1 Articulation Points Detection Algorithm

In a graph $G = (V, E)$, v is an articulation point if:

- removal of v in G results in a disconnected graph
- If v is an articulation point, then there exist distinct vertices w and x such that v is in every path from w to x.

Finding articulation points can be nicely done by using Depth-First Search. In a DFS tree of an undirected graph, a node u is an articulation point, for every child v of u, if there is no back edge from v to a node higher in the DFS tree than u. That is, every node in the decedent tree of u have no way to visit other nodes in the graph without passing through the node u, which is the articulation point. Thus, for each node in DFS traversal, we calculate $dfsn(v)$ and $LOW(v)$. The definition of $LOW(v)$ is the lowest $dfsn$ of any vertex that is either in the DFS subtree rooted at v or connected to a vertex in that subtree by a back edge. Then, in DFS, if there is no more nodes to visit, we back up and update the values of LOW as we return from each recursive call.

Global initialization: $v.dfsnum ← −1$, for all v.

Algorithm 1 ArticPointDFS

```plaintext
Require: Vertex $v$

1: $v.dfsnum ← dfsCounter + +$
2: $v.low ← v.dfsnum$
3: for all edge $(v, x)$ do
4: if $x.dfsnum = −1$ then // x is undiscovered
5: $x.dfslevel ← v.dfslevel + +$
6: $v.numChildren ← v.numChildren + +$
7: stack.push edge $(v, x)$ // add this edge to the stack
8: ArticPointDFS($x$) // recursively perform DFS at children nodes
9: $v.low ← \min(v.low, x.low)$
10: if $v.dfsnum = 1$ then
11: // Special Case for root :
12: // Root is an artic. point iff there are two or more children
13: if $v.numChildren \geq 2$ then
14: articPointList.add($v$)
15: // Retrieve all edges in a biconnected component
16: while stack.top $\neq (v, x)$ do
17: bccEdgeList.add(stack.pop)
18: else
19: if $x.low \geq v.dfsnum$ then
20: // v is artic. point separating x.
21: // Children of $v$ cannot climb higher than $v$ without passing through $v$.
22: articPointList.add($v$)
23: while stack.top $\neq (v, x)$ do // Retrieve all edges in a biconnected component
24: bccEdgeList.add(stack.pop)
25: else if $x.dfslevel < v.dfslevel − 1$ then
26: // x is at a lower level than the level of $v$'s parent, equivalent to $(v, x)$ is a back edge
27: $v.low ← \min(v.low, x.dfsnum)$
28: stack.push edge $(v, x)$ // add the back edge to the stack
```

2 Shortest paths

2.1 Single source

Dijkstra’s algorithm supposes \(w(u, v) \geq 0 \), whereas Bellman-Ford’s doesn’t. Moreover Bellman-Ford’s algorithm returns false if a negative weighted cycle is found.

Algorithm 2 Dijkstra

Require: Graph \(G = (V, E) \), source

1: \textbf{for all} vertex \(v \in G \) do // Initializations
2: \hspace{1em} \texttt{dist}[v] \leftarrow \infty // Unknown distance function from source to \(v \)
3: \hspace{1em} \texttt{previous}[v] \leftarrow \texttt{null} // Previous node in optimal path from source
4: \hspace{1em} \texttt{dist}[source] \leftarrow 0 // Distance from source to source
5: \hspace{1em} Q \leftarrow V // All nodes in the graph are unoptimized - thus are in \(Q \)
6: \textbf{while} \(Q \neq \emptyset \) do
7: \hspace{2em} \(u \leftarrow \) vertex \(\in Q \) with smallest \texttt{dist}[{}]
8: \hspace{2em} \textbf{remove} \(u \) from \(Q \)
9: \hspace{2em} \textbf{for all} neighbor \(v \) of \(u \) \textbf{do} // where \(v \) has not yet been removed from \(Q \)
10: \hspace{3em} \texttt{alt} \leftarrow \texttt{dist}[u] + w(u, v) // be careful in 1st step - \texttt{dist}[u] is \infty yet
11: \hspace{3em} \textbf{if} \texttt{alt} < \texttt{dist}[v] \textbf{then} // Relax \((u,v,a)\)
12: \hspace{4em} \texttt{dist}[v] \leftarrow \texttt{alt}
13: \hspace{4em} \texttt{previous}[v] \leftarrow u
14: \hspace{2em} \textbf{return} \texttt{previous}[{}]

Algorithm 3 Bellman-Ford

Require: list vertices, list edges, vertex source

1: // This implementation takes in a graph, represented as lists of vertices
2: // and edges, and modifies the vertices so that their distance and
3: // predecessor attributes store the shortest paths.
4: 4: \textbf{Step 1: Initialize graph}
5: 5: \textbf{for all} vertex \(v \in V \) do
6: 6: \hspace{1em} \textbf{if} \(v \) is source then
7: 7: \hspace{2em} \texttt{dist}[v] \leftarrow 0
8: 8: \textbf{else}
9: 9: \hspace{1em} \texttt{dist}[v] \leftarrow \infty
10: 10: \hspace{1em} \texttt{previous}[v] \leftarrow \texttt{null}
11: //Step 2: relax edges repeatedly
12: \textbf{for all} \(i \) from 1 to \(|V| - 1 \) do
13: \hspace{1em} \textbf{for all} edge \((u, v) \in E\) do
14: \hspace{2em} \textbf{if} \texttt{dist}[v] > \texttt{dist}[u] + w(u, v) \textbf{then}
15: \hspace{3em} \texttt{dist}[v] \leftarrow \texttt{dist}[u] + w(u, v)
16: \hspace{3em} \texttt{previous}[v] \leftarrow u
17: // Step 3: check for negative-weight cycles
18: \textbf{for all} edge \((u, v) \in E\) do
19: \hspace{1em} \textbf{if} \texttt{dist}[v] > \texttt{dist}[u] + w(u, v) \textbf{then}
20: \hspace{2em} \textbf{Error} “Graph contains a negative-weight cycle”
2.2 All pairs of vertices

Assume that $w(u,v)$ is the cost of the edge from u to v (∞ if there is none). Also assume that n is the number of vertices and $w(u,u) = 0$.

Let $path$ be a 2-dimensional matrix. At each step in the algorithm, $path[u][v]$ is the shortest path from u to v using intermediate vertices ($1 \ldots k - 1$). Each $path[u][v]$ is initialized to $w(u,v)$ or ∞ if there is no edge between u and v.

Algorithm 4 Floyd-Warshall

1: for $k = 1$ to n do
2: for $u \in 1, \ldots, n$ do
3: for $v \in 1, \ldots, n$ do
4: $path[u][v] \leftarrow \min(path[u][v], path[u][k] + path[k][v])$

Also see Johnson’s algorithm which is faster for sparse graphs.

3 Flood-fill

Algorithm 5 Recursive flood fill

Require: node, target_color, replacement_color

1: if the color of node is not equal to target_color then
2: return
3: if the color of node is equal to replacement_color then
4: return
5: Set the color of node to replacement_color
6: Perform Flood-fill (one step to the west of node, target_color, replacement_color)
7: Perform Flood-fill (one step to the east of node, target_color, replacement_color)
8: Perform Flood-fill (one step to the north of node, target_color, replacement_color)
9: Perform Flood-fill (one step to the south of node, target_color, replacement_color)
10: return

4 Minimum Spanning Tree

Find a minimum spanning tree (MST) for a connected weighted graph, i.e., a spanning tree with minimum weight.

Also see Prim’s algorithm.
Algorithm 6 Kruskal

Require: Graph G

1: **for all** vertex $v \in G$ **do**
2: Define an elementary cluster $C(v) \leftarrow \{v\}$.
3: Initialize a priority queue Q to contain all edges in G, using the weights as keys.
4: Define a tree $T \leftarrow \emptyset$ // T will ultimately contain the edges of the MST
5: // n is total number of vertices
6: **while** T has fewer than $n - 1$ edges **do**
7: // edge (u, v) is the minimum weighted route from/to v
8: $(u, v) \leftarrow Q.removeMin()$
9: // prevent cycles in T. add (u, v) only if T does not already contain a path between u and $v.$
10: // Note that the cluster contains more than one vertex only if an edge containing a pair of
11: // the vertices has been added to the tree.
12: Let $C(v)$ be the cluster containing v, and let $C(u)$ be the cluster containing u.
13: **if** $C(v) \neq C(u)$ **then**
14: Add edge (v, u) to T
15: Merge $C(v)$ and $C(u)$ into one cluster, that is, $C(v) \cup C(u)$.
16: **return** tree T
5 Maximum Flow

The maximum flow problem is to find a feasible flow through a single-source, single-sink flow network that is maximum.

We denote by $c(u, v)$ the capacity of the link (u, v) between u and v, and $f(u, v)$ the flow on this link. We define the residual network $G_f = (V_f, E_f)$ to be the network with capacity $c_f(u, v) = c(u, v) - f(u, v)$ and no flow.

Algorithm 7 Ford-Fulkerson

Require: Graph $G = (V, E)$ with flow capacity c, source node s and sink node t

1: for all $(u, v) \in E$ do
2: \hspace{1em} $f(u, v) \leftarrow 0$
3: while \exists path p from s to t in G_f, such that $c_f(u, v) > 0$ for all edges $(u, v) \in p$ do
4: \hspace{1em} Find $c_f(p) \leftarrow \min \{ c_f(u, v) : (u, v) \in p \}$
5: \hspace{1em} for all edge $(u, v) \in p$ do
6: \hspace{2em} $f(u, v) \leftarrow f(u, v) + c_f(p)$ \hspace{1em} // Send flow along the path
7: \hspace{2em} $f(v, u) \leftarrow f(v, u) - c_f(p)$ \hspace{1em} // The flow might be “returned” later

The algorithm maintains the following invariants:

- $f(u, v) \leq c(u, v)$ the flow does not exceed the capacity
- $f(u, v) = -f(v, u)$
- $\sum_v f(u, v) = 0 \Leftrightarrow f_{in}(u) = f_{out}(u)$ for all nodes u, except the source s and the sink t.

Finding a path (line 3 in Algorithm 7) can be found using a DFS or BFS.