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AbstractÐThe Computational Grid [12] has been proposed for the implementation of high-performance applications using widely

dispersed computational resources. The goal of a Computational Grid is to aggregate ensembles of shared, heterogeneous, and

distributed resources (potentially controlled by separate organizations) to provide computational ªpowerº to an application program. In

this paper, we provide a toolkit for the development of globally deployable Grid applications. The toolkit, called EveryWare, enables an

application to draw computational power transparently from the Grid. It consists of a portable set of processes and libraries that can be

incorporated into an application so that a wide variety of dynamically changing distributed infrastructures and resources can be used

together to achieve supercomputer-like performance. We provide our experiences gained while building the EveryWare toolkit

prototype and an explanation of its use in implementing a large-scale Grid application.

Index TermsÐComputational Grid, EveryWare, Ramsey Number search, grid infrastructure, ubiquitous computing, distributed

supercomputer.
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1 INTRODUCTION

INCREASINGLY, the high-performance computing commu-
nity is blending parallel and distributed computing

technologies to meet its performance needs. A new
architecture, known as The Computational Grid [12], has
recently been proposed which frames the software infra-
structure required to implement high-performance applica-
tions using widely dispersed computational resources. The
goal of a Computational Grid is to aggregate ensembles of
shared, heterogeneous, and distributed resources, poten-
tially controlled by separate organizations to provide
computational ªpowerº to an application program. Appli-
cations should be able to draw compute cycles, network
bandwidth, and storage capacity seamlessly from the Grid 1

in an analogous way in which household appliances draw
electrical power from a power utility.

The framers of the Computational Grid paradigm
identify four qualitative criteria for the concept to be
realized. According to [12] (p. 18), a Computational Grid

must deliver consistent, dependable, pervasive, and inexpensive

cycles to the end user. In this paper, we outline five

quantitative requirements which, if met, fulfill the qualita-

tive criteria from [12]. We also describe EveryWareÐa

toolkit for constructing Computational Grid programsÐ

and quantitatively evaluate how well an example Every-

Ware program fulfills the Computational Grid vision.
Our evaluation is based on five quantitative metrics:

1. Execution Rate: measures the sustained computa-
tional performance of the entire application.
Although not mentioned explicitly as a criterion,
the Grid must be able to deliver efficient execution
performance which we measure in terms of
sustained execution rate.

2. Adaptivity: measures the difference between the
performance variability exhibited by the underlying
resources and the performance variability exhibited
by the application itself. If program execution is
stable, independent of fluctuations in resource
performance (i.e., the program adapts to varying
performance conditions successfully), we suggest
that the program is able to sustain consistent
execution.

3. Robustness: measures the overall duration of
continuous program execution in the presence of
resource failures. A program that can continue to
execute effectively in the presence of unpredictable
resource failure is a dependable program.

4. Ubiquity: measures the the degree of heterogeneity
a program can exploit in terms of the number of
different resource types used by the application. If a
program can execute using any and all available
resources (both software and hardware), it is a
pervasive program.
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5. Expense: measures the cost of the resources
necessary to implement the infrastructure. This
metric maps directly to the the expense criterion
described in [12].

Therefore, a program that achieves a high execution rate,
which is able to adapt to rapidly changing performance
conditions, which is robust to resource failures, which can
execute ubiquitously, and which requires little added expense
over a single-machine program possess all of the qualities
described in [12] that a Grid program must possess.

EveryWare is a software toolkit consisting of three
separate components:

. A portable lingua franca that is designed to allow
processes using different infrastructures and
operating systems to communicate,

. A set of performance forecasting libraries that
enable an application to make short-term resource
and application performance predictions in near-real
time, and

. A distributed state exchange service that allows
application components to manage and synchronize
the program state in a dynamic environment.

The goal is to allow a user to write Grid programs that
combine the best features of different Grid infrastructures
such as Globus [11], Legion [19], Condor [36], or NetSolve
[6], as well as the native functionality provided by Java [18],
Windows NT [27], and Unix to the performance advantage
of the application. EveryWare is implemented as a highly
portable set of libraries and processes that can ªglueº
different locally available infrastructures together so that a
program may draw upon these resources seamlessly. If
sophisticated systems such as Globus, Legion, or Condor
are available, the EveryWare program must be able to use
the features provided by those systems effectively. If only
basic operating system functionality is present, however, an
EveryWare program should be able to extract what ever
functionality it can, realizing that these resources may be
less effective than those supporting better infrastructure.
The ability to execute ubiquitously with respect to all of the
resources accessible by the user is key to meeting the
pervasiveness criterion. By leveraging the most performance-
efficient infrastructure that is present on those resources, an
EveryWare application can ensure the best possible execu-
tion performance and the greatest degree of robustness
possible.

Designed to be quickly and easily portable, EveryWare is
intended to be the thinnest middleware layer capable of
unifying heterogeneous resources with various software
infrastructures to accomplish a computational task. In a
Grid environment with several incompatible software
infrastructure choices, it has been challenging to build
a distributed application running everywhere until
EveryWare.

We have implemented a prototype toolkit to test the
efficacy of the EveryWare approach. In an experiment
entered as a contestant in the High-Performance Computing
Challenge [22] at SC98, we were able to use this prototype
to leverage Globus, Legion, Condor, and NetSolve Grid
computing infrastructures, the Java language and execution
environment, native Windows NT, and native Unix systems

simultaneously in a single, globally distributed application.
The application, a program that searches for Ramsey
Number counter-examples, does not perform an exhaustive
search, but instead uses search heuristics, such as simulated
annealing to negotiate the enormous search space.
Effectively implementing this approach requires careful
dynamic scheduling to avoid substantial communication
overheads. Moreover, by focusing on enhancing the
interoperability of the resources in our pool, we were
able to combine the Tera MTA [37] and the NT Super-
cluster [30]Ðtwo unique and powerful resourcesÐwith
several more commonly available systems, including
parallel supercomputers, PC-based workstations, shared-
memory multiprocessors, and Java-enabled desk-top brow-
sers. With nondedicated access to all resources, under
extremely heavy load conditions, the EveryWare applica-
tion was able to sustain supercomputer performance levels
over long periods of time. As such, the Ramsey Number
Search application using EveryWare represents an example
of a true Grid programÐthe computational ªpowerº of all
resources that were available to the application's user was
assessed, managed, and delivered to the application.

In detailing our Computational Grid experiences, this
paper makes four important contributions.

. It defines five quantitative metrics that can be used
to measure the effectiveness of Grid applications.

. It demonstrates, using these quantitative metrics, the
potential power of globally distributed Grid
computing.

. It details our experiences using most of the relevant
distributed computing technology available to us in
the fall of 1998.

. It describes a new programming model and
methodology for writing Grid programs.

In the next section, we motivate the design of EveryWare
in the context of current Computational Grid research. In
Section 3, we detail the functionality of the EveryWare
toolkit and describe the programming model it implements.
Section 4 discusses the Ramsey Number Search application
we used in this experiment and, in Section 5, we detail the
performance results we were able to obtain in terms of the
four metrics described above. We conclude, in Section 6,
with a description of future research directions.

2 COMPUTING WITH COMPUTATIONAL GRIDS

The goal of EveryWare is to enable the construction of true
Grid programsÐones which draw computational power
seamlessly from a dynamically changing resource pool.
Since the field is evolving, a single definition of ªComputa-
tional Gridº has yet to be universally adopted.2 In this
work, we will use the following definition.

Computational Grid. A heterogenous, shared, and federated
collection of computational resources connected by a network

that supports interprocess communication.
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By ªsharedº we mean that it is impractical to dedicate all
of the resources in a Computational Grid to a single
application for an appreciable amount of time. The term
ªfederatedº means that each resource is expected to have
local administration, local resource allocation policies, and
local resource management software. No single overarching
resource management policy can be imposed on all
resources.

The resources housed at the National Partnership for
Advanced Computational Infrastructure (NPACI) and
National Computational Science Alliance (NCSA) constitute
examples of Computational Grids. At these centers,
machines and storage devices of various types are inter-
networked. Each resource is managed by its own resource
manager (e.g., batch scheduler, interactive priority mechan-
ism, etc.) and it is not generally possible to dedicate all
resources (and the network links that interconnect them) at
either site to a single application. Moreover, it is possible to
combine NPACI and NCSA resources together to form a
larger Computational Grid that has the same characteristics.
In this larger case, it is not even possible to mandate that a
uniform software infrastructure be present at all potentially
useful execution sites.

To maximize application performance on a Computa-
tional Grid, a program must be scalable (able to exploit
concurrency for performance), adaptive, robust, and ubiquitous.

Other work has met these requirements to different
degrees. AppLeS [4] (Application Level Scheduling) agents
have enabled applications to meet these requirements in
environments where a single infrastructure is present and
the scheduling agent does not experience resource failure.
An AppLeS agent dynamically evaluates the performance
that all available resources can deliver to its application and
crafts a schedule that maximizes the application's overall
execution performance. EveryWare supports this principle
but also extends it to wide-area lossy environments in
which several infrastructures may be available. Note also
that the AppLeS agent is a specialized application compo-
nent that performs a single application management
function: scheduling. EveryWare generalizes this notion to
other application management functions in the form of
application-specific services. In Section 4, we describe
application-specific scheduling, persistent-state manage-
ment, and performance logging for the Ramsey Number
search application in EveryWare.

The MPI (Message Passing Interface) [10], and PVM
(Parallel Virtual Machine) [17] implementations for net-
worked systems allow distributed clusters of machines to be
programmed as a single, ªvirtualº parallel machine, allowing
applications to scale. In addition, portable implementations
that do not require privileged (super-user) access for
installation or execution [20], [17] are available, promoting
their ubiquity. However, they do not manage resource
heterogeneity on behalf of the program nor do they expose
it to the programmer so that it may be managed explicitly
and, so, are not adaptive.

Grid computing systems such as Globus, Legion,
Condor, and HPC-Java [21] include support for resource
heterogeneity as well, but they are not yet ubiquitous. As
they gain in popularity, we anticipate these systems to be

more widely installed and maintained. However, we note
that their level of sophistication makes porting them to new
and experimental environments labor intensive.

EveryWare is similar to Globus [11] in that application
components communicate via different well-defined
protocols to obtain Grid ªservice.º EveryWare extends
this ªsum of serviceº approach to provide tools for the
Grid programmer to develop application-specific protocols
and services so that the application, and not just the
underlying infrastructure, can be robust and ubiquitous.

It also supports information hiding and location trans-
parency in the same way object-oriented systems such as
Legion [19] and CORBA [31] do. Indeed, it is possible to
leverage the salient features from these object-oriented
systems via EveryWare where advantageous to the
application.

In particular, we were able to build an application-
specific process location service using EveryWare that is
similar in concept to the functionality provided by JINI [3].
JINI relies on broadcast and multicast facilities, however,
making it difficult to use in wide-area environments. Using
the EveryWare Gossip protocol, we were able to overcome
this limitation, although it is possible that JINI could be
used to implement part of the Gossip infrastructure.

EveryWare complements the functionality provided by
Condor [36] by providing a robust messaging layer.
Adaptive and robust execution facilities permit Condor to
kill and restart EveryWare processes at will. However, in
order to provide an automatic and seamless checkpointing
facility, Condor only provides a way for tasks to be
migrated between machines of the same architecture.
EveryWare's Gossip protocol enables a programmer to
write an explicit state-saving facility which is both applica-
tion and platform neutral. In conjunction with Condor's
checkpointing facility, this enables EveryWare programs to
span Condor pools based on different architectures.

Dynamically schedulable adaptive programs that are
capable of tolerating resource performance fluctuations
have been developed by the Autopilot [33], Prophet [38],
Winner [2], and MARS [16] groups. Most of these systems
rely on a centralized scheduler for each application,
sacrificing robustness. If the scheduler fails or becomes
disconnected from the rest of the application, the program
is disabled. In addition, having a single scheduling agent
impedes scalability as communication with the scheduler
becomes a performance bottleneck.

EveryWare is designed as a portable ªtoolkitº for linking
together program components running in different envir-
onments. Individual program components may use what
ever locally available infrastructure is present. In addition,
we provide a low-level ªbare-bonesº implementation that is
designed to use only basic operating system functionality.
In this way, an EveryWare application does not assume that
any single operating system or infrastructure, except it's
own, will be accessible from every resource. Borrowing
from the AppLeS [4] project, EveryWare applications
characterize all resources in terms of their quantifiable
impact on application performance. In this way, hetero-
geneity is expressed as the difference in deliverable
performance to each application. The EveryWare toolkit
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includes support for process replication and performance
forecasting so that an EveryWare application can adapt to
dynamically changing resource conditions. We leverage the
Network Weather Service [40], [39] forecasting facilities to
provide both heterogeneity management and adaptive
resource performance prediction.

3 THE EVERYWARE TOOLKIT

The EveryWare toolkit is composed of three separate
software components: a portable lingua franca that allows
processes using different infrastructures and operating
systems to communicate, a set of performance forecasting
services and libraries that enable an application to make
short-term resource and application performance predictions
in near-real time, and a distributed state exchange service
that allows application components to manage and
synchronize program state in a dynamic environment.
Fig. 1 depicts the relationship between these components.
Application components that are written to use different
Grid infrastructure features can communicate amongst
themselves, with the EveryWare state exchange service
and with other multiinfrastructure services such as the
Network Weather Service [40] using the lingua franca. NWS
dynamic forecasting libraries (small triangles in the figure)
can be loaded with application components directly. These
libraries, in conjunction with the performance forecasts
provided by the NWS, permit the program to anticipate
performance changes and adapt execution accordingly. The
distributed state-exchange services provide a mechanism
for synchronizing and replicating an important program
state to ensure robustness and scalability.

The toolkit we have implemented is strictly a prototype
designed to expose the relevant programming issues. As
such, we do not describe the specific APIs supported by
each component (we expect them to change dramatically in
our future implementations). Rather, in this section, we
motivate and describe the functionality of each EveryWare
component and discuss our overall implementation strat-
egy. Our intent is to use the prototype first to implement a
variety of applications so that we may determine what
functionality is required and then to provide a ªuser-
friendlyº implementation of EveryWare for public release.

3.1 Lingua Franca

The lingua franca provides a base set of resource control
abstractions that are portable across infrastructures. They
are intended to be simple, easy to implement using different
Grid technologies, and highly portable. Initially, we have
developed simple process, datagram message, and storage
buffer abstractions for EveryWare. The process abstraction
creates and destroys a single execution thread on a target
resource that is capable of communicating via both the
EveryWare datagram message abstraction and any local
communication facilities that are present. EveryWare data-
gram messages are sent between processes via nonblocking
send and blocking receive calls and processes can block
waiting for messages from multiple sources. Processes can
also create and destroy storage buffers on arbitrary resources
(e.g., by creating ªmemoryº processes that respond to read
and write requests to their own memory).

We implemented the lingua franca using C and TCP/IP
sockets. To ensure portability, we tried to limit the
implementation to use only the most ªvanillaº features of
these two technologies. For example, we did not use
nonblocking socket I/O nor did we rely upon keep-alive
signals to inform the system about end-to-end communica-
tion failure. In our experience, the semantics associated
with these two useful features are specific to the vendor
and, in some cases, to the operating system release level. We
tried to avoid controlling the portability of EveryWare
through C preprocessor flags whenever possible so that the
system could be ported quickly to new architectures and
environments. Similarly, we chose not to rely upon XDR [35]
for data type conversion for fear that it would not be
readily available in all environments. Another important
decision was to strictly limit our use of signals. Unix
signal semantics are somewhat detailed and we did not
want to hinder the portability to nonUnix environments
(e.g., Java and Windows NT). More immediately, many of
the currently available Grid communication infrastruc-
tures such as Legion [19] and Nexus [14] take over the
user-level signal mechanisms to facilitate message delivery.
Lastly, we avoided the use of threads throughout the
architecture as differences in thread semantics and thread
implementation quality has been a source of incompatibility
in many of our previous Grid computing efforts.

Above the socket level, we implemented rudimentary
packet semantics to enable message typing and delineate
record boundaries within each stream-oriented TCP com-
munication. Our approach takes its inspiration from the
publicly available implementation of netperf [23]. How-
ever, the actual implementation of the messaging layer
comes directly from the current Network Weather Service
(NWS) [40], where it has been stress-tested in a variety of
Grid computing environments.

Note that the EveryWare lingua franca differs from other
message passing implementations such as PVM [17] or
MPI [20] in several important ways. First, these other
interfaces are designed to support arbitrary parallel
programs in environments where resource failure is rare
(i.e., on parallel machines). As such, they include useful
primitives (such as global barrier synchronization) that
make them attractive programming facilities, but sometimes
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difficult to implement in Grid environments. Often, when a
resource fails, the entire PVM or MPI program must be
restarted. EveryWare assumes that resource availability
will be dynamically changing. As such, all primitives obey
user-specified time outs, success and failure status is
reported explicitly, and only those primitives that can fail
individually (that is, without affecting more than the
process calling them) are implemented. We do not intend
the lingua franca to replace any of the existing message-
passing or remote invocation systems that are available to
Grid programmers. Rather, we will provide the minimal
functionality required to allow these infrastructures to
interoperate efficiently so that programs can span Grid
infrastructures. We expect that the portability of the lingua
franca will also benefit from this minimalist approach.

3.2 Forecasting Services

We also borrowed and enhanced the NWS forecasting
modules for EveryWare. To make performance forecasts,
the NWS applies a set of light-weight time series forecasting
methods and dynamically chooses the technique that yields
the greatest forecasting accuracy over time [39]. The NWS
collects performance measurements from Grid computing
resources (CPUs, networks, etc.) and uses these forecasting
techniques to predict short-term resource availability. For
EveryWare, however, we needed to be able to predict the
time required to perform arbitrary but repetitive program
events. Our strategy was to manually instrument the
various EveryWare components and application modules
with timing primitives, and then pass the timing informa-
tion to the forecasting modules to make predictions. We
refer to this process as dynamic benchmarking as it uses
benchmark techniques (e.g., timed program events)
perturbed by ambient load conditions to make perfor-
mance predictions.

For example, we use the NWS forecasting modules and
NWS dynamic benchmarking to predict the response time
of each EveryWare state-exchange server. We first identify
instances of request-response interactions in the state-server
code. At each of these ªeventsº we instrument the code to
record an identifier indicating the address where the
request is serviced and the message type and time required
to get the corresponding response. By forecasting how
quickly a server responds to each type of message, we are
able to dynamically adjust the message time-out interval to
account for ambient network and CPU load conditions. This
dynamic time-out discovery is crucial to overall program
stability. Using the alternative of statically determined time-
outs, the system frequently misjudges the availability (or
lack thereof) of the different EveryWare state-manage-
ment servers causing needless retries and dynamic
reconfigurations.

In general, the NWS forecasting services and NWS
dynamic benchmarking allow both the EveryWare toolkit,
and the application using it, to dynamically adapt itself to
changing load and performance response conditions. We
use standard timing mechanisms available on each system
to generate time stamps and event timings. However, we
anticipate that more sophisticated profiling systems such as
Paradyn [28] and Pablo [9] can be incorporated to yield
higher-fidelity measurements.

3.3 Distributed State Exchange Service

To function in the current Grid computing environments,
a program must be robust with respect to resource
performance failure while at the same time able to
leverage a variety of different target architectures. Every-
Ware provides a distributed state exchange service that
can be used in conjunction with application-level check-
pointing to ensure robustness. EveryWare state-exchange
servers (called Gossips) allow application processes to
register for state synchronization by providing a contact
address, a unique message type, and a function that allows
a Gossip to compare the ªfreshnessº of two different
messages having the same type. All application components
wishing to use Gossip service must also export a state-
update method for each message type they wish to
synchronize.

Once registered, an application component periodically
receives a request from a Gossip process to send a fresh copy
of its current state, identified by message type. Using the
previously registered comparator function, the Gossip
compares the current state with the latest state message
received from other application components. When the
Gossip detects that a particular message is out-of-date, it
sends a fresh state update to the application component that
originated the out-of-date message.

To allow the system to scale, we rely on three
assumptions: that the Gossip processes cooperate, that the
number of application components wishing to synchronize
is small, and that the granularity of synchronization events
is relatively coarse. Cooperation between Gossip processes is
required so that the workload associated with the synchro-
nization protocol may be evenly distributed. Gossips
dynamically partition the responsibility for querying and
updating application components amongst themselves. For
the SC98 experiment, we stationed several Gossips at well-
known addresses around the country. When an application
component registered, it was assigned a responsible Gossip
within the pool of available Gossips whose job it was to keep
that component synchronized.

In addition, we allow the Gossip pool to fluctuate. New
Gossip processes register themselves with one of the well-
known sites and are announced to all other functioning
Gossips. Within the Gossip pool, we use the NWS clique
protocol [40] (a token-passing protocol based on leader-
election [15], [1]) to manage network partitioning and Gossip
failure. The clique protocol allows a clique of processes to
dynamically partition itself into subcliques (due to network
or host failure) and then merge when conditions permit.
The EveryWare Gossip pool uses this protocol to reconfigure
itself and rebalance the synchronization load dynamically
in response to changing conditions.

The assumptions about synchronization count and
granularity are more restrictive. Because each Gossip does
a pair-wise comparison of application component state, N2

comparisons are required for N application components.
Moreover, if the overhead associated with state synchroni-
zation cannot be amortized by useful computation, perfor-
mance will suffer. We believe that the prototype state-
exchange protocol can be substantially optimized (or
replaced by a more sophisticated mechanism) and that
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careful engineering can reduce the cost of state synchroni-
zation over what we were able to achieve. However, we
hasten to acknowledge that not all applications or applica-
tion classes will be able to use EveryWare effectively for
Grid computation. Indeed, it is an interesting and open
research question as to whether large-scale, tightly
synchronized application implementations will be able to
extract performance from Computational Grids, particu-
larly if the Grid resource performance fluctuates as much
as we have typically observed [41], [39]. EveryWare does
not allow any application to become an effective Grid
application. Rather, it facilitates the deployment of applica-
tions, enabling them to ubiquitously draw computational
power from a set of fluctuating resources.

Similarly, the consistency model required by the applica-
tion program dramatically affects its suitability as an
EveryWare application, in particular, and as a Grid
application in general. The development of a high-perfor-
mance state replication facilities that implement tight
bounds on consistency is an active area of research.
EveryWare does not attempt to solve the distributed state
consistency problem for all consistency models. Rather, it
specifies the inclusion of replication and synchronization
facilities as a constituent service. For the application
described in Section 4, we implemented a loosely consistent
service based on the Gossip protocol. Other, more tightly
synchronized services can be incorporated, each with its
own performance characteristics. We note, however, that
applications having tight consistency constraints are, in
general, difficult to distribute while maintaining acceptable
performance levels. EveryWare is not intended to change
the suitability of these programs with respect to Grid
computing, but rather enables their implementation and
deployment at what ever performance level they can attain.

3.4 The EveryWare Programming Model

An EveryWare application is structured as a set of computa-
tional application clients that request runtime management
services from a set of application-specific servers. Application
clients perform the actual ªworkº within the application
using the features of a native Grid infrastructure. They may
themselves be parallel or distributed programs, and they
are not constrained to use only the lingua franca for
communication, process control, and storage management.
For operations that require more global control, such as
scheduling, user interaction, etc., the computational appli-
cation clients appeal to application-specific servers, also
written by the application programmer. Like the clients, the
application-specific servers are not constrained to use any
single communication or process control mechanismÐthey
may be written to use any native Grid infrastructure.
However, using the lingua franca enables arbitrary client
and server interaction and ensures portability across
infrastructures.

Fig. 2 depicts the structure of an application. Application
clients (denoted ªAº in the figure) can execute in a number
of different environments, such as NetSolve, Globus,
Legion, Condor, etc. They communicate with application-
specific scheduling servers to receive scheduling directives
dynamically. Persistent state managers, tuned for the
application, control and protect any program state that

must survive host or network failure. Application perfor-

mance logging servers allow arbitrary messages to be

logged by the application. Finally, all application compo-

nents use the EveryWare Gossip service to synchronize state.

To anticipate load changes, the various application compo-

nents consult the Network Weather Service (NWS).
This application architecture offers several advantages.

First, the overall program can be constructed incrementally.

Most concurrent programs are not structured so that some

parts may execute while others are being revised, enhanced,

or debugged. By structuring an EveryWare program as a

communicating set of application-specific services, how-

ever, it is possible to interface new pieces of code with the

running application. The adaptive nature of the code allows

new processes to join and others to drop out while the code

continues to execute. Since we do not have to restart the

application every time we wish to add a new program

component, we can improve and evolve the running

application dynamically. Another advantage is that it

allows us to implement infrastructure-specific clients that

can get the best possible performance by running in

ªnativeº mode. Since the clients need only speak the

protocol required by each server, we do not need to put a

complete software veneer between the computational code

and the native infrastructure.
Note that the EveryWare programming model is

fundamentally different from that used by most procedure

oriented Grid infrastructures such as NetSolve [6], NINF

[29], CORBA [31], and NEOS [26]. These infrastructures

typically support applications structured as a single

controlling client that makes remote-procedure calls to

remote computational servers. Under the EveryWare pro-

gramming model, computation is centered at the clients and

program control is coordinated by a set of cooperating

application-specific servers. Since the roles or client and

server are reversed, we term this application architecture an

inverted client-server model. This novel application structure

offers EveryWare applications greater scalability and

robustness than a single-client approach.
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4 EXAMPLE APPLICATION:
RAMSEY NUMBER SEARCH

The application we chose to implement to test the
effectiveness of EveryWare attempts to improve the known
bounds of classical Ramsey numbers. The nth classical or
symmetric Ramsey number Rn � Rn; n is the smallest number
k such that any complete two-colored graph on k vertices
must contain a complete one-colored subgraph on n of its
vertices. It can proven in a few minutes that R3 � 6; it is
already a nontrivial result that R4 � 18 and the exact values
of Rn for n > 4 are unknown.

Observe that to show that a certain number j is a lower
bound for Rn, one might try to produce a particular two-
colored complete graph on �jÿ 1� vertices that has no one-
colored complete subgraph on any n of its vertices. We will
refer to such a graph as a ªcounter-exampleº for the nth
Ramsey number. Our goal was to find new lower bounds
for Ramsey numbers by finding counter-examples.

This application addresses an unsolved problem in
combinatorics using new search techniques. It is not a
ªclassicº scientific application, however, since it does not
model real-world phenomena, nor does it provide better
applied mathematical or computational techniques for such
modeling. However, this application was especially attrac-
tive as a first test of EveryWare because of its loose
synchronization requirements and its resistance to exhaus-
tive search techniques like those employed in cryptographic
factoring.

This resistance arises from the combinatorial complexity
of the problem. For example, if one wishes to find a new
lower bound for R5, one must search in the space of
complete two-colored graphs on 43 veritces since the

known lower bound is currently 43 [32]. Since such a graph

has
43
2

� �
� 903 edges, there are 2903 > 10270 different two-

colored graphs on 43 vertices. Even if one could examine

1012 configurations every second, an exhaustive search

would take over 10250 years.
Therefore, we must use heuristic techniques to control

the search process. The process of counter-example identi-
fication is related to distributed ªbranch-and-boundº state-
space searching.

4.1 Application Clients

Our goal was to create a dynamically changing population
of computational processes executing different heuristics.
Heuristic design is an active area of research in combina-
tronics [32]. As such, we designed the application to be able
to incorporate different heuristic algorithms concurrently,
each of which implemented as a single application client.
The clients would then use the lingua franca to communicate
with a set of application servers to receive scheduling
directives and state management services.

The heuristics that we used all involved directed search,
by which we mean the following: On the search space of
two-colored complete graphs of a particular size, there is a
numerical ªscoreº which assigns to each graph the degree
to which it fails to be a counter-example in some suitable
sense. There is also a set of manipulations called ªmovesº

(transformations) that one can perform on a particular
graph to produce other graphs. The algorithm, then, is
roughly to start with an arbitrary graph and perform a
sequence of moves with a view toward lowering the score
by each successive move. Note that in any such heuristic, it
is necessary to provide some possibility of making a move
that worsens the score. Otherwise, there is the danger that
the search will get trapped at a local minimum which is not
a global minimum.

In our case, the score assigned to a two-colored graph is
simply the number of ªviolations,º or complete one-colored
subgraphs on n vertices, that it possesses. Thus, a graph is a
counter-example if and only if its score is 0.

Various algorithms employed used slightly different
definitions for their moves. The simplest and most common
was to change the color of a single edge. Thus, for a graph
on 43 vertices possessing 903 edges, there are 903 possible
moves that can be made from any given graph. In other
algorithms, a move comprised changing the colors of three
edges. Still other algorithms worked in restricted search
spaces which partitioned the edges and only considered
those graphs for which all the edges in any given partition
were the same color. In such a case, a move comprised
changing the colors of all the edges within a particular
partition.

The two classes of search heuristics employed were those
based on tabu search [32] and simulated annealing. In tabu
search, the algorithm keeps a list (the tabu list) of a fixed
length recording the most recent moves that have been
made. From a given configuration, it examines all moves
not in the tabu list, finds the one that gives the lowest score,
and makes and records this move. The tabu list is in place to
avoid loops. In practice, some element of randomness is
necessary in order to avoid large loops. We employed two
variants of the tabu search, namely one that allowed a
particular move to be made no more than twice on the list
and another that allowed a particular move onto the list if
its last appearance was with a different predecessor.

The simulated annealing heuristic mimics the physical
behavior of a mass as it undergoes cooling. In this case, the
score of a configuration is analogous to the temperature of
the mass. Generally, from a given configuration, the
algorithm chooses a move at random and makes the move
if it results in a lower score. Otherwise, it rejects the move
and chooses another at random from the same probability
that decreases as the score drops. Here again, this
randomness has the effect of keeping the algorithm from
getting trapped in a local minimum.

4.1.1 Scheduling Service

To schedule the EveryWare Ramsey Number application,
we use a collection of cooperating, independent scheduling
servers to control application execution dynamically. Each
computational client periodically contacts a scheduling
server and reports its algorithm type, the IP address of
the machine on which it is running, the progress it has
made since it last made a scheduling decision, and the
amount of time that has elapsed since its last contact.
Servers are programmed to issue different control directives
based on the type of algorithm the client is executing, how
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much progress the client has made, and the most recent
computational rate of the client.

Scheduling servers are also responsible for migrating
work. Clients report the number of violations in the graph
they are testing when they check in. If the number is low,
the server will ask the client for a copy of the graph it is
currently considering. If it is high, the server sends the
client a better graph and directs it to continue from a
different point in the search space. The clients are
programmed to randomize their starting point in different
ways to prevent the system from dwelling irrevocably in a
local minimum. In addition, the thresholds for identifying a
ªgoodº graph (one with a low number of violations), a bad
one, and the number of times a good one can be migrated to
serve as a new starting point in the search space, are tunable
parameters.

The schedulers also make decisions based on dynamic
performance forecasting information. If a scheduler predicts
that a client will be slow based on previous performance, it
may choose to migrate that client's current workload to a
machine that it predicts will be faster. Rather than basing
that prediction solely on the last performance measurement
for each client, the scheduler uses the NWS lightweight
forecasting facilities to make its predictions. Note that this
methodology is inspired by some of our previous work in
building application-level schedulers (AppLeS) [34], [4].
AppLeS is an agent-based approach in which each applica-
tion is fitted with a customized application scheduler that
dynamically manages its execution. For the Ramsey
Number Search application, however, a single scheduling
agent would have been insufficient to control the entire
application, both because it would limit the scalability of the
application and because the agent would constitute a
single-point-of-failure. We designed an application-specific
scheduling service that forms organized and robust, but
dynamically changing, groups of cooperating processes that
can make progress if and when the network partitions. As
such, we term this type of scheduling Organized Robust
AutoNomous Group Scheduling (ORANGS). ORANGS and
AppLeS are, indeed, similar in that they use NWS perfor-
mance forecasts to make application-specific scheduling
decisions. However, the distributed and robust nature of
the ORANGS service made it a more appropriate choice
for the Ramsey Number Search application.

Notice that, for the Ramsey Number search application,
the scheduling service considers the use of all available
resources. When an application client checks in with a
scheduling server, the server evaluates the client in terms of
the performance it will be able to deliver to the application
(using the forecasting services) and decides on the amount
and type of work that client should receive. In all cases, the
Ramsey Number search clients receive some amount of
work to perform. For other applications, however, the
scheduling service may decide that the use of a particular
resource will hinder rather than aid performance and, hence,
should be excluded. Therefore, while resource selection is not
an issue for Ramsey Number search, the EveryWare
programming model supports its implementation.

Schedulers within the scheduling service communicate
on a nonpersistent state amongst themselves via the Gossip

service. In particular, the IP addresses and port numbers of
all servers are circulated so that new server instances can be
added dynamically. Clients are furnished with a list of
active servers when they make contact so that they can
contact alternates in the event of a failed server
communication. Similarly, scheduling servers learn of
different Gossip servers, persistent state managers, and
logging servers via Gossip updates.

4.1.2 Persistent State Management Service

To improve robustness, we identify three classes of
program state within the application:

Local: State that can be lost by the application due to
machine or network failure (e.g., local variables within
each computational client).

Volatile-But-Replicated: State that is passed between pro-
cesses as a result of Gossip updates, but not written to
persistent storage (e.g., the up-to-date list of active
servers).

Persistent: State that must survive the loss of all active
processes in the application (e.g., the largest counter-
example that the application finds).

We use a separate persistent state service for three
reasons. First, we want to limit the size of the file system
footprint left by the application. Many sites restrict the
amount of disk storage a guest user may acquire. By
separating the persistent storage functionality, we are able
to dynamically schedule the application's disk usage
according to available capacities. Secondly, we want to
ensure that persistent state is ultimately stored in ªtrustedº
environments. For example, we maintained a persistent
state server at the San Diego Supercomputer Center because
we were assured of reliable storage and regular tape back-
ups. Lastly, we are able to implement runtime sanity checks
on all persistent state accesses. If a process attempts to store
a counter-example, for example, the persistent state
manager first checks to make sure the stored object is,
indeed, a Ramsey counter-example for the given problem
size. This is a significant advantage to application-specific
state management.

To implement this functionality, all persistent state
objects must be typed. For each persistent type used in
the program, the state manager needs a set of sanity-checks
(performed when an object is accessed) and a comparator
operator so that the state may be synchronized by the Gossip
service. We acknowledge that developing this functionality
for all Grid applications may not be possible. However, we
note that many Computational Grid infrastructures cur-
rently support mechanisms that can be used to implement
the state management functionality we require for Ramsey
Number search. For example, the sanity checks performed
by the state manager were implemented, primarily, to
prevent errant or malicious processes from damaging
program state. Instead, Globus authentication mechanisms
[13] could be used to provide access control so that only
trusted processes may modify persistent state. Similarly, the
Legion class management system [25] tracks object in-
stances in a way that could be used to identify stale state.
We wanted to ensure that all application components
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(computational clients and application-specific servers)
would be portable to any environment so we did not
choose to rest any of the application's functionality on a
particular infrastructure. Future versions of the Ramsey
Search application may relax this restriction to further
benefit from maturing Computational Grid technologies.

4.1.3 Logging Service

To track the performance of the application dynamically,
we implemented a distributed logging service. Scheduling
servers base their decisions, in part, on performance
information they receive from each computational client.
Before the information is discarded, it is forwarded to a
logging server so that it can be recorded. Having a separate
service, again, allows us to limit and control the storage
load generated by the application. For example, NPACI
loaned our group a pair of file servers so that we could
capture a performance log that spanned the time of the
conference.

As with the persistent state managers and the scheduling
servers, the logging servers register themselves with the
Gossip service. Any application process wishing to log
performance information learns of a logging server through
the server list that is circulated. The logging servers do not
register a state synchronization function, however. They use
the Gossip service only to join the running application.

5 RESULTS

To test the efficacy of our approach, we deployed the
Ramsey Number search application on a globally distrib-
uted set of resources during SC98. As part of the test, we
entered EveryWare in the High-Performance Computing
Challenge [22] (an annual competition held during the
conference) as we believed that the fluctuating loads
generated by our competitors would test the capabilities
of our system vigorously.

We instrumented each application client to maintain a
running count of the computational operations it performs
so that we could monitor the performance of Ramsey
Number search application. The bulk of the work in each of
the heuristics (see Section 4) are integer test and arithmetic
instructions. Since each heuristic has an execution profile
that depends largely on the point in the search space where
it is searching, we were unable to rely on static instruction
count estimates. Instead, we inserted counters into each
client after every integer test and arithmetic operation. Since
the ratio of instrumentation code to computational code is
essentially one-to-one (one integer increment for every
integer operation) the performance estimates we report are
conservative. Moreover, we do not include any instrumen-
tation instructions in the operation counts, nor do we count
the instructions in the client interface to EveryWareÐonly
ªusefulº work delivered to the application is counted.
Similarly, we include all communication delays incurred by
the clients in the elapsed timings. The computational rates
we report include all of the overheads imposed by our
software architecture and the ambient loading conditions
experienced by the program during SC98. That is, all of the
results we report in this section are conservative estimates

of the sustained performance delivered to the application
during the experiment.

5.1 Execution Rate

As a Computational Grid experiment, we wanted to
determine if we could obtain high application performance
from widely distributed, heavily used, and nondedicated
computational resources. In Fig. 3, we show the sustained
execution performance of the entire application during the
twelve-hour period including and immediately preceding
the judging of our High-Performance Computing Challenge
entry at SC98 on November 12, 1998.3

The x-axis shows the time of day, Pacific Standard Time,4

and the y-axis shows the average computational rate over a
five-minute time period. The highest rate that the applica-
tion was able to sustain was 2.39 billion integer operations
between 9:51 and 9:56 during a test an hour before the
competition. The judging for the competition itself (which
required a ªliveº demonstration) began at 11:00. As several
competing projects were being judged simultaneously and
many of our competitors were using the same resources we
were using, the networks interlinking the resources
suddenly experienced a sharp load increase. Moreover,
many of the competing projects required dedicated access
for their demonstration. Since we deliberately did not
request dedicated access, our application suddenly lost
computational power (as resources were claimed by and
dedicated to other applications) and the communication
overheads rose (due to increased communication load). The
sustained performance dropped to 1.1 billion operations as
a result. The application was able to adapt to the
performance loss and reorganize itself so that by 11:10
(when the demonstration actually took place), the sustained
performance had climbed to 2.0 billion operations per
second.

This performance profile clearly demonstrates the
potential power of Computational Grid computing. With
nondedicated access, under extremely heavy load condi-
tions, the EveryWare application was able to sustain
supercomputer performance levels.
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In Fig. 4, we show the number of hosts used during the
same time period. In this figure, each data point represents
the number of hosts checking in during the corresponding
five-minute period.5 Note that the maximum host count
(266) occurs at 23:51 as we ran a large scale test of the
system the night before the competition. However, the
maximum host count does not correspond to the maximum
sustained rate. While we were able to incorporate many
new and powerful resources on the morning of the
competition, we lost some of the workstations that were
loaned to us by Condor during the night. Also, these host
count numbers are based on unique IP addresses (and
not process id) making them very conservative. Since
some systems use the same IP address for all hosts (e.g.,
the NT Supercluster) the actual host population was
much higher. However, we could not distinguish between
multiple processes on different hosts with the same IP
address, and multiple process restarts due to eviction for
the combined host population. As a result, we report the
more conservative estimates.

5.2 Adaptivity

We also wanted to measure the smoothness of the
performance response the application was able to obtain
from the Computational Grid. For the Grid vision to be
implemented, an application must be able to draw ªpowerº
uniformly from the Computational Grid as a whole despite
fluctuations and variability in the performance of the
constituent resources. In Fig. 5 and Fig. 6, we compare the
overall performance response obtained by the application
(graph (c) in both figures) with the performance and
resource availability provided by each infrastructure.
Fig. 5 makes this comparison on a linear scale and Fig. 6
shows the same data on a log scale so that the wide range of
performance variability may be observed. In Fig. 5a and
Fig. 6a we detail the number of cycles we were able to
successfully deliver from each Grid infrastructure during
the twelve hours leading up to the competition. Similarly, in
Fig. 5b and Fig. 6b, we show the host availability from each
infrastructure for the same time period. Together, these
graphs show the diversity of the resources we used in the
SC98 experiment.

Specifically, Condor supports a dynamic loan-and-
reclaim resource usage model. Users agree to loan idle

workstations to the Condor system for use by other

processes. When a user-specified keyboard activity or load

threshold is exceeded, the resource is declared busy and

any Condor jobs that are running at the time are evicted.

Note that Condor processing power and host count

fluctuated through the night and then fell off as the day

began in Wisconsin and user activity caused their work-

stations to be reclaimed. For Java, the performance

trajectory was the opposite. We fitted the Java applets with

the necessary logging features at approximately 4:30 AM,

although we had a small number of test hosts running

before then. At approximately 8:00 AM, we announced the

availability of the Java implementation and solicited
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participation from ªfriendlyº sites. In addition, we began to

execute the Java applet using HotJava [18] on workstations

that had been brought to SC98 for general use by conference

attendees. At about the same time, Legion (which had been

down since approximately midnight) became available

again and the application immediately began to take

advantage of the newly available resources. Our Globus

utilization, however, was low until just after the competi-

tion ended at 11:30 AM, when it suddenly spiked. The

Globus group entered the High-Performance Computing

Challenge with two separate entries. As we did not request

dedicated access or special access priority for the demon-

stration, our application was able to leverage these

resources only after higher-priority Globus processes
finished. NetSolve gave us access to the student workstation
laboratories and several resources in the Innovative
Computing Laboratory at the University of Tennessee. We
detected a bug in the performance logging portion of the
NetSolve implementation at approximately 8:00 AM, hence,
we have no reliable performance numbers to report for the
period before then. The bulk of the NT hosts we were able
to leverage came from the Superclusters [30] located at the
National Computational Science Alliance (NCSA) and in
the the Computer Systems Architecture Group [7] (CSAG)
located at the University of California, San Diego (UCSD).
These systems used batch queues to provide space-shared
access to their processors. Unix host count remained
relatively constant throughout the experiment, but perfor-
mance jumped at the end as the Tera MTA (the fastest Unix
host) was added to the resource pool.

In Fig. 5c, we reproduce Fig. 3 for the purpose of
comparison. Fig. 6c shows this same data on a log scale. By
comparing graphs (a) and (b) to (c) on each scale, we expose
the degree to which EveryWare was able to realize the
Computational Grid paradigm. Despite fluctuations in the
deliverable performance and host availability provided
by each infrastructure, the application itself was able to
draw power from the overall resource pool relatively
uniformly. As such, we believe the EveryWare example
constitutes the first application to be written that success-
fully demonstrates the potential of high-performance
Computational Grid computing. It is one of the first
examples of a truly adaptive Grid program.

5.3 Aggregate Performance

Fig. 7 shows the total number of integer operations the
application was able to obtain during the twelve hours
before the competition (on a log scale). With the exception
of Java and NetSolve, all infrastructures were within an
order of magnitude in terms of the cycles they delivered.
Interpreted Java applet performance was typically between
three and five times slower than native binary execution,
and the NetSolve computational servers were shared by
other NetSolve jobs and student projects.

5.4 Robustness

High-performance computer users often complain about
application sensitivity to resource failure in distributed
environments. Fig. 8 shows the total number of hosts and
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processes controlled by each infrastructure that were used
by the application during the twelve hours leading up to the
competition. Comparing the number of processes to hosts
gives an indication of the process failure and restart rate
during the experiment. Each computational client was
programmed to run indefinitely; therefore, in the absence
of process failure, the number of processes would equal the
number of hosts. We implemented several ªad-hocº process
restart mechanisms for the environments in which they
were not automatic. However, most of the process restarts
were due either to deliberate termination on our part while
debugging or dynamic resource reclamation by resource
owners. On the Condor system, we ran each computational
client as a ªvanillaº job which is terminated without notice
when the resource on which it is running is reclaimed and
subsequently restarted when another suitable resource is
free. It is interesting that, despite the midweek daytime
usage, process restart due to resource reclamation was
relatively infrequent in the Condor environment during the
experiment. The Globus comparison illustrates the power of
the GRAM interface [11]. Globus allows all processes to be
launched and terminated through a single GRAM request.
During the time leading up to the competition, we were
improving and debugging our Globus implementation.
Having a single control point allowed us to restart large
batches of processes easily. Under Legion, the concept of
process is not defined. Instead, class ªinstancesº move
between blocked and running states (and vice versa), so we
simply report the number of instances we used during the
demonstration. As a result, this level of process restart
activity is an estimate. The numbers are accurate for the
Globus, Condor, and Unix environments but somewhat
ambiguous for the other infrastructures. Despite the level of
process failure we were able to detect, we were able to
obtain the sustained processing rates, shown in Fig. 3,
during the same time period.

Indeed, EveryWare and the application design we used
proved to be quite robust. In Fig. 9, we show host counts
over five-minute intervals during the 17 days prior to the
judging on November 12. Some portion of the application
was executing more or less continuously during the entire
period. As we concentrated our initial efforts on developing
the EveryWare toolkit and new Ramsey search heuristics,
we did not add performance logging to the running system
until October 26. The program had actually been running
continuously since early June of 1998; however, we only

have performance data dating from the end of October.
Note that we were able to add and then completely revise
the performance logging service while the program was in
execution.

5.5 Ubiquity

For the Computational Grid paradigm to succeed, all
useful resources must be accessible by the application.
Metaphorically, all profitable methods of power generation
must be usable by any power consumer. Fig. 10 compares
the delivered performance from the fastest host controlled
by each infrastructure. The values not only benchmark our
code on various architectures, but also show the wide range
of resource options we were able to leverage during the
experiment. In each case, we attempted to use the native,
vendor-specific C compiler (as opposed to GNU gcc) with
full optimization enabled. On the top half of the figure, we
compare the best performance from each infrastructure. The
fastest Unix machine was the Tera MTA [37]. We report
only the single-processor performance; however, the Tera
was also able to parallelize the code automatically and
achieve an almost linear speed-up on two processors. The
fastest NT-based machine was located at the University of
Wisconsin, but we are unable to determine its architectural
characteristics. An unknown participant downloaded the
NT binary from the EveryWare home page when we
announced that the system was operational on Wednesday
morning. The fastest Condor machine was a Pentium P6
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running Solaris, also located at the University of Wisconsin.
Single-processor Pentium P6 performance was particularly
good (second only to the Tera) for the integer-oriented
search heuristics we developed. The fastest Legion host was
a Digital Equipment Corporation Alpha processor running
Red Hat Linux, located at the University of Virginia, and
the fastest Globus machine was an experimental Convex V
class host located at the Convex development facility in
Richardson, Texas. Surprisingly, the fastest Java execution
was faster than the fastest NT, Legion, and Globus
machines. An unknown participant at Kansas State
University loaded the applet using Microsoft's Internet
Explorer on a 300Mhz dual-processor Pentium II machine
running NT. We speculate that a student used some form of
just-in-time compilation technology to achieve the execu-
tion performance depicted in the figure, although we are
unable to ascertain how this performance level was reached.

On the bottom half of the figure, we show the best single-
processor performance of other interesting and popular
machines. The NT Superclusters at UCSD and NCSA
generated almost identical per-node processing rates. A
single node of the Cray T3E located at the San Diego
Supercomputer Center was able to run only slightly faster
than a single node of the Berkeley NOW [8]. This
comparison surprised us since the T3E is space shared
(meaning that each process had exclusive access to its
processor once it made it through the batch queue) and the
NOW (which is timeshared) was heavily loaded. The
bottom-most entry shows the speed of a publicly accessible
Apple iMac workstation located in a coffee shop on the
UCSD campus which is typical of the interpreted Java
performance we were able to achieve.

In addition to detailing the relative performance of
different architectures and infrastructures, Fig. 10 demon-
strates the utility of EveryWare. It would not have been
possible to include experimental (and powerful) resources,
such as the Tera MTA and the NT Superclusters, without
the EveryWare toolkit. At the time of the experiment, none
of the existing Grid infrastructures had been ported to
either architecture. We were able to port EveryWare to both
systems quickly (under 30 minutes for the Tera) allowing us
to couple them with other, more conventional hosts that did
support some form of Grid infrastructure. By providing
execution ubiquity, EveryWare was able to leverage
resources that no other Grid computing infrastructure
could access. As such, the Ramsey Number Search
application is the first program to couple the Tera MTA,
both NT Superclusters, and the Berkeley NOW with

parallel supercomputers such as the Cray T3E, work-
stations, and desktop web browsers.

6 CONCLUSIONS AND FUTURE WORK

By leveraging a heterogeneous collection of Grid software
and hardware resources, dynamically forecasting future
resource performance levels, and employing relatively
simple distributed state management techniques, Every-
Ware has enabled the first application implementation that
meets the requirements for Computational Grid computing.
In [12], the authors describe qualitative criteria that a

Computational Grid must fulfill as the provision of pervasive,
dependable, consistent, and inexpensive computing.

. Pervasive. At SC98, we were able to use EveryWare
to execute a globally distributed program on
machines ranging from the Tera MTA to a web
browser located in a campus coffee shop at UCSD.

. Dependable. The Ramsey Number Search applica-
tion ran continuously from early June, 1998, until
the High-Performance Computing Challenge on
November 12.

. Consistent. During the twelve hours leading up to
the competition itself, the application was able to
draw uniform compute power from resources
with widely varying availability and performance
profiles.

. Inexpensive. All the resources used by the Ramsey
Number Search application were nondedicated and
accessed via a nonprivileged user login.

We plan to study how EveryWare can be used to
implement other Grid applications as part of our future
efforts. In particular, we plan to use it to build Grid versions
of a medical imaging code written at the University of
Tennessee and a data mining application from the Uni-
versity of Torino. We also plan to extend ORANGS to
include storage scheduling directives and memory
constraints. Finally, we plan to leverage our experience
with EveryWare to build new Network Weather Service
sensors for different Grid infrastructures.
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