
A Peer-to-Peer Extension of Network-Enabled Server Systems∗

Eddy Caron, Fŕed́eric Desprez, Ćedric Tedeschi
LIP Laboratory / GRAAL Project

UMR CNRS, ENS Lyon, INRIA, UCBL, France
46 Allée d’Italie, 69364 Lyon Cedex 07, France

FirstName.Name@ens-lyon.fr

Franck Petit
LaRIA Laboratory

University of Picardie - Jules Vernes, France
5, rue du Moulin Neuf, 80000 Amiens, France

Franck.Petit@laria.u-picardie.fr

Abstract

DIET (Distributed Interactive Engineering Toolbox) is
a set of hierarchical components to design Network En-
abled Server (NES) systems. In these systems, clients ask
to agents (discovery and scheduling components) to find
servers able to solve their problem using some performance
metrics and information about the location of data already
on the network. Today’s NES middleware, in which agents
are statically connected and potentially bottlenecks, don’t
cope with the dynamic and heterogeneous nature of fu-
ture grid environments. In this paper, we present the de-
sign, the implementation and the experimentation of the
first architecture extending traditional NES systems with an
unstructured peer-to-peer network dynamically connecting
distributed agents, to provide to clients an entry point to
servers geographically distributed. Our implementation is
based on DIET and the JXTA toolbox. Different algorithms
have been implemented and experimented over the VTHD
network which connects several supercomputers in different
research institutes through a high-speed network, showing
the scalability of the system.

1 Introduction

The use of distributed resources available through high-
speed networks has recently gained a wide interest. So
called grids [2, 8] are now widely available for many appli-
cations around the world. The number of resources made
available grows every day and the scalability of middle-
ware platforms becomes an important issue. Many re-
search projects have produced middleware to cope with
heterogeneity and dynamicity of the target platforms like
Globus [9] or Condor [16] while trying to hide the com-
plexity of the platform as much as possible to the user.

∗This work was supported in part by the ACI GRID (ASP), RNTL
(GASP), and the RNRT (VTHD++) of the french department of research.

Among them, one simple, yet performant, approach
consists in using servers available in different administra-
tive domains through the classical client-server or RPC1

paradigm. Network Enabled Servers [6] implement this
model also called GridRPC [15] (like DIET, NetSolve, or
Ninf). Clients submit computation requests to a scheduler
whose goal is to find a server available on the grid, able
to solve the client’s problem. The agent applies scheduling
mechanisms to balance the work among the servers and a
list of available servers is sent back to the client which is in
turn able to send a request and its data to the server to solve
the given problem. Due to the growth of the network band-
width and the reduction of the latency, small computation
requests can now be sent to servers available on the grid.
One important issue is now the scalability of the middleware
itself. The agent’s work (service discovery and scheduling)
should be made scalable.

This has been first addressed by distributing the agent it-
self. We designed DIET [3, 4], a set of hierarchical elements
to build applications using the GridRPC paradigm. This
middleware is able to find an appropriate server according
to the information given in the client’s request (problem to
be solved, size of the data involved), the performance of the
target platform (servers load, memory available, communi-
cation performance), and the availability of data stored dur-
ing previous computations. The scheduler is distributed in
a hierarchy of agents. Agents are statically connected and
can become bottlenecks as the number of requests grows.

Emerging Peer-to-Peer technologies allow the search of
resources in large scale environments. Iamnitchi and Fos-
ter suggested in [10] that grids provide the infrastructure
for sharing resources, but do not cope with the dynamic na-
ture of today’s large scale platforms, and so one would take
advantage to adopt Peer-to-Peer tools. To date, very few
grid middleware have implemented Peer-to-Peer technolo-
gies, and, to our knowledge, no NES systems, whose static
nature still hinders its worldwide deployment, have used the

1Remote Procedure Call

Peer-to-Peer technology.
In this paper, we present a new architecture extending

a Network Enabled Server system connecting agents in a
Peer-to-Peer fashion, thus dynamically aggregating servers
known by several agents geographically distributed. Two
algorithms have been implemented on top of this architec-
ture for the propagation of clients’ requests through the net-
work of agents: an asynchronous star graph traversal and an
expanded version of the Propagation of Information with
Feedback (PIF) scheme dynamically adapting the logical
connections of the Peer-to-Peer network to the heteroge-
neous load of links. Our architecture shows a good scal-
ability as the number of agents and the number of requests
grow and a good adaptability as some links become over-
loaded.

In following section, we give a brief overview of DIET.
Then, in Section 3, we describe the design and the im-
plementation of DIETJ , the new Peer-to-Peer extension of
DIET. In Section 4, we describe the algorithms we used to
validate our system. Finally, before a conclusion and some
hints for future work, we give the validation of our archi-
tecture based on experiments on a grid connecting clusters
through a Wide Area Network.

2 DIET overview

The DIET architecture has first been designed follow-
ing a hierarchical approach [3]. Thus it provides a good
scalability and can take into account the physical network
constraints. In this section, we describe the DIET static hi-
erarchical architecture.

DIET is based on several elements. First aClient is
an application that uses DIET to solve problems in a RPC
mode. Different kinds of clients should be able to connect
to DIET from a web page, a Problem Solving Environment
such as Matlab or Scilab, or from a program written in C
or Fortran. Traditionally a centralized device in other NES
systems such as NetSolve or Ninf, the DIET scheduler is
scattered across a hierarchy ofAgents. Figure 1 shows such
a hierarchy.

2.1 Scheduling Agents

A Master Agent (MA) is the entry point of the DIET
environment and thus receives computation requests from
clients. These requests refer to some problems that can be
solved by registered servers. These problems can be listed
on a reference web page. A client can be connected to a
MA by a specific name server or a web page which stores
the various MA locations. Then the MA collects compu-
tation abilities from the servers and chooses the best one
according to some scheduling heuristics (dead-line schedul-
ing, shortest completion time first, minimization of the re-

Client
Client

Client
Client

LASeD

MA

LA

SeD SeD

SeD

SeD

SeD

A

LASeDSeD

Figure 1. DIET hierarchical organization.

quests throughput, . . .). A reference to the server chosen is
sent back to the client.

A Master Agent relies on a hierarchy of agents to gather
information and scheduling decisions. AnAgent aims at
transmitting requests and information between MAs and
LAs. A Local Agent (LA) aims at transmitting requests
and information between Agents and several servers. The
information stored on an Agent is the list of servers regis-
tered on Local Agents of its subtree, the problems they are
able to solve and information about the data distributed in
this subtree. Depending on the underlying network topol-
ogy, Agents may be deployed between the MA and the LAs.
The scheduling and the gathering of information is thus dis-
tributed in the tree.

2.2 Server Daemons

Computations are done by servers (both sequential and
parallel) in front of which we haveServer Daemons (SeD).
A SeD encapsulates a computational server, typically on the
entry point of a parallel supercomputer. The information
stored on a SeD is a list of data available on its server (with
their distribution and the way to access them), the list of
problems that can be solved on it, and all information con-
cerning its load (memory and/or number of resources avail-
able, . . .). A SeD registers to a Local Agent that becomes
its parent and declares the problems it can solve to it. A
SeD can give performance predictions for a given problem
using the performance evaluation module (FAST [12]).

2.3 Limits of DIET

Such a hierarchy has three major drawbacks.

1. Static configuration. Such static hierarchies do not
cope with the dynamicity of nodes at large scale, re-
sulting in difficulties to deploy such hierarchies on
large grids. As a consequence, most of those hierar-
chies are not deployed among more than one admin-
istrative domain. Moreover, the clients are given an
entry point statically. One needs for the client is to dy-
namically choose itsbestMA considering metrics such
as latency.

2. Master Agent bottleneck.The hierarchy has a unique
entry point (the MA) for every clients. This involves
a probability of finding a bottleneck growing with the
number of requests submitted by clients.

3. Service availability. Real life use cases show that ser-
vices are quite often deployed among only one hierar-
chy for many reasons (data locality, security, ...). One
key purpose of computational grids is to make services
available for clients anywhere in the wide area. So
there is a strong need for making services available for
clients, that does not necessarily know the entry point
of the hierarchy providing the requested service.

3 DIETJ : A Peer-to-Peer Extension of DIET

The aim of DIETJ is to dynamically connect together ge-
ographically distributed DIET hierarchies to gather services
on-demand and improve the scalability of service discovery.
This new architecture addresses the limits described before
and have the following properties:

Dynamically connecting hierarchies for scalability To
increase the scalability of DIET over the grid, we
dynamically build amulti-hierarchy by connecting
the entry points of the hierarchies (Master Agents)
together. Note that the multi-hierarchy is built on-
demand by a Master Agent only if it fails to find
the service requested by a client inside its own tree.
The clients are now given the ability to discover at
time of requesting a service, one or several Master
Agents, and thus connect the server with the best
latency/locality.

Balancing the load among the Master AgentsThe entry
point for each client being dynamically chosen, the
bottleneck on the previous unique Master Agent is now
avoided. Master Agents are connected in a pure un-
structured Peer-to-Peer fashion (without any mecha-
nism of maintenance, routing, or group membership).

Gathering services at large scaleWhereas DIET hierar-
chies were unable to communicate together in the first
DIET version, services are now gathered when pro-
cessing a request thus providing to clients a front door

SeD
LA

SeD SeD

SeD SeD

LA

MA

MA

MA

Client
MA

MA MA

MA

Client Client

Client

LA

SeD

SeD

SeD

Client

Peer−to−peer network
of DIET agents

Internal DIET tree connections (Corba)

Dynamic JXTA connections

Figure 2. DIET J architecture.

to resources of hierarchies put in common in a trans-
parent way.

3.1 The JXTA Project

JXTA is an open-source project initiated by Sun Mi-
crosystems that defines a rich set of protocols for building
Peer-to-Peer (P2P) applications on top of the physical net-
work. The basic logic entity of the JXTA virtual network is
the peer. Each peer is a potential client of any other peer,
while being a potential server for any peer. JXTA provides
three types of peers. Theedge peeris the basic peer on top
of which users provide their applications on the JXTA vir-
tual network. Therendezvous peeris used to resolve the
discovery queries submitted by edge peers. Therelay peer
acts as a logical router passing through network protections
(such as firewalls and NAT technologies.)

Each JXTA entity (peers, pipes, services) is uniquely
identified by anadvertisement. Thanks to the rendezvous
peers allowing discovery of these advertisements, JXTA of-
fers a dynamic discovery of any JXTA entity, thus allowing
any peer to dynamically address any other peer on the JXTA
virtual network. JXTA offers three communication layers:

The endpoint service.First level of abstraction, the end-
point service provides a unidirectional and unreliable
communication between two edge peers.

The pipe service.Built on top of the endpoint service, the
pipe is a virtual end-to-end communication channel. A
pipe can be ofunicasttype, i.e., binding two peers in
a unidirectional way, or ofpropagatetype, allowing a
peer to send messages to multiple recipients. Based
on results presented in [11], we believe JXTA pipes
offer the right trade-off between transparency and per-
formance for our architecture. Our implementation is
based on JXTA 2.3 which minimizes the latency of the
JXTA pipes, according to [11].

JXTA sockets. Final level of abstraction offered by JXTA,
the JXTA sockets are reliable, bidirectional and more
transparent communication channels.

3.2 DIETJ Architecture

The DIETJ architecture, shown in Figure 2, connects
several DIET hierarchies by a JXTA network of their root,
i.e., Master Agents. The Master Agent’s internal architec-
ture, shown on Figure 3 is divided into three parts.

Figure 3. Master Agent Internal Architecture.

• The JXTA part. The JXTA part of the Master Agent
is a peer on the JXTA virtual network. This part is its
connection point to other Master Agents. This part is a
java bytecode.

• The DIET part. The DIET part is the traditional DIET
Master Agent, root of a DIET hierarchy of Agents and
Local Agents, allowing the discovery of servers that
registered to this hierarchy. This part is based on li-
braries generated from the DIET C code.

• The interface. To cooperate, Java (JXTA native lan-
guage) and C (DIET native language) need an inter-
face. We use the JNI technology allowing to call C
functions from a Java program, and the data conver-
sion between the two languages.

3.3 The Multi Master Agent system

One Multi-MA is composed of all MAs running at a
given time over the network and reachable from a first MA.
The MA is able to dynamically connect these other MAs.
Each MA is known on the JXTA network by an advertise-
ment with a name common to all of them (“DIETMA”) that
is published at the beginning of its life. This advertisement
is published with a short lifetime to avoid Clients and other
MAs to try to bind an already stopped MA, and thus easily
take into account the dynamicity of the platform.

At their loading time, the JXTA part loads the DIET part
via JNI, periodically re-publishes its advertisement, while

waiting for requests. When receiving a client’s request, the
DIET part submits the request to its own hierarchy. If the
submission to the DIET hierarchy retrieves no SeD’s ref-
erences with the required service, the JXTA part builds a
multi-hierarchy by discovering other MAs (thanks to their
JXTA advertisements) and propagating the request to them.
When the JXTA part has received responses from all other
MAs or when a timeout is reached, the response is sent back
to the client which is not aware that a multi-hierarchy has
been temporarily built.

3.4 Dynamic Connections

Dynamic connections between the Master Agents al-
low to transparently perform the service discovery in a dy-
namic large scale multi-hierarchy, using JXTA advertise-
ments. The communication between the agents inside one
hierarchy are still static as we believe that small hierarchies
are installed within each administrative domain. At the lo-
cal level, performances are not very variable and new ele-
ments are not frequently added.

4 Traversing the Multi-Hierarchy

We now discuss approaches and algorithms implemented
for propagating the clients’ requests and gather information
about servers of several hierarchies.

4.1 Approach

Discovering the MAs, then discovering the servers

It is important to note that the multi-hierarchy construction
is divided into two parts.

1. peers discovery. The first step aims at discovering
MAs reachable on the network, thanks to the JXTA
discovery process. But once a peer has been discov-
ered, i.e., got its advertisement (mainly containing its
name and its address, under the shape of an input pipe
advertisement), you still need to establish a connection
with it.

2. service discovery. The second step consists in explor-
ing the multi-hierarchy composed of the MAs discov-
ered in the first step, looking for the requested service
inside the DIET hierarchies.

JXTA discovery mechanisms

JXTA 2.x provides a hybrid mechanism based on DHT [17]
and random walk to achieve the discovery of advertisements
(e.g., advertisement named “DIETMA”). Again, we choose

Algorithm 4.1 Asynchronous PIF for arbitrary networks.
Constants:

IdSet: set of IDs;
Neigh: set of outgoing links or neighbors Ids;

Variables:
Ack[IdSet] of subset ofNeigh;
Father[IdSet] of Neigh ∪ ⊥, initially ⊥ ;
q, q′ ∈ Neigh;
ListServer: list of server names;

Macro Sync

Ack[Id] := Neigh \ {q};
if Ack[Id] = ∅ then

if MyId = Id then
SENDListServer TO the Application Layer;

else
SEND (Id, ListServer) TO Father[Id];

endif
endif

UponRECEIPT of reqthe Application Layer
Father[MyId] := ⊤;
ListServer := ∅;
Ack[MyId] := Neigh;
∀q′ ∈ Ack[MyId]: SEND (MyId, req) TO q′;

UponRECEIPT of (Id, req)q
if Father[Id] = ⊥ then

ListServer := MakeList(Id, req);
Father[Id] := q;
Ack[Id] := Neigh \ {q};
if Ack[Id] = ∅ then

SEND (Id, ListServer) TO Father[Id];
else

∀q′ ∈ Ack[Id]: SEND (Id, req) TO q′;
endif

else
Sync;

endif

UponRECEIPT of (Id, LS)q
ListServer := ListServer ∪ LS;
Sync;

not to use the hybrid DHT mechanism to avoid its main-
tenance overhead, its lack of exhaustiveness (when failing
retrieving the advertisement by the hash function, it uses a
less-efficient “walking” method) and cope with the unstruc-
tured fashion of the multi-hierarchy designed.

Thus, we first use the JXTA discovery mecanism based
on flooding among the peers. Once the MA’s references
obtained, an algorithm optimizing the traversal of the multi-
hierarchy (the MAs graph) is used to connect MAs together
and propagate the request through the multi-hierarchy.

4.2 Implementations

The propagation of the request in the DIETJ multi-
hierarchy (i.e., between the MAs) has been implemented

with two algorithms.

Propagation as an Asynchronous Star Graph Traversal

The propagation has first been implemented as an intuitive
asynchronous star graph traversal. One MAr that found
no SeD providing the service requested by a client in its
own hierarchy discovers other MAs with the JXTA dis-
covery process. Then, it forwards the request in an asyn-
chronous way to all the MA previously discovered, using
a simple JXTA multicast pipe instruction. On receipt of
the forwarded request, each MA collects the servers able to
solve the problem in its own hierarchy, and sends back the
response tor that collects and merges responses to create
the final response message, that it sends back to the client.
Using this first algorithm, the propagation systematically
builds a star graph, the MA initiating the propagation be-
ing the root of the star graph. In the following of the paper,
this algorithm is called the “STARasync” algorithm.

Propagation as an Expanded Version of the Asyn-
chronous PIF Scheme

The propagation has also been implemented using an asyn-
chronous version of thePropagation of Information with
Feedbackscheme (PIF) described in Algorithm 4.1, to have
an unstructured, efficient and adaptative muti-hierarchy
traversal. A complete description of the basic PIF can be
found in [7, 14]. Figure 4 describes a scenario of propaga-
tion in a DIET multi-hierarchy, applying the two following
phases:

TheBroadcast phase: The MA that received the request
from the client (and is unable to find a server providing the
requested service) initiates the wave and so is the rootr.
As in the STARasync algorithm, it forwards the request to
all other MAs it has previously discovered. LetMr be the
set of discovered MAs.r then waits for responses of MAs
in Mr. Unlike in the STARasync algorithm, a MAm ∈

Mr receiving a forwarded request checks if it has already
received it. If yes, it ignores it. Otherwise, the MA that sent
the request to it becomes its parent. Of course,m collects
the servers to solve the problem described in the request in
its hierarchy. Finally,m propagates the request in its turn to
the MAs inMr (that it knows from its parent), except those
that are by the way taken by the request to reachm from r.
Thus a time optimal tree rooted atr is built.

The Feedback phase: r waits for the responses ofMr

during a finite time using a timeout. The MAs inMr send
the enabled servers found in their hierarchy back to their
parent and, when receiving a response from a child, send
the response to their own parent.

PIF scenario

Let us have a look at the Figure 4. The MA that received
the request from the client found no SeD providing the re-
quested service in its own hierarchy. After having discov-
ered others MA, it initiates the wave (1). Some MAs have
received the propagated request. They forward it in their
turn, and initiate the asynchronous feedback phase (2). All
MAs have received the request. A spanning tree is built.
The feedback phase goes on and ends. The connections
opened during this phase depends on the traffic load en-
countered during the broadcast phase, allowing an optimal
feedback phase (3).

Quick analysis of the PIF scheme

Let us call this algorithm “PIFasync”. Note that the
PIFasync builds anon-demand optimal treefor a given root
for each request, thus balancing the load among the MAs
graph as the number of requests increases and also avoiding
overloaded links. It was shown in [13, 14] that in asyn-
chronous environments, the PIF scheme is the fastest pos-
sible to reach every network nodes, messages following the
fastest links during the broadcast phase. In other words, the
dynamic tree built during the propagation is time optimal.
It provides fault tolerance, because of the several retrans-
missions achieved by this algorithm and thus the several at-
tempts to reach each MA. The number of messages can be
very important (O(n2) in the worst case). Note that algo-
rithm STARasync also provides a PIF scheme. However, it
is not an adapting scheme, messages always following the
same links, ignoring their heterogeneity and communica-
tion load.

Request sent

Sender Recipient

Request received first from this
sender, that becames its parent.
(link is now part of the tree)

1. 2.
Client Client

MA

MAMA

MA MA

MA

MA

MA MA

MA

MAMA

J J

J

JJ

J J

J J

J

JJ

Client3.

MA

MAMA

MA MA

MA

J J

J

JJ

J

Figure 4. Propagation scenario in a DIET
multi-hierarchy.

5 Experimenting DIETJ : Performance Re-
sults

In this section, we discuss experimental results of the
implementation of DIETJ with the algorithms previously
described.

5.1 Experimental Platform

Our experimental platform relies on the VTHD net-
work, a wide area network, which connects several clus-
ters through links whose bandwidth is 2.5 Gb/s. The clus-
ters used are equipped with Intel quadri-processors Xeon
2.4 GHz and Intel bi-processors Xeon 2.8 GHz. Only one
MA runs per node and one client sends one or multiple re-
quests to MAs. Based on our previous experiments inside
one unique hierarchy [5], where we showed that a unique
DIET Master Agent is able to have hundreds of servers in its
own hierarchy and remain efficient with a very high number
of simultaneous requests, we here experiment connections
of the MAs graph without underlying hierarchies.

5.2 Experiments with Homogeneous Network
Performance

We started our experiments with a low and homogeneous
traffic load, by varying the number of MAs in order to esti-
mate the response time of both algorithms.

Figures 5 and 6 show the time to initiate the propagation
and to receive all the responses, using the STARasync and
the PIFasync, on several VTHD clusters themselves con-
nected by the VTHD WAN links, up to 32 Master Agents
running at the same time. Note that on a homogeneous net-
work, our architecture shows good results, in regard of the
JXTA overhead, aggregating servers’ references of 32 Mas-
ter Agents in less than one second. Note that, under these
conditions, most of the trees obtained with the PIFasync are
stars, the initial propagation from the root reaching other
nodes first. It is interesting to see that using the PIFasync

involves quite few time overhead, in regard of the higher
number of messages it generates.

5.3 Requests Flooding

Then we experimented both algorithms by varying the
requests frequency still on a homogeneous network. Fifteen
Master Agents are deployed for these experiments.

Figure 7 shows the impact of processing multiple re-
quests at the same time inside the graph of MAs, with
the same root for every requests. As expected, much bet-
ter results are obtained by propagating requests with the
PIFasync. Using the STARasync, physical routes used by
the JXTA pipes are mostly the same for every requests,

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 5 10 15 20 25 30

T
im

e
(s

)

Master Agents Number

STAR [Average value]
PIF [Average value]

Figure 5. Evaluating the cost of using the
PIFasync compared to the STAR async on one
cluster.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 2 4 6 8 10 12 14

T
im

e
to

 p
ro

pa
ga

te
 a

nd
 r

ec
ei

ve
 a

ll
re

sp
on

se
s

(s
)

Master Agents Number

STAR [Average value]
PIF [Average value]

Figure 6. Evaluating the cost of using the
PIFasync compared to the STAR async on two
clusters (located in different cities) con-
nected through the VTHD network.

strongly increasing the load on these links. We believe the
STAR algorithm performs so poorly because of the high
cost of resolving JXTA pipes, especially when the same
links are stressed. Using the PIFasync, logical path (and
physical routes underneath) used during the feedback phase
depends on the load of the links during the broadcast phase.
Each propagation builds a spanning tree during the broad-
cast phase minimizing the communication time that is then
used during the feedback phase. The traffic is globally
more distributed and bottlenecks are avoided. The response
time remains stable when the frequency of sending becomes
quite high.

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35 40

T
im

e
ta

ke
n

to
 p

ro
pa

ga
te

 a
nd

 g
et

 a
ll

re
sp

on
se

s
(s

)

Requests Frequency (Hz)

STAR [Average value]
PIF [Average value]

Figure 7. Sending 10 requests at various fre-
quencies.

5.4 Experiments on Overloaded Links

Finally, we experimented our architecture on an over-
loaded network (thirteen MAs running). We simulated
a loaded traffic with loops ofscp commands, especially
around the MA initiating the propagation. Figure 8 shows
the performance of each algorithm, varying the number of
saturated links around the MA initiating the propagation.
The STARasync always uses the saturated links, during both
the broadcast and the feedback phases, increasing again the
load on the links. Using the PIFasync algorithm allows to
avoid most of the traffic around the root by building optimal
trees for each request. The feedback phase uses the least
overloaded route that has been discovered at broadcast time,
for each request. The response time given by the PIFasync

is more stable than the STARasync one when the number of
overloaded links increases, offering response time similar
to those obtained under homogeneous conditions.

6 Conclusion and Future Work

In this paper, we have presented DIETJ , the first exten-
sion of a Network-Enabled Server system taking into ac-
count the dynamic and heterogeneous nature of today’s plat-
forms on which grids will inexorably take place.

The use of JXTA and the asynchronous PIF algorithm
shows an efficient on-demand discovery of available servers
at large scale. Our first experimental results demonstrate
that our architecture remain efficient, providing quick re-
sponse time, even when the network becomes overloaded.

Our future work will consist in validating our architec-
ture at larger scale using larger clusters connected through
Wide Area Networks (within the Grid5000 project [1]) and
to implement other Peer-to-Peer algorithms in DIETJ . We

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 2 4 6 8 10 12

T
im

e
to

 p
ro

pa
ga

te
 a

nd
 r

ec
ei

ve
 a

ll
re

sp
on

se
s

(s
)

Saturated links Number

STAR [Average value]
PIF [Average value]

Figure 8. Experimenting the PIF async and the
STARasync on a network with overloaded links.

are currently extending our architecture to other NES sys-
tems (NetSolve, Ninf). Each approach using its own in-
ternal mechanisms, there’s a strong need to design bridges
between them, to offer to Grid’s users a tool hiding this het-
erogeneity.

References

[1] Grid 5000 project.http://www.grid5000.org.

[2] F. Berman, G.C. Fox, and A.J.H. Hey, editors.Grid
Computing: Making the Global Infrastructure a Real-
ity. Wiley, 2003.

[3] E. Caron and F. Desprez. DIET: A Scalable Toolbox
to Build Network Enabled Servers on the Grid.In-
ternational Journal of High Performance Computing
Applications, 2005. To appear.

[4] E. Caron, F. Desprez, F. Lombard, J.-M. Nicod,
M. Quinson, and F. Suter. A Scalable Approach to
Network Enabled Servers. InProc. of EuroPar 2002,
Paderborn, Germany, 2002.

[5] E. Caron, F. Desprez, F. Petit, and V. Villain. A Hier-
archical Resource Reservation Algorithm for Network
Enabled Servers. InIPDPS’03. The 17th International
Parallel and Distributed Processing Symposium, Nice
- France, April 2003.

[6] H. Casanova, S. Matsuoka, and J. Dongarra. Network-
Enabled Server Systems: Deploying Scientific Simu-
lations on the Grid. InHigh Performance Computing
Symposium (HPC’01), Seattle, Washington (USA),
April 2001.

[7] E.J.H. Chang. Echo Algorithms: Depth Parallel Op-
erations on General Graphs.IEEE Trans. on Software
Engineering, SE-8:391–401, 1982.

[8] I. Foster and C. Kesselman, editors.The Grid 2:
Blueprint for a New Computing Infrastructure. Mor-
gan Kaufmann, 2004.

[9] Ian Foster and Carl Kesselman. The globus toolkit.
In Ian Foster and Carl Kesselman, editors,The Grid:
Blueprint for a New Computing Infrastructure, pages
259–278. Morgan Kaufmann, San Francisco, CA,
1999. Chap. 11.

[10] Adriana Iamnitchi and Ian Foster. On fully decen-
tralized resource discovery in grid environments. In
International Workshop on Grid Computing, Denver,
Colorado, 2001. IEEE.

[11] M. Jan and D.A. Noblet. Performance Evaluation of
JXTA Communication Layers. Technical Report RR-
5530, INRIA, IRISA, Rennes, France, october 2004.

[12] M. Quinson. Dynamic Performance Forecasting for
Network-Enabled Servers in a Metacomputing Envi-
ronment. InInternational Workshop on Performance
Modeling, Evaluation, and Optimization of Parallel
and Distributed Systems (PMEO-PDS’02), April 15-
19 2002.

[13] Danny Raz and Yuval Shavitt. New Models and Algo-
rithms for Programmable Networks.Computer Net-
works, 38(3):311–326, 2002.

[14] A. Segall. Distributed Network Protocols.IEEE
Trans. on Information Theory, IT-29:23–35, 1983.

[15] K. Seymour, C. Lee, F. Desprez, H. Nakada, and
Y. Tanaka. The End-User and Middleware APIs for
GridRPC. InWorkshop on Grid Application Program-
ming Interfaces, In conjunction with GGF12, Brus-
sels, Belgium, September 2004.

[16] Todd Tannenbaum, Derek Wright, Karen Miller, and
Miron Livny. Condor – a distributed job scheduler. In
Thomas Sterling, editor,Beowulf Cluster Computing
with Linux. MIT Press, October 2001.

[17] B. Traversat, M. Abdelaziz, and E. Pouyoul. A
Loosely-Consistent DHT Rendezvous Walker. Tech-
nical report, Sun Microsystems, Inc, March 2003.

