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Bag-of-tasks Applications

Bag of tasks

described by:

the number of tasks

the amount of computation of a task

the amount of communication of a task

their release date

On-line scheduling.
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Platform model

Links

Network

Slaves
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Master-slaves platform

The master

Receive the bags of tasks

Send the tasks to the processors

Bounded multi-port model

The processors

Parallels

Identical
Uniform

Related
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Notations

Tasks

n bags-of-tasks applications Ak

Ai is composed of Π(i) tasks.

w (i): amount of computation of a task of Ai

δ(i): amount of communication of a task of Ai

r (i): release date of Ai

C(i): completion time of Ai
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Notations

Platform

p processors,

B: bound of the multi-port model.

bu: bandwidth of the link between the master and Pu,

su: computational speed of worker Pu,

6/33 Jean-François Pineau Bag of tasks



Framework
Theoretical study

Experiments
Conclusion

Notations

Platform

p processors,

B: bound of the multi-port model.

bu: bandwidth of the link between the master and Pu,

s
(k)
u : computational speed of related worker Pu

with tasks of Ak ,
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Objective

Scheduling the tasks to the processors in order to process this
tasks

according to the constraints,

of the processors
of the tasks

optimizing an objective function
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Objective function

Objective function

Makespan

max C(i) or C(max)

8/33 Jean-François Pineau Bag of tasks



Framework
Theoretical study

Experiments
Conclusion

Objective function

Objective function

Makespan

max C(i) or C(max)

Problem of satisfaction of the clients
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Objective function

Objective function

Makespan

Sum flow

∑
{C(i) − r (i)}

8/33 Jean-François Pineau Bag of tasks



Framework
Theoretical study

Experiments
Conclusion

Objective function

Objective function

Makespan

Sum flow

∑
{C(i) − r (i)}

Problem of starvation
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Objective function

Objective function

Makespan

Sum flow

Max flow

max {C(i) − r (i)}

Small applications can wait a long time
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Objective function

Objective function

Makespan

Sum flow

Max flow

Max Stretch

max
C(i) − r (i)

Size of Ai
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Objective function

Makespan

Sum flow

Max flow

Max Stretch

max
C(i) − r (i)

Size of Ai

Size of Ai = Π(i) ∗ w (i) ?
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Simple problem

Problem

Unique bag-of-tasks A0

Large Π(0)
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Simple problem

Problem

Unique bag-of-tasks A0

Large Π(0)

Objective

Minimizing the makespan

Maximizing the throughput

Throughput of worker Pu: ρ
∗(0)
u

Total throughput ρ∗(0) =

p∑
u=1

ρ
∗(0)
u
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Linear program



Maximize ρ∗(0) =

p∑
u=1

ρ
∗(0)
u

subject to

ρ
∗(0)
u

w (0)

s
(0)
u

≤ 1

ρ
∗(0)
u

δ(0)

bu
≤ 1

p∑
u=1

ρ
∗(0)
u

δ(0)

B
≤ 1

(1)

Rational solution
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Feasible schedule

Resource selection (ρ
∗(0)
u = 0)

Master sends tasks to workers using the 1D-load balancing
algorithm:

the first worker to receive a task is the one with largest
throughput

each participating worker Pu has already received nu tasks, the
next worker to receive a task is chosen as the one minimizing

nu + 1

ρ
∗(0)
u
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Back on multi-applications problem

Approximation of the best execution time:

MS∗(k) =
Π(k)

ρ∗(k)
.

Real execution time:

C(k) = r (k) + MS (k)

In general:
MS (k) ≥ MS∗(k)
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Stretch

Stretch:

Sk =
MS (k)

MS∗(k)

=
ρ∗(k)

ρ(k)

Throughput ρ(k) defined by:

MS (k) =
Π(k)

ρ(k)
.

Objective: max-stretch:

S = max
1≤k≤n

Sk
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Off-line

Computing all the MS∗(k), ∀ 1 ≤ k ≤ n

Binary search on the max-stretch

For each candidate value S ′ , we know that:

∀ 1 ≤ k ≤ n,
MS (k)

MS∗(k)
≤ S ′

∀ 1 ≤ k ≤ n, C(k) = r (k) + MS (k) ≤ r (k) + S ′ ×MS∗(k)
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Deadlines

We set:
d (k) = r (k) + S ′ ×MS∗(k) (2)

Definition: Epochal times

t(j) ∈ {r (1), ..., r (n)} ∪ {d (1), ..., d (n)}

, such that
t(j) ≤ t(j+1), 1 ≤ j ≤ 2n − 1

Divide the total execution time into intervals whose bounds are
epochal times.
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Intervals

run each application Ak during its whole execution window
[r (k), d (k)],

use a different throughput on each interval [t(j), t(j+1)],
r (k) ≤ t(j) and t(j+1) ≤ d (k).

Notation:

ρ
(k)
u (j): throughput achieved by Ak during interval

[t(j), t(j+1)] on processor Pu

ρ(k)(j): global throughput of Ak during this period.
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Linear program



∀ 1 ≤ k ≤ n,
∑

[t(j), t(j+1)]

t(j) ≥ r (k)

t(j+1) ≤ d (k)

ρ(k)(j)× (t(j+1) − t(j)) = Π(k)

∀ 1 ≤ k ≤ n,∀ 1 ≤ j ≤ 2n − 1, ρ(k)(j) =

p∑
u=1

ρ
(k)
u (j)

∀ 1 ≤ j ≤ 2n − 1,∀ 1 ≤ u ≤ p,

n∑
k=1

ρ
(k)
u (j)

w (k)

s
(k)
u

≤ 1

∀ 1 ≤ j ≤ 2n − 1,∀ 1 ≤ u ≤ p,

n∑
k=1

ρ
(k)
u (j)

δ(k)

bu
≤ 1

∀ 1 ≤ j ≤ 2n − 1,

p∑
u=1

n∑
k=1

ρ
(k)
u (j)

δ(k)

B
≤ 1

(3)
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Algorithm

Algorithm

Computing all the MS∗(k), ∀ 1 ≤ k ≤ n

Binary search on the max-stretch

For each candidate stretch

compute the t(j)

resolve the linear program

Theorem

The previous scheduling algorithm finds the optimal max-stretch in
polynomial time.
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Proof (1/3)

Part 1

A given max-stretch S ′ is achievable if and only if the linear
program has a solution

Consider an arbitrary solution that achieves S ′ .
nb(j , k, u) = number of tasks for Ak on Pu during the interval

[t(j), t(j+1)],
Averaged throughput:

ρ
(k)
u (j) =

nb(j , k, u)

t(j+1) − t(j)
,

ρ(k)(j) =

p∑
u=1

ρ
(k)
u (j).
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Proof (1/3)

Part 1

A given max-stretch S ′ is achievable if and only if the linear
program has a solution

{ρ(k)
u (j), ρ(k)(j)} are a valid solution of the linear program:
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Part 1

A given max-stretch S ′ is achievable if and only if the linear
program has a solution

The first equation is satisfied:

∑
[t(j), t(j+1)]

t(j) ≥ r (k)

t(j+1) ≤ d (k)

ρ(k)(j)× (t(j+1) − t(j)) =

∑
[t(j), t(j+1)]

t(j) ≥ r (k)

t(j+1) ≤ d (k)

p∑
u=1

ρ
(k)
u (j)× (t(j+1) − t(j))
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program has a solution

The first equation is satisfied:

∑
[t(j), t(j+1)]

t(j) ≥ r (k)

t(j+1) ≤ d (k)

ρ(k)(j)× (t(j+1) − t(j)) =

∑
[t(j), t(j+1)]

t(j) ≥ r (k)

t(j+1) ≤ d (k)

nb(j , k, u)
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Proof (1/3)

Part 1

A given max-stretch S ′ is achievable if and only if the linear
program has a solution

The first equation is satisfied:

∑
[t(j), t(j+1)]

t(j) ≥ r (k)

t(j+1) ≤ d (k)

ρ(k)(j)× (t(j+1) − t(j)) =

Π(k)
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Proof (1/3)

Part 1

A given max-stretch S ′ is achievable if and only if the linear
program has a solution

The second equation is satisfied by definition.
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Proof (1/3)

Part 1

A given max-stretch S ′ is achievable if and only if the linear
program has a solution

The third equation is satisfied:

n∑
k=1

ρ
(k)
u (j)

w (k)

s
(k)
u

=
n∑

k=1

nb(j , k, u)

t(j+1) − t(j)
· w

(k)

s
(k)
u

But we have

n∑
k=1

nb(j , k, u)
w (k)

s
(k)
u

≤ t(j+1) − t(j)
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Proof (1/3)

Part 1

A given max-stretch S ′ is achievable if and only if the linear
program has a solution

The fourth and fifth equations are satisfied as well.

Intuitively, the result comes from the linearity of linear programs!
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Proof (2/3)

Part 2

The linear program can be solved in polynomial time.

2n − 1 intervals, so O(n2 + np) equations

linear program over rational numbers,

in theory using the ellipsoid method,

in practice using standard software packages (glpk).
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Proof (3/3)

Part 3

The binary search needs polynomial number of iterations.
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Proof (3/3)

Part 3

The binary search needs polynomial number of iterations.

S1,S2 : given max-stretch

∀S ′ ∈ [S1,S2], the order of the t(i) does not change

t(i) ← t(i)(S ′)
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Proof (3/3)

Part 3

The binary search needs polynomial number of iterations.

New linear program:



Minimize S ′

subject to

S1 ≤ S ′ ≤ S2

∀ 1 ≤ k ≤ n,
∑

[t(j)(S′ ), t(j+1)(S′ )]
t(j)(S′ ) ≥ r (k)

t(j+1)(S′ ) ≤ d (k)(S′ )

ρ(k)(j)× (t(j+1)(S ′)− t(j)(S ′)) = Π(k)

...
(4)
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Proof (3/3)

Part 3

The binary search needs polynomial number of iterations.

The modified linear program has a solution if and only if a
max-stretch S ′ ∈ [S1,S2] is achievable.

At most n(n − 1) stretch intervals
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On-line

Off-line algorithm at each release dates:

For each application Ak , count the number of tasks (if any)
that have been executed

update Π(k)

update MS∗(k)

determine the new optimal stretch that can be achieved as in
the off-line case

25/33 Jean-François Pineau Bag of tasks



Framework
Theoretical study

Experiments
Conclusion

Steady state scheduling
Off-line study
Extension

On-line

Off-line algorithm at each release dates:

For each application Ak , count the number of tasks (if any)
that have been executed

update Π(k)

update MS∗(k)

determine the new optimal stretch that can be achieved as in
the off-line case

25/33 Jean-François Pineau Bag of tasks



Framework
Theoretical study

Experiments
Conclusion

Steady state scheduling
Off-line study
Extension

On-line

Off-line algorithm at each release dates:

For each application Ak , count the number of tasks (if any)
that have been executed

update Π(k)

update MS∗(k)

determine the new optimal stretch that can be achieved as in
the off-line case

25/33 Jean-François Pineau Bag of tasks



Framework
Theoretical study

Experiments
Conclusion

Steady state scheduling
Off-line study
Extension

On-line

Off-line algorithm at each release dates:

For each application Ak , count the number of tasks (if any)
that have been executed

update Π(k)

update MS∗(k)

determine the new optimal stretch that can be achieved as in
the off-line case

25/33 Jean-François Pineau Bag of tasks



Framework
Theoretical study

Experiments
Conclusion

Steady state scheduling
Off-line study
Extension

Extension

Multi-level trees

Resource constraints unchanged
conservation law stating that for each
application Ak for each internal node

One-port model : previous constraint:

p∑
u=1

n∑
k=1

ρ
(k)
u

δ(k)

B
≤ 1

Mixed-implementation of the two previous models

Return messages : for each application Ak

δ(k) ← δ(k) + return(k)
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The platform

Hardware

Computers of the GDSDMI cluster:

8 SuperMicro servers 5013-GM, with processors P4 2.4 GHz;

5 SuperMicro servers 6013PI, with processors P4 Xeon 2.4
GHz;

7 SuperMicro servers 5013SI, with processors P4 Xeon 2.6
GHz;

7 SuperMicro servers IDE250W, with processors P4 2.8 GHz.

100Mbps Fast-Ethernet switch
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The tasks

Software

MPI communications

Modification of slave parameters

Tasks

Computation of matrices product

The linear programs are solved using glpk.
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The studied algorithms

FIFO + Round-Robin

FIFO + MCT

S(R)PT + MCT

S(R)PT + Demand-Driven

Steady-state MWMA (Master Worker Multi-applications) on
each time interval

CBSSSM (Clever Burst Steady-State Stretch Minimizing)
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Results

Eh wait!
You don’t have any

result yet !!
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Conclusion

Key points:

Realistic platform model
Optimal off-line algorithm
On-line algorithm

Extensions:

Have some experimental results
Consider other objective functions
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