for the ap-
plication iteration to execute and compare this time with the
iteration time projected by the model.

We ran experiments for a number of sets of typical appli-
cation parameters. In particular, we focused on the param-
eters which define the initial concentrations of each type of
immune cell in the simulation. At the start of each iteration,
we recalculate the projected computation and communica-
tion times for the given state of the application. We have
also instrumented the application code to record the actual
time spent performing computation and communication op-
erations as the application proceeds.

Our experiments compared the actual execution times
to the model-predicted execution times for computational
platforms ranging in size from 2 to 16 processors. The
pool of computational resources was composed of AMD
Athlon and Intel Pentium III processors with processor
speeds from 500 MHz to 800 MHz. Nodes were connected
with non-dedicated, but generally quiescent 100 Mbit/s eth-
ernet switches. The accuracy of the model did not vary sig-
nificantly as the platform size changed. Figure 3 presents
data for two runs that utilized an eight-processor platform
and are representative of validation data we obtained. These
plots compare the model-projected computation and com-
munication times and the corresponding actual times, mea-
sured by our instrumented code. The runs depicted differ
only in initial cell counts. The first run was instantiated
with approximately ��� ��� initial cells (Figure 3(a)), and
the second with ��� ��� cells (Figure 3(b)). For both cases,
we compare the communication and computation times pro-
jected by our model with the actual times observed over the
���-iteration run.

In the initial phases of the application the immune cell
populations increase dramatically in response to the anti-
gens injected at the first time step. This growth in cell pop-
ulations accounts for the dramatic increase in communica-
tion costs; as there are more cells in the system, more inter-
actions take place between cells hosted on different nodes.
Both the model predictions and the actual application com-
munication times reflect this phenomenon. Although the
average model prediction error per iteration was ����� for
the ��� ���-cell run, and ����� for the ��� ���-cell run, our
model tracks application performance trends appropriately.
It is our experience that application models which accu-
rately track performance trends are sufficient for developing

and evaluating scheduling strategies.
Several factors contribute to the discrepancy. We con-

structed our model based only on code found in the “interac-
tion” phase of the application’s main event loop, neglecting
inter-processor communication operations that do not corre-
spond with entity behavior (e.g. “bookkeeping” operations
to track global cell locations). Secondly, as stated in Sec-
tion 2.3.1, we employ a probabilistic approach to capture
the non-deterministic aspects of entity behavior. However,
the probabilities on which this approach is based may vary
during the application run, leading to model inaccuracy. For
example, the � -cell population may become specialized to
fight a particular infection. Finally, our IMMSIM applica-
tion uses standard parallel computing libraries – PVM and
MPI – to perform communication operations. These facil-
ities incur overhead costs that may vary based on the com-
munication patterns of the application.

Examining the computation projections and costs, we
find a substantial error. In a similar manner to the com-
munication model, we built our computation model based
solely on the “behavior” phase of the application’s main
event loop. Unfortunately, this does not provide an accu-
rate predictor of computation costs. The code on which we
based this part of the model consists of operations needed
to update internal state variables for each cell at every time
step. However, we have found that much of the computa-
tion time is spent in code which is not related to updating
cell states. Consequently, the computation component of
the entity-level model significantly mis-predicts the compu-
tation time. Note that these phenomena are specific to the
IMMSIM application. The intent of our model is to study
entity-level applications in general. Application-specific
tuning of the model must be used carefully, as such modi-
fications decrease the generality of the model (an important
requirement as described in Section 2.1).

Our findings further suggest that the entity-level ap-
proach tends to incur a significant performance penalty. Our
research seeks to identify the performance issues entity-
level models introduce and to design strategies to cope with
these problems.

3 Potential Benefit of Remapping

The benefits of entity-level models are balanced by the
challenges in achieving good application performance. In
order for entity-level applications to be viable for scientific
computing, effective parallel execution techniques must be
designed and studied. One critical impediment to applica-
tion performance is the non-determinism exhibited by these
models. Application non-determinism potentially impacts
performance in two important ways. First, efficient work
distribution is non-trivial. The computational requirements
of the application depend on the positions and states of en-

5



0 100 200 300 400 500
0

0.5

1

1.5

2

2.5

3

Iteration Number

T
im

e 
(s

)

Comm. model
Comp. model
Comm. time
Comp. time

(a) 10,000-cell run (MPI)

0 100 200 300 400 500
0

0.5

1

1.5

2

2.5

3

3.5

Iteration Number

T
im

e 
(s

)

Comm. model
Comp. model
Comm. time
Comp. time

(b) 15,000-cell run (MPI)

Figure 3. Comparison of model-projected execution time and observed application behavior

tities within the model. Second, application state changes
over time, resulting in time-varying application resource re-
quirements.

Our initial work addressed the issue of irregular work
distribution [22]. We showed that heuristics from the area
of DAG scheduling [18] can be used to generate effective
task mappings for entity-level applications. In this paper,
we turn our attention to the problem of changing resource
requirements resulting from application non-determinism.
In particular, we consider remapping, a technique analo-
gous to dynamic load balancing efforts, describe in the par-
allel scheduling literature [1, 4, 6, 7, 13]. Remapping has
the potential to cope with the non-deterministic character
of entity-level applications. To investigate this potential,
we seek (i) to identify the causes of performance degra-
dation as entity-level applications progress, (ii) to quantify
the potential performance improvement a dynamic remap-
ping strategy may achieve, and (iii) to show that the ab-
stract model presented in Section 2.1 is an effective tool for
studying entity-level applications generally.

3.1 Experimental Plan

We extended our modified entity-level code to imple-
ment a remapping event. At the onset of a remapping event,
progression of the simulation is temporarily halted. The as-
signment of cells to processors is recomputed based on the
original IMMSIM work partitioning strategy, and proces-
sors trade entity data based on the new assignment. After
cells have been exchanged, the simulation is resumed.

The goal of the remapping event is to adjust the appli-

cation workload distribution to balance computational load
across all processors in the system and to minimize inter-
processor communication by maximizing the co-location
of communicating tasks. Remapping events are scheduled
to determine the potential benefit of remapping at various
points during the application execution. We also evaluate
our model before and after each event to determine if the
model is able to project the impact of remapping. In the
next section, we investigate the effects of injecting remap-
ping events at various points in the execution.

3.2 Results and Discussion

We use the testbed presented in Section 2.3.2, and our
methodology remains the same: at each iteration, we mea-
sure the amount of time spent in communication operations
and the total iteration time. The total time spent by the
processor in computation phases is then derived. To eval-
uate the potential over a range of application states, we in-
ject remapping events into the application execution at reg-
ular intervals. The changes observed in communication and
computation times (from the iteration before the remapping
event to the iteration immediately after) characterize the po-
tential of remapping. We again find that the accuracy of the
model did not vary significantly for different platform and
problem sizes. Figure 4 presents the results for our ��� ���-
cell run on an 8 processor platform with remapping events
injected. This experimental configuration is identical to the
one used to obtain the data shown in Figure 3(a).

Figure 4(a) shows the communication times. The remap-
ping scheme – one remapping event every 50 iterations,

6



0 100 200 300 400 500
0

0.5

1

1.5

2

2.5

3

Iteration Number

T
im

e 
(s

)

Model−projected times
Actual communication times

(a) Communication times with remapping

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

Iteration Number

T
im

e 
(s

)

Model−projected times
Actual computation times

(b) Computation times with remapping

Figure 4. Comparison of IMMSIM and entity-level model with periodic remapping events

starting at iteration 25 – is evident from the periodic changes
in the communication times. The benefit from remapping
is significant. Over the ten remapping events performed in
this run, we compared the communication times for the it-
erations immediately before and after the event. The av-
erage decrease in communication times due to remapping
was �����. We also see that the application model predicts
decreased communication times as a result of remapping.

The computation model, shown as the dashed line in
Figure 4(b), consistently underpredicts the computational
time required for a given iteration. Moreover, the model
does not reflect the periodic remapping-related phenom-
ena seen in the data for actual computation times. How-
ever, our suspicion that the communication costs would
be the dominant factor in determining application perfor-
mance proved true. Indeed, the combined application model
(shown in Figure 5 and discussed below) is reasonably ac-
curate. As we consider applications that exhibit more bal-
anced communication-to-computation ratios, the computa-
tional models may need refinement.

The combined application and model performance data,
depicted in Figure 5, were obtained using the same exper-
imental configuration used to generate Figure 3(a), making
it possible to compare the total execution times for these
two runs. The application completed the 500-iteration run
in 856 seconds without remapping events and 736 seconds
with remapping events. No effort was made to enforce iden-
tical conditions on the computing environment, but in both
cases there was basically no contention for either the com-
putational resources or the interconnection network.

It should be noted that the results in this section basically
characterize the potential benefit of remapping strategies.
Two observations illustrate the efforts needed to realize that
potential. First, the algorithm for reassigning cells at each
remapping event is unremarkable: the initial cell allocation
algorithm is essentially re-run. In our future efforts, we
may consider factors like remapping event frequency and
entity behavior predictions in making remapping decisions.
Secondly, it should also be noted that the costs of perform-
ing remapping have not been considered in these results. A
viable remapping strategy will need to weigh the potential
benefits of remapping against the costs it incurs.

4 Scalability Study

In this section, we discuss the scalability of our entity-
level implementation of IMMSIM, i.e. the performance
achieved when using different platform sizes. Table 1 shows
the speed-up achieved for two problem sizes: small (��� ���
entities) and large (��� ��� entities). The experiments were
conducted with 2, 4, 8, and 16 processors on the testbed
described in Section 2.3.2. With no remapping events, the
parallelization is ineffective. In fact, the enormous amount
of inter-processor communication causes the performance
to degrade markedly as the number of processors increases.
By contrast, we see that the use of remapping events leads to
observable performance improvements. We observe speed-
up of 1.47 for 8 processors for the small problem size, and
1.49 for 16 processors for the large problem size.

Although our results demonstrate parallel speed-up for

7



0 100 200 300 400 500
0.5

1

1.5

2

2.5

3

Iteration Number

T
im

e 
(s

)

Model−projected times
Actual iteration times

Figure 5. Comparison of combined appli-
cation model and actual application perfor-
mance

Number of processors: 2 4 8 16
Without small 0.70 0.69 0.36 0.16

remapping large 0.51 0.27 0.13 0.06

With small 1.09 1.34 1.47 1.45
remapping large 1.05 1.41 1.47 1.49

Table 1. Scalability results: observed speed-
up without and with remapping events.

the IMMSIM application, the performance improvements
are modest. Moreover, the results indicate that scalability
will be challenging to achieve. The use of a commodity net-
work may be one limiting factor. We suspect that advances
in interconnection network technology will enable more
tightly-coupled computing platforms and substantially al-
leviate this bottleneck. Also note that our remapping events
are currently scheduled arbitrarily. Further gain might be
obtained by more careful timing of these events. Finally,
we use a naı̈ve adaptation of IMMSIM code that was not
designed for an entity-level implementation. In particular,
redesigning the communication kernels to be sensitive to the
costs of inter-processor communication will likely improve
performance significantly.

5 Related Work

The limitations of system-level modeling are becoming
evident in a number of scientific fields. For example, scien-
tists studying vehicular traffic patterns have relied on simu-
lation techniques based on a mixture of system-level models
and queuing theory. Studies have shown that this methodol-

ogy often fails to detect fine-grained phenomena and is only
able to accurately model idealized systems [9, 19]. Obser-
vations noting the inadequacy of system-level models also
appear in other fields, including social science [11] and eco-
logical population modeling [12]. In particular, it has been
noted that the mathematical characterization of the aggre-
gate behavior of a population of biological entities is ex-
tremely challenging. In many fields, the success of system-
level methodologies is based on relatively simple behaviors
exhibited by the individual components of the population
being modeled (e.g. molecules in a fluid). In contrast, the
complexity inherent in a person or an animal casts doubt on
the accuracy of any system-level model based on such en-
tities. These trends are the driving force behind numerous
efforts to design and implement entity-level models.

6 Conclusion and Future Work

The state of the art in scientific computing is rapidly
evolving. As advances are made in scientific tools and
instruments, researchers are developing new methodolo-
gies that challenge the current practices in parallel and dis-
tributed computing. New models are pressing the field of
computer science to develop techniques to enable the next
generation of scientific computing applications.

Entity-level applications comprise one class of applica-
tions that is emerging as an important computing paradigm
in a number of fields. In this paper, we showed that we
can effectively model the performance of entity-level appli-
cations. Additionally, we have shown that the entity-level
approach entails a substantial cost in terms of application
performance. Our model is able to characterize and predict
performance penalties which result from the entity-level ap-
proach. We have validated our model by presenting a case-
study of an entity-level application, the IMMSIM immuno-
logical simulation model. Finally, we have analytically and
experimentally illustrated the substantial potential benefit of
remapping strategies for entity-level applications.

We plan to continue this research by using our model to
evaluate remapping heuristics for a greater variety of entity-
level applications. We also plan to study aspects of the
remapping strategy in greater detail. One particular area of
interest is the scheduling of remapping events. In essence,
we would like to answer the question: when is the applica-
tion likely to benefit from remapping? The answer to this
question involves many issues, including (i) the nature of
the entities in the application, (ii) the cost of generating and
implementing new task mappings, and (iii) the impact of
future application behavior on the efficacy of remapping.

8



References

[1] R. Biswas, S. K. Das, D. J. Harvey, and L. Oliker. Paral-
lel Dynamic Load Balancing Strategies for Adaptive Irregu-
lar Applications. Applied Mathematical Modeling, 25:109–
122, 2000.

[2] J. N. Blattman, R. Antia, D. J. Sourdive, X. Wang, S. M.
Kaech, K. Murali-Krishna, J. D. Altman, and R. Ahmed. Es-
timating the Precursor Frequency of Naive Antigen-specific
CD8 T Cells. Journal of Experimental Medicine, 195(5),
March 2002.

[3] H. Casanova. Simgrid: A Toolkit for the Simulation of Ap-
plication Scheduling. In Proceedings of the IEEE/ACM In-
ternational Symposium on Cluster Computing and the Grid,
May 2001.

[4] H. Casanova, G. Obertelli, F. Berman, and R. Wolski. The
AppLeS Parameter Sweep Template: User-Level Middle-
ware for the Grid. In Proceedings of Supercomputing 2000,
November 2000.

[5] F. Castiglione, M. Bernaschi, and S. Succi. Simulating the
Immune Response on a Distributed Parallel Computer. In-
ternational Journal of Modern Physics, 8:527–545, 1997.

[6] G. Cybenko. Load balancing for distributed memory pro-
cessors. Journal of Parallel and Distributed Computing,
2(7):279–301, 1989.

[7] R. Elsässer, B. Monien, and R. Preis. Diffusion Schemes
for Load Balancing on Heterogeneous Networks. Theory of
Computing Systems, 35:305–320, 2002.

[8] J. Epstein and R. Axtell. Artificial Societies and Generative
Social Science. In Proceedings of the First International
Symposium on Artificial Life and Robotics, Feb 1996.

[9] K. Erol, R. Levy, and J. Wentworth. Application of Agent
Technology to Traffic Simulation, http://www.tfhrc.
gov/advanc/agent.htm, 1998.

[10] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek,
and V. Sunderam. PVM: Parallel Virtual Machine. MIT
Press, 1994.

[11] N. Gilbert. Simulation: an Emergent Perspective,
http://www.soc.surrey.ac.uk/research/
simsoc/tutorial.html, 1996.

[12] V. Grimm. Ten years of individual-based modelling in ecol-
ogy: What have we learned, and what could we learn in the
future? Ecological Modelling, 115:129–148, 1999.

[13] T. Hagerup. Allocating Independent Tasks to Parallel Pro-
cessors: An Experimental Study. Journal of Parallel and
Distributed Computing, 47:185–197, 1997.

[14] D. Homann, L. Teyton, and M. B. A. Oldstone. Differen-
tial regulation of antiviral T-cell immunity results in sta-
ble CD8� but declining CD4� T-cell memory. Nature
Medicine, 7(8):913–919, August 2001.

[15] E. N. Houstis, J. R. Rice, S. Weerawarana, A. C. Catlin, P. N.
Papachiou, K.-Y. Wang, and M. Gaitatzes. PELLPACK: A
Problem Solving Environment for PDE Based Applications
on Multicomputer Platforms. Transactions on Mathematical
Software, 24(1):30–73, 1998.

[16] IMMSIM webpage at http://www.cs.princeton.
edu/immsim/, 1999.

[17] S. H. Kleinstein and P. E. Seiden. Simulating the Immune
System. Computing in Science and Engineering, pages 69–
77, Jul–Aug 2000.

[18] Y. Kwok and I. Ahmad. Benchmarking and Comparison of
the Task Graph Scheduling Algorithms . Journal of Parallel
and Distributed Computing, 59(3):381–422, 1999.

[19] J.-S. Oh, C. Cortets, R. Jayakrishnan, and D.-H. Lee. Micro-
scopic Simulation with Large-network Path Dynamics for
Advance Traffic Management and Information Systems. In
Proceedings of the 6th ASCE International Conference on
Applications of Advanced Technologies in Transportation
Engineering, Jun 2000.

[20] Simgrid webpage at http://grail.sdsc.edu/
projects/simgrid/, 2002.

[21] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Don-
garra. MPI: The Complete Reference. MIT Press, 1998.

[22] A. Su, H. Casanova, and F. Berman. Utilizing DAG Schedul-
ing Algorithms for Entity-Level Simulations. In Proceed-
ings of the Tenth High Performance Computing Symposium,
Apr 2002.

[23] S. Valitutti and A. Lanzavecchia. Serial Triggering of TCRs:
A Basis for the Sensitivity and Specificity of Antigen Recog-
nition. Immunology Today, 18(6):299–304, 1997.

9


