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Framework

Bag-of-tasks Applications

Bag of tasks

described by:

@ the number of tasks
@ the amount of computation of a task
@ the amount of communication of a task

@ their release date

3/33] Jean-Frangois Pineau Bag of tasks



Framework

Bag-of-tasks Applications

Bag of tasks

described by:

@ the number of independent tasks
@ the amount of computation of a task
@ the amount of communication of a task

@ their release date
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Framework

Bag-of-tasks Applications

Bag of tasks

described by:

@ the number of independent, identical tasks
@ the amount of computation of a task
@ the amount of communication of a task

@ their release date
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Framework

Bag-of-tasks Applications

Bag of tasks

described by:

@ the number of independent, identical tasks
@ the amount of computation of a task
@ the amount of communication of a task

@ their release date

On-line scheduling.
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Framework

Platform model

Slaves
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Framework

Master-slaves platform

@ Receive the bags of tasks
@ Send the tasks to the processors

@ Bounded multi-port model
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Framework

Master-slaves platform

@ Receive the bags of tasks
@ Send the tasks to the processors

@ Bounded multi-port model

The processors

o Parallels
o Identical
o Uniform

@ Related
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Framework

Notations

@ n bags-of-tasks applications Ay

Aj is composed of () tasks.
w(): amount of computation of a task of A;
5(): amount of communication of a task of A;

r(): release date of A;

C: completion time of A;
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Framework

Notations

@ p processors,

@ 3: bound of the multi-port model.
@ b,: bandwidth of the link between the master and P,,

@ s,. computational speed of worker P,,
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Framework

Notations

@ p processors,

@ 3: bound of the multi-port model.

@ b,: bandwidth of the link between the master and P,,
(k)

@ s, ': computational speed of related worker P,
with tasks of Ay,
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Framework

Objective

Scheduling the tasks to the processors in order to process this
tasks

@ according to the constraints

e of the processors
o of the tasks

@ optimizing an objective function
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Framework

Objective function

Objective function
o Makespan

max C() or ¢(max)
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Framework

Objective function

Objective function
o Makespan

max C() or ¢(max)

Problem of satisfaction of the clients
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Framework

Objective function

Objective function
o Makespan

@ Sum flow
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Framework

Objective function

Objective function
o Makespan

@ Sum flow

Problem of starvation
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Framework

Objective function

Objective function
o Makespan
o Sum-flow
@ Max flow

max {C(i) — r(i)}
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Framework

Objective function

Objective function

max {C(i) — r(i)}

Small applications can wait a long time
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Framework

Objective function

Objective function
o Makespan
o Sum-flow
o Max-ftlow
@ Max Stretch

cl) _ )

max Size of A;
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Framework

Objective function

Objective function
o Makespan
o Sum-flow
o Max-ftlow
@ Max Stretch

cl) _ )

max Size of A;
Size of A; =N ?
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Framework

Objective function

Objective function
o Makespan
o Sum-flow
o Max-ftlow
@ Max Stretch

cl) _ )

max Size of A;
Size of A;j = w() ?
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Framework

Objective function

Objective function
o Makespan
o Sum-flow
o Max-ftlow
@ Max Stretch

cl) _ )

max Size of A;
Size of A; = N 5 w() ?
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Steady state scheduling
Off-line study
Extension

Theoretical study

Outline

© Theoretical study
@ Steady state scheduling
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Steady state scheduling
Off-line study
Extension

Theoretical study

Simple problem

Problem
@ Unique bag-of-tasks 4g
o Large N
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Steady state scheduling
Off-line study
Extension

Theoretical study

Simple problem

Problem
@ Unique bag-of-tasks 4g
o Large N

Objective

@ Minimizing the makespan
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Steady state scheduling
Off-line study
Extension

Theoretical study

Simple problem

Problem
@ Unique bag-of-tasks 4g
o Large N

Objective
o Minimizing &l

e Maximizing the throughput
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Steady state scheduling
Off-line study
Extension

Theoretical study

Simple problem

Problem
@ Unique bag-of-tasks 4g
o Large N

Objective
o Minimizing &l

e Maximizing the throughput

@ Throughput of worker P,: pz(o)

P
e Total throughput p*(© = pr,(o)
u=1
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Steady state scheduling
Off-line study
Extension

Theoretical study

Linear program

p
Maxmvize pH@ =37 pi®
u=1
SUBJECT TO
*(0) w(0)
Pl <1 (1)
0) 500
P2 < 1
p
(00
ZPU(O)i <1
B
u=1
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Steady state scheduling
Off-line study
Extension

Theoretical study

Linear program

p
Maxivmize p*0) = S pi®
u=1
SUBJECT TO
*(0) (0
e <1 (1)

0) 50
P05 <1

P
«(0)0(0)
Zpu(o)F <1

u=1

Rational solution
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Steady state scheduling
Off-line study
Extension

Theoretical study

Feasible schedule

Resource selection (,of,(o) =0)
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Steady state scheduling
Off-line study
Extension

Theoretical study

Feasible schedule

Resource selection (,of,(o) =0)
Master sends tasks to workers using the 1D-load balancing
algorithm:
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Steady state scheduling
Off-line study
Extension

Theoretical study

Feasible schedule

Resource selection (,of,(o) =0)
Master sends tasks to workers using the 1D-load balancing
algorithm:

@ the first worker to receive a task is the one with largest
throughput
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Steady state scheduling
Off-line study
Extension

Theoretical study

Feasible schedule

Resource selection (,of,(o) =0)
Master sends tasks to workers using the 1D-load balancing
algorithm:

@ the first worker to receive a task is the one with largest
throughput

@ each participating worker P, has already received n, tasks, the
next worker to receive a task is chosen as the one minimizing

n,+1
a0
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Steady state scheduling
Off-line study
Extension

Theoretical study

Back on multi-applications problem

Approximation of the best execution time:

k)

(k) —
ms*) = S
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Steady state scheduling
Off-line study
Extension

Theoretical study

Back on multi-applications problem

Approximation of the best execution time:

k)

(k) —
ms*) = S

Real execution time:

etk — [0 4 k)
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Steady state scheduling
Off-line study
Extension

Theoretical study

Back on multi-applications problem

Approximation of the best execution time:

k)

(k) —
ms*) = S

Real execution time:

etk — [0 4 k)

In general:
MS (k) > MS*(K)
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Steady state scheduling
Off-line study
Extension

Theoretical study

Stretch

Stretch: o
MS
k _
S = W
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Steady state scheduling
Off-line study
Extension

Theoretical study

Stretch

Stretch: . .
Sk — MS (k) :p*()
MS*(k) p(k)

Throughput p(*) defined by:

BPGR
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Steady state scheduling
Off-line study
Extension

Theoretical study

Stretch

Stretch: . .
sk — MS (k) :p*()
MS*(k) p(k)

Throughput p(*) defined by:

k
MSk) — ﬂ
p(k)
Objective: max-stretch:
S = max Sk
1<k<n
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Steady state scheduling
Off-line study

Extension

Theoretical study

Outline

© Theoretical study

o Off-line study
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Steady state scheduling
Off-line study

Extension

Theoretical study

Off-line

e Computing all the MS*(K) v 1<k <n
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Steady state scheduling
Off-line study

Extension

Theoretical study

Off-line

e Computing all the MS*(K) v 1<k <n

@ Binary search on the max-stretch
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Steady state scheduling
Off-line study

Extension

Theoretical study

Off-line

e Computing all the MS*(K) v 1<k <n
@ Binary search on the max-stretch

@ For each candidate value S/, we know that:

MS () ’
Vlgkgn, WSS
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Steady state scheduling
Off-line study

Extension

Theoretical study

Off-line

e Computing all the MS*(K) v 1<k <n
@ Binary search on the max-stretch

@ For each candidate value S/, we know that:

MS () ’
Vlgkgn, WSS

V1<k<n, ck) — (k) L pmstk) < (k) 1 S’ x MS*(k)
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Steady state scheduling
Off-line study

Extension

Theoretical study

Deadlines

We set:
d) = () 1 & x Ms*(k) (2)
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Steady state scheduling
Off-line study

Extension

Theoretical study

Deadlines

We set:
dk) = (k) L S« pms*(k) (2)

Definition: Epochal times
() ¢ (D My D), gy

, such that ' _
t0) < Ut 1<j<2on—1
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Steady state scheduling
Off-line study

Extension

Theoretical study

Deadlines

We set:
d) = () 1 & x Ms*(k) (2)

Definition: Epochal times

() e (D) ANy gd®, gy

, such that ' _
t0) < Ut 1<j<2on—1

Divide the total execution time into intervals whose bounds are
epochal times.
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Steady state scheduling
Off-line study

Extension

Theoretical study

Intervals

@ run each application Ay during its whole execution window
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Steady state scheduling
Off-line study

Extension

Theoretical study

Intervals

@ run each application Ay during its whole execution window

e use a different throughput on each interval [t0), tU+1)],
r(k) < ¢0U) and t0+1) < g(k)
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Steady state scheduling
Off-line study

Extension

Theoretical study

Intervals

@ run each application Ay during its whole execution window

e use a different throughput on each interval [t0), tU+1)],
r(k) < ¢0U) and t0+1) < g(k)

Notation:
° pf,k)(j): throughput achieved by Ay during interval
[t0), tU+1)] on processor P,
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Steady state scheduling
Off-line study

Extension

Theoretical study

Intervals

@ run each application Ay during its whole execution window
e use a different throughput on each interval [t0), tU+1)],
r(k) < t0) and tU+1D) < (k).
Notation:
° pf,k)(j): throughput achieved by A, during interval
[tU), tU+1)] on processor P,
o plk)(j): global throughput of Ay during this period.
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Steady state scheduling
Off-line study
Extension

Theoretical study

Linear program

V1<k<n, Z pR() x (t0FD — 1)y = n0)
[t(j), t(j+1)]
t0) > p(k)
U+ < (k)

Vi<k<nV1<j<2n—1,pK()) Zp

J(6) 3)
W
V1<J<2n—1V1<u<p,Zpu (k) <1

kl
Vi<j<2n—1¥1<u< 5()<1

j<2n- u p,Zp i

kl

v1<J<2n—1ZZ K <1

u=1 k=1
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Steady state scheduling
Off-line study
Extension

Theoretical study

Algorithm

Algorithm
@ Computing all the I\/IS*(k), V1i<k<n

@ Binary search on the max-stretch

@ For each candidate stretch

o compute the t0)
e resolve the linear program
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Steady state scheduling
Off-line study
Extension

Theoretical study

Algorithm

Algorithm
@ Computing all the I\/IS*(k), V1i<k<n

@ Binary search on the max-stretch

@ For each candidate stretch

o compute the t0)
e resolve the linear program

V.

The previous scheduling algorithm finds the optimal max-stretch in
polynomial time.
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Steady state scheduling
Off-line study

Extension

Theoretical study

Proof (1/3)

A given max-stretch S’ is achievable if and only if the linear
program has a solution
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Steady state scheduling
Off-line study

Extension

Theoretical study

Proof (1/3)

A given max-stretch S’ is achievable if and only if the linear
program has a solution

Consider an arbitrary solution that achieves S’.
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Steady state scheduling
Off-line study

Extension

Theoretical study

Proof (1/3)

A given max-stretch S’ is achievable if and only if the linear
program has a solution

Consider an arbitrary solution that achieves S’.

nb(j, k, u) = number of tasks for A, on P, during the interval
[t(f)7 t(J'Jrl)]'
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Steady state scheduling
Off-line study
Extension

Theoretical study

Proof (1/3)

A given max-stretch S’ is achievable if and only if the linear
program has a solution

Consider an arbitrary solution that achieves S’.

nb(j, k, u) = number of tasks for A, on P, during the interval
[t(f)7 t(J'Jrl)]'

Averaged throughput:
nb(j, k, u)
tU+1) — ()’

PR Zp L)
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Steady state scheduling
Off-line study

Extension

Theoretical study

Proof (1/3)

A given max-stretch S’ is achievable if and only if the linear
program has a solution

{ﬁ&k)(j),ﬁ(k)(j)} are a valid solution of the linear program:
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Steady state scheduling
Off-line study

Extension

Theoretical study

Proof (1/3)

A given max-stretch S’ is achievable if and only if the linear
program has a solution

The first equation is satisfied:

Sy x ($0+D) _ 0Dy —
> pN0) x( )

[15(])7 t(j+1)]
tl) > k)
tU+1) < g(k)

[t(j), t(j+1)] u=1
tl) > k)

£+ < (k)
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Steady state scheduling
Off-line study

Extension

Theoretical study

Proof (1/3)

A given max-stretch S’ is achievable if and only if the linear
program has a solution

The first equation is satisfied:

Z 2R () x (tUFD) — ¢0)) =
[15(])7 t(j+1)]
t0) > (k)
01 < gk)

Z nb(J, k, u)
[1_*(])7 t(j+1)]
1) > p0)

£0+1) < gk
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Steady state scheduling
Off-line study

Extension

Theoretical study

Proof (1/3)

A given max-stretch S’ is achievable if and only if the linear
program has a solution

The first equation is satisfied:

Sy x ($0+D) _ 0Dy —
> pN0) x( )

[15(])7 t(j+1)]
tl) > k)
tU+1) < g(k)
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Steady state scheduling
Off-line study

Extension

Theoretical study

Proof (1/3)

A given max-stretch S’ is achievable if and only if the linear
program has a solution

The second equation is satisfied by definition.
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Steady state scheduling
Off-line study
Extension

Theoretical study

Proof (1/3)

A given max-stretch S’ is achievable if and only if the linear
program has a solution

The third equation is satisfied:

(k)

(k) . . nb(j, k, U) )
Zp - /; () — ¢0) (R
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Steady state scheduling
Off-line study
Extension

Theoretical study

Proof (1/3)

A given max-stretch S’ is achievable if and only if the linear
program has a solution

The third equation is satisfied:

(k)

(k) . . nb(j, k, U) )
Zp - /; () — ¢0) (R

But we have

n (k) , .
nb(J, k, u)% < ¢+ — +0)

k=1 Su
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Steady state scheduling
Off-line study

Extension

Theoretical study

Proof (1/3)

A given max-stretch S’ is achievable if and only if the linear
program has a solution

The fourth and fifth equations are satisfied as well.

Intuitively, the result comes from the linearity of linear programs!
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Steady state scheduling
Off-line study

Extension

Theoretical study

Proof (2/3)

The linear program can be solved in polynomial time.

@ 2n — 1 intervals, so O(n? 4 np) equations
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Steady state scheduling
Off-line study

Extension

Theoretical study

Proof (2/3)

The linear program can be solved in polynomial time.

@ 2n — 1 intervals, so O(n? 4 np) equations

@ linear program over rational numbers,
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Steady state scheduling
Off-line study
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Theoretical study

Proof (2/3)

The linear program can be solved in polynomial time.

@ 2n — 1 intervals, so O(n? 4 np) equations
@ linear program over rational numbers,

@ in theory using the ellipsoid method,
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Steady state scheduling
Off-line study

Extension

Theoretical study

Proof (2/3)

The linear program can be solved in polynomial time.

@ 2n — 1 intervals, so O(n? 4 np) equations
@ linear program over rational numbers,

@ in theory using the ellipsoid method,
°

in practice using standard software packages (glpk).
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Steady state scheduling
Off-line study

Extension

Theoretical study

Proof (3/3)

The binary search needs polynomial number of iterations.
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Proof (3/3)

The binary search needs polynomial number of iterations.

o S', 82 : given max-stretch
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Steady state scheduling
Off-line study

Extension

Theoretical study

Proof (3/3)

The binary search needs polynomial number of iterations.

o S', 82 : given max-stretch
o VS' € [S81,82], the order of the t() does not change
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Steady state scheduling
Off-line study

Extension

Theoretical study

Proof (3/3)

The binary search needs polynomial number of iterations.

o S', 82 : given max-stretch
o VS' € [S81,82], the order of the t() does not change
o t() — t(i)(S/)
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. Steady state scheduling
Theoretical study @il sl

Extension

Proof (3/3)

The binary search needs polynomial number of iterations.

New linear program:

MINIMIZE S
SUBJECT TO
Sl<§8 <82
V1<k<n, Z pR(j) x (L0+D(ST) — tW(S')) = Nk
[t0)(S"), tU+D(S)]
t(j)(s’) > (0
t(s") < dW(S)
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Steady state scheduling
Off-line study

Extension

Theoretical study

Proof (3/3)

The binary search needs polynomial number of iterations.

The modified linear program has a solution if and only if a
max-stretch S’ € [S?, 8?] is achievable.
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Steady state scheduling
Off-line study

Extension

Theoretical study

Proof (3/3)

The binary search needs polynomial number of iterations.

The modified linear program has a solution if and only if a
max-stretch S’ € [S?, 8?] is achievable.

At most n(n — 1) stretch intervals
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Outline

© Theoretical study

@ Extension
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Steady state scheduling
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On-line

Off-line algorithm at each release dates:

@ For each application Ay , count the number of tasks (if any)
that have been executed
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On-line

Off-line algorithm at each release dates:

@ For each application Ay , count the number of tasks (if any)
that have been executed

o update M)
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On-line

Off-line algorithm at each release dates:

@ For each application Ay , count the number of tasks (if any)
that have been executed

o update M)

o update MS*(K)
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Steady state scheduling
Off-line study
Extension

Theoretical study

On-line

Off-line algorithm at each release dates:
@ For each application Ay , count the number of tasks (if any)
that have been executed
o update M)
o update MS*(K)
@ determine the new optimal stretch that can be achieved as in
the off-line case
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Theoretical study

Extension

Multi-level trees
@ Resource constraints unchanged
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Extension

Multi-level trees
@ Resource constraints unchanged
@ conservation law stating that for each
application A, for each internal node
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Steady state scheduling
Off-line study
Extension

Theoretical study

Extension

Multi-level trees
@ Resource constraints unchanged
@ conservation law stating that for each
application A, for each internal node

One-port model : previous constraint:

P 5k
>y A <

u=1 k=1
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Extension

Multi-level trees
@ Resource constraints unchanged
@ conservation law stating that for each
application A, for each internal node

One-port model : new constraint:
p n
§5(k)
Sy <
u=1 k=1 Y
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Extension

Multi-level trees
@ Resource constraints unchanged
@ conservation law stating that for each
application A, for each internal node

One-port model : new constraint:
p n
§5(k)
Sy <
u=1 k=1 Y

Mixed-implementation of the two previous models
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Extension

Multi-level trees
@ Resource constraints unchanged
@ conservation law stating that for each
application A, for each internal node

One-port model : new constraint:
p n
§5(k)
Sy <
u=1 k=1 Y

Mixed-implementation of the two previous models
Return messages : for each application Ay

5K — 609 1 return®)
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© Experiments
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Experiments

The platform

Hardware

Computers of the GDSDMI cluster:
@ 8 SuperMicro servers 5013-GM, with processors P4 2.4 GHz;

@ 5 SuperMicro servers 6013PI, with processors P4 Xeon 2.4
GHz;

@ 7 SuperMicro servers 5013SI, with processors P4 Xeon 2.6
GHz;

@ 7 SuperMicro servers IDE250W, with processors P4 2.8 GHz.
@ 100Mbps Fast-Ethernet switch
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Experiments

The tasks

@ MPI communications

@ Modification of slave parameters

Computation of matrices product

The linear programs are solved using glpk.
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Experiments

The studied algorithms

FIFO + Round-Robin
FIFO + MCT

S(R)PT + MCT

S(R)PT + Demand-Driven

Steady-state MWMA (Master Worker Multi-applications) on
each time interval

CBSSSM (Clever Burst Steady-State Stretch Minimizing)
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Experiments
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Experiments

You don't have any
result yet !
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Outline

@ Conclusion
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Conclusion

Conclusion

o Key points:

e Realistic platform model
e Optimal off-line algorithm
e On-line algorithm
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Conclusion

Conclusion

o Key points:

e Realistic platform model
e Optimal off-line algorithm
e On-line algorithm

@ Extensions:

e Have some experimental results
o Consider other objective functions
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