
社団法人 電子情報通信学会
THE INSTITUTE OF ELECTRONICS,
INFORMATION AND COMMUNICATION ENGINEERS

信学技報
TECHNICAL REPORT OF IEICE.

Webアプリケーション・フィーチャのアスペクト隠蔽

アハロム レダ† 外村 慶二†† ダニエル バルーク† 中島 震† 鵜林 尚靖††

† 国立情報学研究所 〒 101–8430 東京都千代田区一ツ橋 2–1–2
†† 九州工業大学 〒 820–8502 飯塚市川津 680–4

E-mail: ††keiji@famteam.org, †††nkjm@nii.ac.jp, ††††ubayashi@acm.org

あらまし Webアプリケーションは一般の利用者にとってわかりやすいことから機能変更の要求が多い。プロトタイ

ピング中心の繰り返し開発の方法が採用され、その結果、プログラム構造が悪くなり保守性が低下する。アスペクト

指向プログラミングを用いると、横断的な関心事を含む多様な観点からプログラムを良構造化することができ、繰り

返し開発と保守性を両立させることを期待できる。本稿ではWebアプリケーション構築にアスペクト概念を適用する

ことで、開発スタイルがどのように変わるかを考察する。

キーワード アスペクト指向プログラミング，Webアプリケーション開発，情報隠蔽

Aspectual Encapsulation of Web Application Features

Reda AHROUM†, Keiji HOKAMURA††, Daniel BALOUEK†, Shin NAKAJIMA†, and Naoyasu

UBAYASHI††

† National Institute of Informatics 2–1–2 Hitotsubashi, Chiyoda-ku, Tokyo, 101–8430 Japan
†† Kyusyu Institute of Technology 680–4 Kawatsu, Iizuka-shi, Fukuoka, 820–8502 Japan

E-mail: ††keiji@famteam.org, †††nkjm@nii.ac.jp, ††††ubayashi@acm.org

Abstract Web application, sometimes developed in an incremental and iterative manner, may result in a poor

organization of program codes. For a better modularization, the notion of aspect can be introduced. This paper

demonstrates the idea with an example case of Web application development by using AOWP, a new AOP framework

for PHP programs.

Key words Aspect-Oriented Programming, Web Application Development, Information Encapsulation

1. Introduction

Web application is increasing to provide new style of soft-

ware systems making use of broad-band networks. They

include EC (electronic commerce), SNS (social network ser-

vice), and others emerging in days to come. Due to new com-

mercial demands and feedback from the users as well, Web

applications, or Web-based systems, usually evolve rapidly

and are subjected to frequent modifications [2] [15]. For such

reasons, an iterative development style based on rapid pro-

totyping and continuous changes are adapted. It may have

a risk of leading to a less-organized program structure not

amenable to a long-term maintenance. For example, adding

a new application feature may result in changes in various

Web pages. Although the change is logically small, it actu-

ally affects the descriptions of many Web pages. To deal with

such scattered changes, the notion of AOP (aspect-oriented

programming) is helpful.

AOP, as demonstrated its practicality by AspectJ [5] [11],

is now adapted in various programming languages to include

PHP. It is a language widely used in Web-based systems,

especially for the server-side application program develop-

ment. Several tools [3] [7] [17] have been so far developed to

enable AOP for PHP. AOWP[8] [9], among others, provides

Web-specific pointcuts, and thus makes it easy for adaption

in developing Web applications. The development is usu-

ally centered around designing Web page transitions, and

the application logic written in PHP is desirable to be sepa-

rated from it. Encapsulating application feature in an aspect

would make it possible a new style of the development.

Aspect is a notion to encapsulate cross-cutting concern [5].

It is not always homogeneous but sometime heterogeneous

— 1 —

Web Browser

Web Application

HTTP-Request

Response

HTML
document

DB

PHP

Web Server

図 1 Web Application Architecture

[4]. Homogeneous aspect, such as the famous logging, has a

generic pointcut to look at many join points. Same advice

codes can be woven into many join points. Heterogeneous

aspect, on the other hand, only looks at a small number of

join points, just one particular execution point in its extremal

case. Although such an extremal one seems no different than

just a method or procedure call, it is usable due to the obliv-

iousness [6]. A new application feature may be added as an

aspect, while the same aspect is deleted when it becomes ob-

solete. The aspect is easy to delete since unweaving is as easy

as weaving. It does not need any of the impact analysis [16]

to have consistent codes.

This paper reports a Web application development prac-

tice to make fully use of the aspect-oriented programming

techniques. In the development, AOWP, a new AOP frame-

work for PHP, is used where many interesting application fea-

tures are encapsulated in heterogeneous aspects. Although

the discussion would be more like qualitative, the experience

shows that the notion of aspect has a great advantage in an

incremental style of Web application development.

2. Web Applications and AOP

2. 1 Web Applications

Figure 1 illustrates a simplified, but a typical architecture

of Web applications. A client uses Web Browser to access a

Web Server on which the target application system is run-

ning. The system is written in a Web application language

PHP, and usually uses back-end database systems to store

persistent data. The program, invoked by a client’s request,

may access the database and generates an HTML document

returning to the client. An HTML page is sometimes called a

view since it provides a graphic interface to the clients using

Web Browser.

Web application accepts multiple requests from more than

one client at a time, and it also performs long-term transac-

tions. Although each HTTP request is independent in view

of communication protocol, a series of requests from one par-

ticular client is considered to constitute a user-session. Usu-

ally, Cookie is introduced to keep track of such accesses. The

notion of user session is important in Web application since

表 1 Extent of Aspect

Aspect Description

Per Application A Single Instance in the Application

Per Session One for each User Session

Per Request One for each Request

Per Join Point One for each join point

pointcut advice

join point
information

an execution sequence

図 2 Pointcut & Advice Model

it is the basis for separating multiple users from each other

and for having a consistent series of accesses by a particular

user.

2. 2 AOWP

AOWP[1] [8] is a new aspect-oriented framework for PHP

programs. It adapts the join point model that AspectJ has

advocated, but provides pointcut designators specific to Web

applications written in PHP. Moreover, the aspect instan-

tiation model of AOWP is unique to take into account the

characteristics of Web applications. Extent of an aspect may

be different depending on its purpose. As mentioned earlier,

a Web application accepts multiple concurrent requests and

keeps session informations for each client. AOWP provides

several extents for aspects as shown in Table 1.

PerApplication aspect introduces its single instance for

the entire application. Its extent is the same as the applica-

tion itself. PerSession is created for each user session and is

suitable for looking at join points of the session. PerRequest

is active during the execution of a single HTTP request and

PerJoinPoint is just for a stateless aspect instance.

In addition to the aspect extent, AOWP differs from other

AOP languages such as AspectJ [11], GAP [3] or AOPHP

[17] in that it provides pointcut designators specific to

Web application. They include Web-specific ones such as

HTTP_request, cookie_get, and cookie_set as well as those

standard ones such as function_call of AspectJ.

Figure 2 illustrates the pointcut & advice model, which is

basically the same as what AspectJ adapts. When a pointcut

designator of an aspect is matched with some point in execu-

tions, the accompanying advice code is invoked. The exact

ordering of executing the base code and advice is dependent

on the choice of the advice strategy such as before or after.

The advice code is invoked with a pre-defined argument of

type AOWP_JoinPoint to carry the information relating to

the location that the pointcut designator matches with. The

information is what cannot be easily reconstructed without

— 2 —

class UserRightAspect

extends AOWP_PerSessionAspect {

public function _construct() {

$verifPC = new AOWP_RequestPointcut(...);

$verifAdvice = new AOWP_BeforeAdvice();

$verifAdvice->setPointcut($verifPC);

$verifAdvice->setAdviceBody(’verifUser’);

$this->addAdvice($verifAdvice);

}

public function

verifUser(AOWP_JoinPoint $joinPoint) {

... // omitted

}

}

図 3 An Example Aspect

an underlying mechanism, and contains some of PHP specific

data.

Aspect code in AOWP looks like the one in Figure

3. As seen from the example snippets, an AOWP as-

pect is introduced as a subclass of a pre-defined class

constituting the framework. The aspect UserRightAspect

is introduced as a subclass of AOWP_PerSessionAspect to

make its own extent PerSession. Since an instance of

AOWP_RequestPointcut(...) is created, its pointcut desig-

nator is of Request type to match with particular HTTP

requests. The advice body verifUser is actually a before

advice. The code also shows the advice function always takes

a pre-defined argument of type AOWP_JoinPoint.

Weaving in AOWP is a batch process of source program

translation. AOWP weaver accepts the base PHP source files

together with those for aspect definitions, and generates the

woven sources. The resultant PHP program is then loaded

into Web server to start its execution to accept requests from

remote clients.

2. 3 Aspectual Encapsulation

AOWP has been applied successfully [8] [9] demonstrating

the usefulness of the aspect in Web applications. Web-

specific pointcuts such as Request and a variety of aspect

extent are shown applicable well. Further, most of the as-

pects are homogeneous; the pointcut designators are chosen

so that they can match with join points. For example, one

to look at all the HTTP requests takes a form of

new AOWP_RequstPointcut(’.*’)

where the condition specified with a regular expression of .*

stands for anything. In another example, a pointcut desig-

nator

new AOWP_RequstPointcut(’index\.php’)

looks for all the requests to invoke index.php page. It is less

homogeneous than the first one since it matches only with

図 4 Screen Snapshot

header

footer

sidebar main view

図 5 Screen Layout

requests to index.php. It, however, is still homogeneous in

that the pointcut designator can select all the HTTP requests

to have parameters such as

http://.../index.php?action=edit

Further, the following pointcut designator can be used in

AOWP to match exactly with the above HTTP requests.

new AOWP_RequestPointcut(’index\.php’,

array(’action’ => ’edit’))

In the extremal case of heterogeneous aspect, one can be de-

fined to match with a particular join point only. It seems

not much different from a method called at a particular lo-

cation; the join point at which the advice code is invoked is

uniquely determined with the detailed pointcut. Owing to

the obliviousness of AOP, the base program needs not know

about the the advice code at all. It affects much on the style

of software development.

3. Picture Management System

This section reports a Web application development prac-

tice to make fully use of the aspect-oriented programming

techniques. In the development, AOWP is used to show

that many interesting application features are encapsulated

in either homogeneous or heterogeneous aspects.

3. 1 Overview

Picture Management System (PMS for simplicity) is a Web

application to manage picture data. A client is either a pub-

lisher or a subscriber. (S)he first sees the screen view shown

in Figure 4, and usually connects to the system by follow-

ing the authentication process. The system always checks to

see if the client has a proper access right. A publisher can

add or delete picture data, but a subscriber is allowed to see

— 3 —

Home

Login

List

Publish

Statistics

Contact

Basic Application Structure

User Rights

Verify Data

Compression

Verify Mail

Tracing

Statistics

Script Call

図 6 Feature Aspects Overview

the list of items and retrieve pictures only. While these are

the basic features, PMS is desirable to provide further ones.

Some of them are ready to be included and others are identi-

fied only after early versions of PMS are developed. Namely,

they are introduced in an incremental manner. In devel-

oping PMS, most of the features are implemented with the

notion of aspect, which demonstrates how AOWP supports

the incremental development of Web applications.

3. 2 Feature Aspects

Beside basic concerns such as the visual layout or HTML

codes, PMS includes several concerns developed with AOWP

aspects. Figure 6 gives an overview of the aspects and shows

how they are related in the base system structure. In the

figure, each box represents a basic application feature, which

appear to the clients in the main view area of the screen

layout illustrated in Figure 5. A list of menu is shown in

the header area. Clicking one of the menu entries initiates

a HTTP request to the Web server and the corresponding

PHP program is invoked. As a response, Main View area is

refreshed for a new sub-page to appear.

In Figure 6, each round box represents an aspect, which

is shown to link with the base application whose pointcut is

looking at. For example, UserRights aspect is woven to List

base feature, and Tracing aspect is to many Web pages. In

the following, each aspect is explained in detail.

3. 2. 1 Security Concerns

The security concern includes the one for authentication.

It is the process of determining whether a client is a valid user

or not. Further, it tries to prevent those unauthorized clients

have access to some Web pages. In PMS, an unauthorized

client cannot see the list of pictures.

a) User Rights Aspect

PMS has two profiles of users, publishers and subscribers.

Only a subscriber is allowed to access Publish page, and a

subscriber can view the list of items. When a user requests

Publish page, this aspect checks the session’s information:

if the user is a publisher, (s)he will be able to add an item to

PMS. If not, a pop-up is displayed and the user is redirected

to Login page. The AOWP codes were shown in Figure 3.

3. 2. 2 Tracing Concerns

Web applications are desirable to include features to

records all the user accesses. It is particularly important

from an operation viewpoint since the traced data can pro-

vide valuable informations for the Web master. They rep-

resent users’ scenarios visiting the Web site, and may help

to re-consider the design of Web page transitions. In the

current version of PMS, two such aspects StatisticsAspect

and TracingAspect are introduced as AOWP aspects.

a) Tracing Aspect

TracingAspect is best understood as a well-known logging

aspect, but puts its focus on collecting all Web pages visited

by a particular user. This aspect is rather homogeneous in

that it looks at all the HTTP requests. The extent of aspects

implementing this concern would be PerSession.

class TracingAspect extends AOWP_PerSessionAspect

b) Statistics Aspect

StatisticsAspects records how many times a particular

Web page is visited by all the users. It generates Statistics

page for users to inspect. Since just one instance of this as-

pect is responsible for keeping track of all the information,

the extent should be PerApplication.

class StatisticsAspect

extends AOWP_PerApplicationAspect

3. 2. 3 Server-Side Validation Concerns

Web applications accept various information from users

as data of String type, which are sometimes to be checked

its well-formedness before handling them as the input data.

Some check could be done at Web client side using such

as JavaScript codes. It, however, is not always the case

since there may be a chance for Web client not to execute

such JavaScript codes or some check requires the information

maintained at the server. As exemplars, PMS has two such

aspects as described below.

a) Verify Data Aspect

VerifyDataAspect is responsible for the input validation

to prevent the uses of non-supported characters when the

input data are saved on database. Its point cut designator is

associated with insert function and operates on each call of

this. Actually, the aspect is instantiated before each call of

insert function to check its parameters. Once it is finished,

the aspect instance is destroyed. The aspect is so defined as

PerJoinPoint with FunctionCall point cut.

class VerifyDataAspect

extends AOWP_PerJoinPointAspect {

public function _construct() {

$dataAdvice = new AOWP_BeforeAdvice();

— 4 —

$dataPC = new AOWP_FunctionCallPointcut

(’insert’, 4);

$dataAdvice->setPointcut($dataPC);

$dataAdvice->setAdviceBody(’dataControl’);

$this->addAdvice($dataAdvice);

}

...

}

b) Verify Mail Aspect

Web applications generally have a particular Web page to

allow users to send email to Web master. The page may

provides a way to enter some information of the user himself

including his own email address. VerifyMailAspect checks if

the email format is correct, and further checks if its domain

is valid. Depending on the error types, a particular alert

page would appear to the user. Just as VerifyDataAspect,

this aspect is defined as PerJoinPoint with FunctionCall

point cut to match with each call of mail function.

$mailPC = new AOWP_FunctionCallPointcut(’mail’, 4);

$mailAdvice->setAdviceBody(’mailControl’);

3. 2. 4 Memory Consumption Concerns

Adding new items such as pictures or videos to the server

may consume large amount of memory space. It usually re-

quires to compress a large file before storing. PMS uses a

mechanism of automatic compression of files before adding

them to the server. Instead of implementing the feature in

the base application program, an aspect is introduced to

achieve it in PMS so that the algorithm of compression can

easily be replaced. A new aspect to have a new algorithm is

just woven without making any modification to the base pro-

gram. In summary, the motivation of using AOP technique

for this concern is a slight increase in its ease of modification.

a) Compression Aspect

CompressionAspect takes care of compression of large data

before storing it in the database. In PMS, such storing is

achieved with deposit function. The aspect looks only at

calling this particular function, and thus is very heteroge-

neous. Namely, CompressionAspect matches only with the

join point of calling deposit. The advice function fileZip

may further call other function whose compression algorithm

is meant for a specific file type. This aspect is defined as

PerJoinPoint with FunctionCall point cut to match with

each call of deposit function.

$ZipPC = new AOWP_FunctionCallPointcut(’deposit’, 1);

$ZipBefAdvice->setAdviceBody(’fileZip’);

3. 2. 5 Script Call Concerns

For several reasons, there might be some situations where a

small script code executes outside the basic Web application

to handle various exceptional cases. Such needs sometimes

appear after completing an early version, and figuring out

such cases systematically is not easy. A new feature comes

up in an ad-hoc manner. In order to introduce such features

as needed, an aspect is defined to include a feature of calling

an external script code.

a) Alert Aspect

AlertAspect is developed for an instance of Script Call. It

generates an HTML document to include a JavaScript code

executing on the client Web browser. A particular example

used currently in PMS is a JavaScript which notifies the user

a time expiration alert. When a specified time is passed after

the user log-outs from PMS, the code displays an alert and

redirects him to Login sub-page. The extent of this aspect

is PerSession because it is responsible for keeping track of a

particular user. The aspect is heterogeneous only to look at

Logout sub-page. It is a before advice since the responsibil-

ity of the code is just to insert the specified JavaScript code

into the HTML document returned to the Web browser. The

JavaScript pops up an alert window afterward.

$alertPC = new AOWP_RequestPointcut(’index\.php’,

array(’page’ => ’logout\.php’));

$alertAdvice = new AOWP_BeforeAdvice();

$alertAdvice->setAdviceBody(’alertFunction’);

4. Discussions

Aspect-Oriented Programming (AOP) [5] [11] is an alterna-

tive approach to achieving high modularity of program codes.

Modularity is usually following hierarchical decomposition of

system [14]. It sometimes needs concerns cross-cutting over

the basic module structure or a primary concern. AOP pro-

vides a new language entity aspect to enable encapsulating

such cross-cutting concerns. UserRightAspect is a typical

example since implementing the access checking at runtime

usually cross-cuts multiple Web pages.

Looking at a system from various concerns plays a key

role in modeling at an early stage of the development. Such

a modeling approach helps identifying new features by study-

ing the system from multiple viewpoints [13]. In the case of

PMS, Tracing is considered as one such example since the

information collected with this aspect is meant to use by

Web master. Its necessity is recognized when PMS is looked

at from a viewpoint different from regular clients.

Further, FODA [10], a modeling method for Software

Product-Line Engineering (SPLE) can be potentially related

to AOP. A naive view is that common features constitute the

primary concerns and each variability feature is mapped to

an aspect. K. Lee et al [12] discuss how the feature-oriented

analysis and programming in AspectJ are related. Accord-

ing to their experience, it is not always the case that every

variability feature is mapped to an aspect. Some variability

may be implemented by Java class as a part of the primary

— 5 —

concern.

In this paper, an alternative extremal approach is taken to

use aspects in the development of PMS. The idea behind it

is that the application feature written in PHP can be better

separated from design of the Web page and Web page tran-

sitions than a monolithic PHP programs. Although a Web

page can be considered to encapsulate PHP scripts and pro-

vides a basis for the page transition, much PHP script codes

for realizing the application features reside in it. Such appli-

cation features are desirable to be separated from the Web

page skeleton, which may be achieved by AOP, especially

with AOWP. To study this prospect further, the aspects, ei-

ther homogeneous or heterogeneous, are extensively used in

the development of PMS. It also demonstrates that AOP is

useful in the incremental development style. Some of the as-

pects such as Tracing and Alert have been identified and

introduced after early versions of PMS were developed.

New application features came up as the early versions

were demonstrated. Conventionally, codes responsible for

such new features are injected into the primary program

base. Instead, an aspect was defined for each new feature

regardless of the aspect being either homogeneous or het-

erogeneous. Adding a new feature is then just a weaving

of new aspect with the basic PMS. It simplifies the process

of validation or testing because the basic existing codes are

not necessary to touch at all. What should be tested is the

aspect only, eliminating some of the regression tests.

In general, a Web application system does not grow mono-

tonically. Sometimes, an application feature may become ob-

solete and will not be used afterward. Such a feature should

be removed from the system in order to keep the program size

adequate. Obsolete or redundant codes may become a risk

for security attacks since they are usually not maintained.

Removing an aspect is as easy as, or even easier than

adding a new one. Thanks to the obliviousness that the

base program codes know nothing about aspects woven into,

discarding an aspect does not require any of the usual impact

analysis [16]. The ease of removing also helps in debugging

an aspect. If a particular aspect is being debugging, the

other aspects could be unwoven temporarily. It should be

noted here, however, that some aspects may depend on each

other, which requires an impact analysis of aspects. A tool

such as Celadon [18] for AspectJ could be applied to AOWP

as well.

5. Conclusions

In this paper, we reported our experience in developing

a Web application, in which we have made use of AOP

technology extensively. In the development, we have used

AOWP which is a new AOP framework for PHP programs.

We have demonstrated that many interesting application fea-

tures were encapsulated in either homogeneous or heteroge-

neous aspects. Although the discussion would be more like

qualitative, the experience shows that the notion of aspect

has a great advantage in an incremental style of Web appli-

cation development.

Acknowledgments

The work reported here was conducted while Reda

AHROUM (ENSIMAG, France) and Daniel BALOUEK

(Universite de Pierre et Marie Curie, France) visited NII as

their internship in the summer of 2009.

文 献
[1] AOWP : Aspect-Oriented Web Programming.

http://posl.minnie.ai.kyutech.ac.jp/projects/aowp/.

[2] E. Andersson, P. Grenspun, and A. Grumet. Software En-

gineering for Internet Applications. The MIT Press 2006.

[3] S. Bergmann and G. Kniesel. GAP: Generic Aspects for

PHP. In Proc. EWAS’06, 2006.

[4] A. Colyer and A. Clement. Large-scale AOSD for Middle-

ware. In Proc. AOSD’04, pages 56–65, 2004.

[5] R.E. Filman, T. Elrad, S. Clarke and M. Aksit. Aspect-

Oriented Software Development. Addison-Wesley 2005.

[6] R.E. Filman and D. P. Friedman. Aspect-Oriented Pro-

gramming is Quantification and Obliviousness. in [5], pages

21–35, 2005.

[7] J. E. Garcia. Aspect-Oriented Web Development in PHP.

[8] K. Hokamura, N. Ubayashi, and S. Nakajima. Aspect-

Oriented Programming for Web Controller Layer. In Proc.

APSEC 2008, pages 529-536, 2008.

[9] K. Hokamura, R. Naruse, M. Shinozuka, N. Ubayashi, and

S. Nakajima. AOWP: Web-specific AOP framework for

PHP. In Proc. ASE 2009 (Tool Demo), 2009

[10] K. Kang, S. Cohen, J. Hess, W. Nowak, and S. Peter-

son. Feature-Oriented Domain Analysis Feasibility Study.

CMU/SEI-90-TR-21, 1990.

[11] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda, C.

Lopes, J.-M. Loingtier, and J. Irwin. Aspect-Oriented Pro-

gramming. In Proc. ECOOP’97, pages 220–242, 1997.

[12] K. Lee, K.C. Kang, M. Kim, and S. Park. Combin-

ing Feature-Oriented Analysis and Aspect-Oriented Pro-

gramming for Product Line Asset Development. In Proc.

SPLC’06, 2006.

[13] B. Nuseibeh, J. Kramer, and A. Finkelstein. A Framework

for Expressing the Relationships Between Multiple Views

in Requirements Specification. IEEE Trans. Soft. Engin.,

Vol.20, No.10, pages 760–773, 1994.

[14] D.L. Parnas. On the Criteria to be Used in Decomposing

Systems into Modules. Comm. ACM, Vol.15, No.12, pages

1053–1058, 1972.

[15] F. Ricca and P. Tonella. Analysis and Testing of Web Ap-

plications. In Proc. 23rd ICSE, pages 25–34, May 2001.

[16] I. Summerville. Software Engineering (8th ed.). Addison

Wesley 2007.

[17] J. Stamey, B. Saunders, and S. Blanchard. The Aspect-

Oriented Web. In Proc. SIGDOC’05, pages 89–95, 2005.

[18] S. Zhang, Z. Gu, Y. Lin and J. Zhao. Celadon : A Change

Impact Analysis Tool for Aspect-Oriented Programs. In

Proc. ICSE’08. 2008.

— 6 —

