
A Dynamic Prefix Tree for Service Discovery within Large Scale Grids

Eddy Caron, Fŕed́eric Desprez, Ćedric Tedeschi
LIP. UMR CNRS-ENS Lyon-UCB Lyon-INRIA 5668. France

{Eddy.Caron, Frederic.Desprez, Cedric.Tedeschi}@ens-lyon.fr

Abstract

Within computational grids, some services (software
components, linear algebra libraries, etc.) are made avail-
able by some servers to some clients. In spite of the growing
popularity of such grids, the service discovery, although ef-
ficient in many cases, does not reach several requirements.
Among them, the flexibility of the discovery and its effi-
ciency on wide-area dynamic platforms are two major is-
sues. Therefore, it becomes crucial to propose new tools
coping with such platforms. Emerging peer-to-peer tech-
nologies provide algorithms allowing the distribution and
the retrieval of data items while addressing the dynamicity
of the underlying network.

We study in this paper the service discovery in a pure
peer-to-peer environment. We describe a new trie-based ap-
proach for the service discovery that supports range queries
and automatic completion of partial search strings, while
providing fault-tolerance, and partially taking into account
the topology of the underlying network. We validate this ap-
proach both by analysis and simulation. Traditional metrics
considered in peer-to-peer systems exhibits interesting com-
plexities within our architecture. The analysis’ results are
confirmed by some simulation experiments run using sev-
eral grid’s data sets.

1 Introduction

Over the last decade, grids connecting geographically
distributed resources (computing resources, data storage,
instruments, etc.) have become a promising infrastruc-
ture for solving large problems. However, several factors
(scheduling, scalability, security, resource discovery,etc.)
still hinder their worldwide adoption. Among them, the ser-
vice discovery is a crucial feature to be considered. The ser-
vices of a grid is the set of software components made avail-
able by some servers within the grid to some clients. Tradi-
tional service discovery approaches, efficient in a static and
relatively small scale environment and based on centralized
or semi-centralized architectures, lose their effectiveness in

dynamic large scale environments, where future grids shall
take place.

The peer-to-peer technologies provide algorithms able to
retrieve objects (data items, files, etc.) in dynamic large
scale environments. Iamnitchi and Foster suggested in [7]
that grids, that provide the infrastructure for sharing re-
sources but do not cope with the dynamic nature of today’s
platforms, would take advantage of adopting the peer-to-
peer technology.

In this paper, we restrict ourselves to the following is-
sues:

1. Automatic completion/range queries.For instance, a
user may want to discover all the services of the SUN
S3L library, whose every routine’s name begins with
theS3L string. Note that a prefix can be expressed as
a range, for instance:S3L*≡ [S3L;S3M[and range
queries processed similarly as partial string queries.

2. Multicriteria search. As services are described by a
set of attributes (name of the routine, operating system,
etc.), an important feature is the support of queries on
several attributes.

3. Fault-tolerance. The tool must remain effective fac-
ing the dynamic nature of the underlying network, i.e.,
dynamic joins and leaves of nodes.

4. Locality awareness. To avoid poor routing perfor-
mance, it is required to take into account the locality
of nodes in the underlying physical network.

Our first intuition was to use Distributed Hash Tables
(DHTs). DHTs, fully distributed self-organizing fault-
tolerant systems, were initially designed for extremely large
systems (such as music file sharing systems). They are scal-
able in the sense that thelookup operation, by key-based
routing (KBR) requires a number of hops and a local state
that typically grow logarithmically in the number of nodes.
Unfortunately, DHTs present two major drawbacks. First,
the logical construction of the overlay does not reflect the
physical locality (IPs are randomly hashed), resulting in

poor routing performance. Second, they only support ex-
act match queries. These drawbacks led us to propose our
own architecture.

The contribution of this paper is called theDistributed
Lexical Placement Table(DLPT) system. The DLPT is a
novel architecture based on a longest prefix tree built dy-
namically as services are declared, supporting automatic
completion of partial search string, range queries and mul-
ticriteria searches. To be effective over peer-to-peer plat-
forms, the DLPT provides some fault-tolerance by replica-
tion and partial dynamic locality awareness. The developed
algorithms are detailed in a message passing fashion. We
give a validation of this architecture by detailing its com-
plexities and then by simulating the behavior of the DLPT
with several data sets reflecting services commonly avail-
able on computational grids.

Section 2 gives a brief overview of the state of the art
in peer-to-peer technologies providing flexible discovery
mechanisms and locality awareness. After having exposed
how we model services in Section 3, theDistributed Lexical
Placement Table(DLPT) is introduced in Section 4. Sec-
tions 5 and 6 detail the algorithms used within the DLPT.
Finally, validations of the DLPT are provided in Section 7
by analysis and comparison to related works and in Sec-
tion 8 by simulation.

2 Related work

As we already stated, DHTs do not address several of our
requirements. First they support only exact match queries
and second, their logical connections do not reflect the lo-
cality of peers in the physical network, resulting in poor
performance routing.

Many solutions to inject some locality into DHTs have
been formulated [9, 15, 18, 19, 20, 21]. Unfortunately, those
solutions apply mainly to tori and rings, and are not trivial
to adapt to prefix trees.

Dealing with the flexibility of searches over peer-to-peer
networks, a series of works initiated by Harren et al. [11]
and still in progress, aims at enhancing DHTs with more
complex mechanisms of discovery.

INS/Twine [3] provides XML-based descriptions of
resources. [17] extends traditional database operations
to DHTs. Several approaches, based on space fill-
ing curves, such as [8, 16] supports multi-dimensional
range queries. [1] maps one-dimensional data space to d-
dimensional Cartesian space by using the inverse Hilbert
mapping. Built on top of multiple DHTs, SWORD [13]
is an information service aiming at discovering computing
resources on the grid by answering multi-attribute range
queries.

Closer to our approach, several works deal with trie-
structured peer-to-peer solutions. A trie-based approach

outperforms other ones in the sense that logarithmic la-
tency is achieved by parallelizing the processing of range
queries in the several subtree pertained by the range. Skip
graphs [2] is a trie-structured approach also supporting
range queries. The complexity in term of messages for pro-
cessing range queries is inO(m log(n)), m being the num-
ber of nodes pertained by a range query andn the total num-
ber of resources. PHT [14] is also close to our approach, but
relies on a DHT, each routing hop in the logical trie requires
a DHT lookup. Nodewiz [4], also based on a trie, do not ad-
dress the dynamic joins and leaves of peers, assuming them
reliable. Finally, [5] structures the overlay itself as a trie
containing the complete key-space. All these approach do
not consider the locality awareness issue.

The key idea of our approach is to dynamically build a
reduced logical triea.k.a., longest prefix treeof services be-
ing declared. Each node in the logical tree is mapped on the
physical network, using a mapping mechanism, like a DHT.
However, our approach is different of [14] in the sense that
we use the DHT as a pool of peers, the routing is done using
only the links of the tree. Finally, our scheme copes with
the dynamic nature of the underlying network while par-
tially and dynamically taking into account its locality, still
using only the tree topology. It is important, to distinct our
approach with previous trie-based schemes to remind the
following aspects of our approach. First, our logical tree is
built according to services effectively declared. Then, we
achieve replication and partial locality awareness withinthe
tree itself, periodically, without relying on an external de-
vice and in a time logarithmic in the size of the tree.

3 Modeling services

In the remainder, we restrict to the following set of at-
tributes: 1 - The name of the service, i.e., the name un-
der which it is known, e.g.,DGEMM from the BLAS [6]
or S3L mat mult addto from the SUN S3L library.2
- The processor type of the server, for instance to avoid
users to send miscoded data, e.g., Power PC, x86, etc.3
- The operating system of the serverthat presents dif-
ferent characteristics and functionalities, inducing perfor-
mance variations, e.g., Linux Mandrake, MAC OS X, etc.
4 - The location of the peerallowing a client to specify a
machine or a cluster he’s close to or trusts. To ease the au-
tomatic completion, we specify machines/clusters/networks
in reverse notation, e.g., fr.grid5000.*, edu.*, etc. The loca-
tion can be specified with its IP address, too. As illustrated
on the Figure beneath for the serviceS describing aDGEMM
service, available on a server equipped with a Debian op-
erating system and a Power PC processor, the value of the
services is its location (to allow clients to connect to it.)To
allow the retrieval of the service according to each of its at-
tributes, a(key, value) pair is created and stored for each

of them.
S = { DGEMM, Linux Debian 3, PowerPC G5, com.grid.n1 }

↓

(key, value)

(DGEMM, n1.grid.com)

(Linux Debian 3, n1.grid.com)

(PowerPC G5, n1.grid.com)

(com.grid.n1, n1.grid.com)

4 The Distributed Lexical Placement Table:
a general description

In this section, we make a general description of the con-
tribution of this paper, theDistributed Lexical Placement
Table(DLPT).

• DLPT functionalities The DLPT stores services’ ref-
erences under the shape of(key, value) pairs. The
DLPT supports exact match requests, on a given key,
partial search strings by providing automatic comple-
tion. For instance, let us assume services are de-
scribed by their name, a client sending the requestDTR
will receive all services whose name begins with the
DTR string, for instanceDTRSM, DTRMM or DTRSV. It
also supports, similarly, range queries. Multi-attribute
search can be achieved by a simple extension.

• Logical architecture. The logical structure used
within DLPT is a reduced triea.k.a.,a longest prefix
tree. We call the basic entity of this trie alogical node.
Each logical node are identified by one given key. We
consider two types of keys: A node identified by areal
key stores the reference of at least one service. For in-
stance,DGEMM is considered as a real key as soon as a
server has declared a service under theDGEMM name.
Note that by construction, the leaves of the tree are
identified by real keys. A node identified by avirtual
key is the root of a subtree whose nodes’ IDs share this
virtual key as common longest prefix. Figure 1 shows
the construction of such a tree, when three services are
declared sequentially.

• Mapping the logical tree on the physical network
The logical nodes are distributed on the physical nodes
of the underlying network. Let’s call thempeers. A
logical node ishostedby a peer. A peer has the ability
to host zero, one or more logical nodes, each logical
node being a process running on it. This mechanism
can be achieved in different ways. One approach is
to use a DHT, but any tool acting as a repository (dis-
tributed or not) can replace it.

• Routing complexity. Whereas logical nodes of DHTs
represent physical nodes, logical nodes of the DLPT
represent keys of declared services. Thus, the trie
grows according to the number of distinct real keys
declared. We detail complexity considerations in Sec-
tion 7.

• Fault-tolerance The DLPT is designed to take place
in a dynamic environment. It provides a mechanism of
replication of the nodes and links of the trie, in order
to remain efficient facing the departure of peers.

• Locality awarenessA greedy heuristic periodically
determines a spanning trie of the replicated one thus
providing a partial locality awareness within the trie.

Figure 1. Construction of a longest prefix tree.
Nodes storing some services’ references (la-
beled by real keys) are black filled, the others
are labeled by virtual keys. (1) First a DGEMM is
declared. (2) A DTRSM is declared resulting in
the creation of their parent, whose ID is their
longest common prefix D. (3) Finally, a DTRMM
is declared and the node DTR is created.

5 Creation and maintenance of the DLPT

5.1 Constructing and mapping the tree

First recall that services are declared in a dynamic man-
ner. We do not build a trie of the entire key-space and then
map it dynamically on the network, as several previous ap-
proaches, we dynamically build it according to services be-
ing declared.

We now consider the insertion of one(key, value) pair.
The pair is placed inside the tree according to the key. Like
in a DHT, the server that declares a service obtains the ad-
dress of a peer hosting a logical node of the tree by an out-
of-band mechanism (name server, web page, ...) and sends
an insertion request to it. The request is routed within the
prefix tree until reaching the node that will effectively in-
sert the pair. A gain of time could be achieved if sending
all requests to the root, but it would require to know it from
anywhere. Each node, on receipt of an insertion request on

theS = (key = k, value = v) pair applies the following
routing algorithm, considering four distinct cases:

k is equal to the local node identifier. In this case,k is al-
ready in the tree, no node need to be added, the logical
node insertsv into its table.

k is prefixed by the local node identifier. The local node
search among its children identifiers, one key that
shares one more character than itself withk. If such
a child exists, the request is forwarded to it, else, no
node identifier in the tree prefixesk with more charac-
ters than the local node identifier. A new logical node
is created as a child of the local node and hosted by a
peer,v is inserted in the table of the new node.

The local node identifier is prefixed byk. In this case, if
the identifier of the parent of the local node is equal
to or prefixed byk too, S must be inserted upper in
the trie and the local node forwards the request to its
parent. Otherwise,S must be inserted in this branch,
between the local node and its parent. Such a logical
node is created, hosted and given to insertv into its
table.

Default If the local node has a parent and if the identifier
of the parent of the local node is equal to or prefixed by
the common prefix ofk and the local node identifier,
the local node forwards the request to it. Otherwise,
the logical node storingk and the logical node are sib-
lings. However, their common parent does not exist
(recall the example on the Figure 1). Two nodes must
be created, the future node identified byk and storing
S (sibling of the local node) and their parent whose
identifier is the common longest prefix ofk and the
local node identifier (possibly the empty string).

We now briefly discuss how to map the tree onto peers. A
solution is to structure the network within a DHT and then
to choose a peer to host a given node by using the DHT hash
function on the node ID. Indeed, any DHT could be used.
Remind that we only use the DHT as a pool of peers. Thus
the insertion of a new peer inside the DHT and the result-
ing possible redistribution of the data between peers is not
applied to the logical nodes. An issue we do not consider
in this paper is related to load balancing. Obviously, us-
ing a DHT to uniformly distribute the logical nodes on the
peers does not achieve an efficient balancing of the work-
load, mainly for the following reason. The load of a node
depends on the popularity of the service it stores and on its
depth in the tree (nodes close to the root are more solicited
than leaves when routing requests). A first simple solution
is to tune the replication factor locally to balance requests
for a given logical node among its different replicas. An-
other solution is to rely on the DHT for this issue. DHTs

make two common assumptions. First, they consider the
capacities of peers homogeneous what can not be ensured
on real grids. They also assumes that each data item has
the same probability to be requested. We do not discuss
more this issue in this paper and let it for future work. We
consider that the load balancing is achieved independently
within the DHT. We rely on several recent works addressing
the heterogeneity of both the capacity of peers and popular-
ity of keys inside DHTs [10, 12]. To adapt these works to
our case, it suffices to replace data items traditionally con-
sidered in DHTs by our logical nodes.

Algorithm 5.1 gives the detailed pseudo-code executed
on a node receiving an insertion request. TheCOMMON-

PREFIX function returns the longest common prefix of two
strings. TheNEWNODE function creates a new logical node.
TheGETPEER function calls the underlying mapping mech-
anism and returns the reference of a peer. ThehostReq re-
quest is sent to the peer designated to host a newly created
node. TheupdateChild andaddChild requests are
sent to nodes that must update their references to their chil-
dren. The code executed inside these functions and on re-
ceipt of these requests are not given because they are algo-
rithmically trivial.

5.2 Fault-tolerance and locality

To face the dynamic nature of the underlying network
and to ensure the consistency of the routing, we propose
a replication scheme. The replication factork, statically
fixed, denotes the number of distinct peers on which each
logical node must be present. Such a replicated trie is shown
in Figure 2 withk = 2.

Figure 2. Example of a replicated trie.

To achieve locality awareness within the trie, we try to
minimize the communication time in the replicated trie, by
choosing the best peer/replica for each logical node. For
this purpose, recall that each node of the trie have a seman-
tic and we must keep one instance of each node in this span-
ning trie, making this process somewhat different of a tra-
ditional spanning tree algorithm. In addition, each node has
knowledge only about its parent and its children. An opti-
mal spanning trie would require the storage on each node of
a routing table of size linear in the size of the network and a
complexity of the algorithm quadratic in the size of the trie.
Because these aspects would compromise the scalability of

Algorithm 5.1 Insertion of a new service
Constants:

loc: local logical node
loc.ID: ID of loc

Variables:
loc.children: set of children ofloc

loc.parent: parent ofloc

loc.host: address of the peer hostingloc

prefix: string
prefixP arent: string

UponRECEIPT of < logReq, ID >

prefix:= COMMONPREFIX (ID, loc.ID)
if (SIZEOF(prefix) = SIZEOF(loc.ID) = SIZEOF(ID)) then

// Node found. Storing the new service.
elseif(SIZEOF(prefix) = SIZEOF(loc.ID)) then

if (∃f ∈ loc.children | SIZEOF(COMMONPREFIX (f.ID, ID))
> SIZEOF(loc.ID)) then

SEND< logReq, ID> TO f

else// A noden is created as a child of the local node and hosted
n:= NEWNODE(ID, parent = loc, children = ∅)
n.host:= GETPEER()
SEND<hostReq, n> TO n.host

loc.children+= {n}
endif

elseif(SIZEOF(prefix) = SIZEOF(ID)) then
if (loc.parent = ⊥) then

//loc is the current root
n:= NEWNODE(ID, parent:=⊥, children:={loc})
n.host:= GETPEER() // but its parent is created
SEND<hostReq, n> TO n.host // and hosted
loc.parent:=n

else
prefixP arent:=COMMONPREFIX (ID, loc.parent.ID)
if (SIZEOF(prefixP arent)=SIZEOF(ID)) then

SEND<logReq, ID> TO loc.parent // going up
else// A node is created betweenloc andloc.parent

n:= NEWNODE(ID, parent:=loc.parent, children:={loc})
n.host:= GETPEER()
SEND<hostReq, n> TO n.host

SEND<updateChild, n> TO loc.parent

loc.parent:=n

endif endif
else

if (loc.parent = ⊥) and ((COMMONPREFIX (prefix, loc.parent.ID)
= SIZEOF(prefix)) then

SEND< logReq, ID > TO loc.parent

else// loc and the new noden are siblings, they need a parentp

p:=NEWNODE(prefix, parent:=loc.parent, children:={loc})
p.host:=GETPEER()
n:=NEWNODE(ID, parent:=p, children:={loc})
SEND< hostReq, p > TO p.host

SEND< hostReq, n > TO n.host

SEND< addChild, n > TO p

loc.parent:=p

endif
endif

the system, the only possible minimization is a local one.
We use a greedy heuristic locally choosing the best peer
among the replicas of each logical node. This heuristic is
integrated to the replication process, without modifying its
time complexity, bounded by the depth of the trie thanks to
the parallelism achieved by treating each branch in parallel.

The replication process enhanced with greedy locality
awareness, fully described by the part executed only by the
root in Algorithm 5.2, periodically initiated by one of the
current roots of the tree (on the Figure, there’s only one root
(1)), starts by the replication of the root itself. The rootsof
the tree, and only them shape a fully-connected network, so
each root has knowledge about its replica. Each root being
a potential starter of the replication process, we use a sim-
ple mutual exclusion scheme, not detailed here. The elected
root initiates the wave by testing the number of its replicas,
let k′ be this number. It replicatesk − k′ times itself on
peers it discovers via the mapping mechanism used. Once
the root is replicated, it sends ascanReq request to itself,

initiating the replication of the trie (2).
On receipt of ascanReq request, a node behaves as de-

scribed in the part common to all nodes in Algorithm 5.2.
It treats its logical children one by one. For each of
them, the local node tests the number of reachable repli-
cas, gets the references of peers needed to reachk replicas
for this child and sends areplicationReq request to
one of the current available replicas that will send its logi-
cal node structure to the peers obtained. It then determine
the best peer/replica after replication for this child (through
the GETBESTREPLICA function) and sends ascanReq re-
quest to the peer/replica which minimizes the communica-
tion time with itself thus launching the replication in this
subtrie, then continuing asynchronously under each chil-
dren of the root (3, 4). Note that the purpose of the local
choice of the best replica of each logical child is twofold.
First it determines which replica/peer will be used for the
routing to this child until the next replication process starts.
Then it designates the replica/peer responsible for the repli-
cation of the subtrie of this child.

Algorithm 5.2 Initialization of the scanning process
Constants:

loc: the local node
k: replication factor

Variables:
loc.children: set of children ofloc

n.R: set of replicas of the noden

// On the root only
// Replicating the root, periodically
k′ :=GETNBREPLICAS (loc)
while k′ < k do

p:=GETPEER()
SEND< hostReq, loc> TO p

k′++
for all {f ∈ loc.children} do

// Informing my children of their new parent
SEND< addParent, p> TO f

done
loc.R+={p}

done
// Launching the replication in the trie
SEND<scanReq> TO loc

// On every node
UponRECEIPT of < scanReq>

for all {f ∈ loc.children} do
k′ := GETNBREPLICAS (f)
while k′ < k do

p:= GETPEER()
SEND<replicationReq, p> TO f

f.R+={p}
done
next:= GETBESTREPLICA (f.R)
// Launch the scan in this subtrie
SEND< scanReq> TO next

done

6 Interrogating the DLPT

We now describe the mechanisms allowing the service
discovery according to a key or a range of keys.

To process a discovery request according to a key, i.e.,
the traditionallookup operation of DHTs, the DLPT ex-
ecutes the algorithm illustrated in Figure 4(a). The request
is sent to a given node of the tree by the client, is routed in
a way similar to the one used for an insertion request. The

Figure 3. Replication and locality.

destination node is the one that stores the key requested by
the client, i.e., the node whose identifier is the requested
key. Finally, the node storing the key wanted sends the cor-
responding values of services back to the client.

The processing of partial keys request is made of two
steps, shown on Figure 4(b). Let us consider theDTR* re-
quest. The request is first routed according toDTR, as for an
exact key, except that the destination node is not the node
identified by the requested key, but the node identified by
the smallest key in the tree prefixed by the requested key.
Let us call this node theresponsible nodeof this request.
The requested keys are in the subtree whose root is this
responsible node. Once the responsible node found, it re-
mains to traverse in parallel every nodes of its subtree. Each
node sends its values to the client and forwards the request
to its children. The client can stop listening the responsesif
satisfied with the values received. Note that a range query
can be achieved in a similar way than automatic comple-
tion: The bounds of a range query have a common prefix.
It suffices to route the request according to this prefix and
then to launch the asynchronous traversal of its subtree, for-
warding the request on each receiving node only to its own
subtrees whose set of IDs potentially covers the range.

Finally, for multi-attribute searches, we create one tree
for each attribute, and each(key, value) pair is indexed
within the tree corresponding to the attribute described by
the key. To maintain only one tree for every attributes could
result in undesired behavior for instance if a service is called
like a peer. To be sure of the nature of the information
searched, we build one tree per attribute. Considering our
model described in Section 3, four longest prefix trees are
built. The value (location) of the service will be stored by
sending an insertion request to each tree. To perform an in-
terrogation on several attributes, the client sends one request
to a node of each tree. For instance, to discover services

a. Full key b. Partial key

Figure 4. The client sends a discovery request
to a node it knows (1). The request is routed
(2,3,4). Responses are sent back to the client
from the node storing the key or from the sub-
tree whose root is the responsible node.

matching the request{DTRSM, Linux*, PowerPC*,

*}, the client will send three requests (the reversed address
is here not requested by the client). The request onDTRSM
will be sent to the services’ tree,Linux* to the system tree
andPowerPC to the processors tree. Requests are indepen-
dently processed by each tree and the client asynchronously
receives the values and finally just needs to intersect the lo-
cations obtained to keep what really matches its request.

7 Analysis of the DLPT

We now detail the complexities of the DLPT dealing
with the metrics used in P2P networks. Let us consider
a prefix tree of sizen, A the alphabet that would be used
to generate keys stored in the tree. If we assume a max
boundTmax on the size of the keys, what seems realistic,
the depth of the tree is also bounded byTmax. In the worst
case, a request must be routed from a leaf to another via
the root, what induces that the number of hops is bounded
by 2 × Tmax = O(Tmax) = O(1). Otherwise, the depth
is in average logarithmic in the size of the tree. For re-
quests requiring the completion of a partial string, the num-
ber of hops required to reach the responsible node is again
O(Tmax). Then, one can not avoid the traversal of all the
nodes in the subtree. This traversal is done in parallel in
each branch of the tree, again resulting in a time complexity
in O(Tmax). The number of messages required is inO(n).
A multicriteria request is also achieved in parallel within
each tree, resulting in a time complexity bounded by the
maximum of theTmax of the trees. Also consideringA as a
finite set, each node maintaining, by construction, an entry
for each potential character within its routing table, the size
of the routing table is bounded by|A|. Practically, it means
that the routing table can be statically allocated (for instance
as a vector of|A| cells). As a consequence, the routing de-

Functionality Skip Graphs PHT P-Grid DLPT
Insertion O(log(n)) O(D) O(log(Π)) O(Tmax)
Lookup O(log(n)) O(log(D) log(N)) O(log(Π)) O(Tmax)
Range messages O(m log(n)) O(o) O(ΠR) O(m)
Range time O(log(n)) O(D) O(log(Π)) O(Tmax)
Fault-tolerance repair DHT-based replication replication
Locality - - - greedy

Table 1. DLPT and other approaches

cision on each node can be achieved inO(1) by scanning
the cell corresponding to the next character searched.

Table 1 summarizes several aspects of our related work
compared to us. Let us briefly compare each approach with
ours. Skip Graph builds a skip lists based trie in which each
resource is a node. The number of messages required to pro-
cess a range query within Skip graphs is inO(m log(n)),
m denoting the number of resources within the rangei.e.,
a log(n) factor more than in our architecture. Prefix Hash
Tree builds a logical trie whose leaves managed the keys
corresponding to its branch and are mapped onto peers of
an underlying DHT. Since the trie is built on top of a DHT,
the lookup complexity is inO(log(D) log(N)), N denot-
ing the size of the DHT andD the max size of the keys.
o denotes the size of the output of a range query. P-Grid
builds a trie with the whole key-space, which size is de-
notedΠ. Each leaf corresponds to a given prefix and is as-
sociated with a peer. The depth of the P-Grid trie is static in
O(log(Π)). ΠR the size of the interval of a range queryR.
Nodewiz assumes a stable underlying network, what makes
it difficult to use in peer-to-peer environments. Contrary to
those approaches, our architecture builds a dynamic longest
prefix tree that better reflects the set of services declared,
thus avoiding useless hops, and practically rarely reaching
the max boundTmax. l denotes the size of the subtree per-
tained by a range query. As a more general comment, only
the DLPT, even partially, achieves some locality awareness.

8 Simulation

A simulator implementing the dynamic creation of the
tree and its interrogation with exact and partial keys has
been developed. It has been tested with computational grids
data sets taken from real grids: 735 names of services, 129
names of processors, 189 OS names and 3985 names or IPs
of machines. We first tested the number of logical hops
when processing an insertion request. Figure 5 shows the
number of logical hops to process the request by choosing a
random contact node. For these experiments, the four data
sets plus a data set containing 10000 random strings have
been used. The curve follows a logarithmic behavior, even
for the set of 10000 random strings, illustrating the scalabil-
ity of the system.

 0

 2

 4

 6

 8

 10

 12

 0 2000 4000 6000 8000 10000N
um

be
r

of
 lo

gi
ca

l h
op

s
fo

r
an

 in
se

rt
io

n
re

qu
es

t

Number of insertion requests

735 services (1006 nodes) [average]
189 OS (255 nopeuds) [average]

Random words up to 20 characters [average]
129 processors (173 nodes) [average]

3985 machines (5250 nodes) [average]

Figure 5. Average number of logical hops.

 0

 200

 400

 600

 800

 1000

 1200

 0 100 200 300 400 500 600 700

T
re

e
si

ze

Number of real keys

735 services (1006 nodes) [average]

Figure 6. The size of the tree is proportional
to the number of inserted keys

We have also studied how the tree grows according to
the number of distinct declared keys. Each key of each data
set is now inserted once. As we see on Figure 6, the total
number of nodes in the tree (identified by virtual keys or
real keys) is proportional to the inserted keys (real keys).
The whole set of experiments shows a reasonable propor-
tion of nodes storing virtual keys, near 30% with a standard
deviation of 2.4%.

Finally we have studied the number of logical hops on
the submission of interrogation requests. The results illus-
trated on Figure 7 are similar to those observed on insertion
requests.

9 Conclusion

We have described a novel tool, enhancing computa-
tional grids with a peer-to-peer approach offering a flexi-
ble large scale service discovery by supporting multicrite-
ria range queries, while providing fault-tolerance and taking
into account the underlying locality. Traditional metricsex-
hibit interesting complexities within our architecture. This
is, to our knowledge, the first tree-based approach injecting
some locality directly within the tree structure. We are cur-
rently studying some repair mechanisms within the tree, as
an alternative to the replication process. We are also car-

 0

 2

 4

 6

 8

 10

 0 1000 2000 3000 4000 5000

N
um

be
r

of
 h

op
s

 (
in

te
rr

og
at

io
n

re
qu

es
t)

Tree size

3985 machines (5243 nodes) [average]

Figure 7. Number of logical hops for interro-
gation requests on exact keys.

rying out a more theoretical study of the potential gain of
mapping trees over DHT-like networks. We also focus on
locality issue in the same way. Finally, we plan to develop
an implementation of the DLPT, to validate it on large scale
platforms and tune parameters like the replication factor.

References

[1] A. Andrzejak and Z. Xu. Scalable, efficient range
queries for grid information services. InPeer-to-Peer
Computing, pages 33–40, 2002.

[2] J. Aspnes and G. Shah. Skip graphs. InFourteenth An-
nual ACM-SIAM Symposium on Discrete Algorithms,
pages 384–393, January 2003.

[3] M. Balazinska, H. Balakrishnan, and D. Karger.
INS/Twine: A Scalable Peer-to-Peer Architecture for
Intentional Resource Discovery. InPervasive, 2002.

[4] S. Basu, S. Banerjee, P. Sharma, and S. Lee. NodeWiz:
Peer-to-Peer Resource Discovery for Grids. In5th
International Workshop on Global and Peer-to-Peer
Computing (GP2PC), May 2005.

[5] A. Datta, M. Hauswirth, R. John, R. Schmidt, and
K. Aberer. Range queries in trie-structured overlays.
In The Fifth IEEE International Conference on Peer-
to-Peer Computing, 2005.

[6] J. J. Dongarra, J. Du Croz, S. Hammarling, and I. S.
Duff. A set of level 3 basic linear algebra subpro-
grams.ACM Trans. Math. Softw., 16(1):1–17, 1990.

[7] I. Foster and A. Iamnitchi. On death, taxes, and the
convergence of peer-to-peer and grid computing. In
IPTPS, pages 118–128, 2003.

[8] P. Ganesan, B. Yang, and H. Garcia-Molina. One torus
to rule them all: multi-dimensional queries in p2p sys-
tems. InWebDB ’04: The 7th International Workshop
on the Web and Databases, pages 19–24, 2004.

[9] L. Garces-Erice, E. W. Biersack, K. W. Ross, P. A.
Felber, and G. Urvoy-Keller. Hierarchical Peer-to-
Peer Systems.Parallel Processing Letters Volume 13,
2003.

[10] B. Godfrey, K. Lakshminarayanan, S. Surana,
R. Karp, and I. Stoica. Load balancing in dynamic
structured P2P systems. InProc. IEEE INFOCOM,
Hong Kong, 2004.

[11] M. Harren, J. Hellerstein, R. Huebsch, B. Loo,
S. Shenker, and I. Stoica. Complex Queries in DHT-
Based Peer-To-Peer Networks, 2002.

[12] J. Ledlie and M. Seltzer. Distributed, secure load bal-
ancing with skew, heterogeneity, and churn. InProc.
IEEE INFOCOM, Miami, 2005.

[13] D. Oppenheimer, J. Albrecht, D. Patterson, and
A. Vahdat. Distributed Resource Discovery on
PlanetLab with SWORD. InProceedings of the
ACM/USENIX Workshop on Real, Large Distributed
Systems (WORLDS), December 2004.

[14] S. Ramabhadran, S. Ratnasamy, J. M. Hellerstein, and
S. Shenker. Prefix hash tree an indexing data struc-
ture over distributed hash tables. InProceedings of
the 23rd ACM Symposium on Principles of Distributed
Computing, St. John’s, Newfoundland, Canada, 2004.

[15] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A Scalable Content-Adressable Network.
In ACM SIGCOMM, 2001.

[16] C. Schmidt and M. Parashar. Enabling flexible queries
with guarantees in p2p systems.IEEE Internet Com-
puting, 8(3):19–26, 2004.

[17] P. Triantafillou and T. Pitoura. Towards a Unify-
ing Framework for Complex Query Processing over
Structured Peer-to-Peer Data Networks. InDBISP2P
2003, September 2003.

[18] Z. Xu, M. Mahalingam, and M. Karlsson. Turning
Heterogeneity into an Advantage in Overlay Routing.
In INFOCOM, 2003.

[19] Z. Xu, R. Min, and Y. Hu. HIERAS: A DHT Based
Hierarchical P2P Routing Algorithm. InICPP, 2003.

[20] Z. Xu and Z. Zhang. Building Low-Maintenance
Expressways for P2P Systems. Technical report,
Hewlett-Packard Labs, April 2002.

[21] B. Y. Zhao, Y. Duan, L. Huang, A. D. Joseph, and
J. D. Kubiatowicz. Brocade: Landmark Routing on
Overlay Networks. InIPTPS 2002.

