Résolution de systèmes linéaires creux de grande taille pour des applications de simulation

Emmanuel AGULLO (LIP - ENS Lyon) Emmanuel.Agullo@ens-lyon.fr

Some material from P. Amestoy (ENSEEIHT-IRIT) and J.-Y. L'Excellent (INRIA and LIP-ENS Lyon)

Jeudi 9 février 2006

Actualité des Nombres et du Calcul CRDP Amiens

Plan de l'exposé

Introduction to Sparse Matrix Computations

- Motivation and main issues
- Sparse matrices
- Gaussian elimination
- Symmetric matrices and graphs
- Ordering sparse matrices
 - Fill-reducing orderings
 - Impact of fill reduction algorithm on the shape of the tree
 - Related research activities in the team
- Preliminary work towards a parallel out-of-core solver
 - Preliminary Study
 - Out-of-core Storage of the Factors
 - Experimental Results
 - Preliminary Performance Analysis
 - Future work

Motivations

Motivations

- Besoins croissants des applications en puissance de calcul :
 - simulation,
 - modélisation,
 - optimisation numérique
- Typiquement :

Problème continu \Rightarrow Discrétisation (maillage) \Rightarrow Algorithme numérique de résolution (selon lois physiques)

- Besoins :
 - Modélisations de plus en plus précises
 - Problèmes de plus en plus complexes
 - Applications critiques en temps de réponse
 - Minimisation des coûts du calcul
- \Rightarrow Calculateurs parallèles / haute performance.
- ⇒ Algorithmes numériques et outils permettant de tirer le meilleur parti de ces calculateurs.

Quelques exemples dans le domaine du calcul scientifique

• Contraintes de durée : prévision du climat

Motivations

Quelques exemples dans le domaine du calcul scientifique

• Cost constraints : wind tunnels, crash simulation,

Scale Constraints

- large scale : climate modelling, pollution, astrophysics
- tiny scale : combustion, quantum chemistry

Plan de l'exposé

Introduction to Sparse Matrix Computations

- Motivation and main issues
- Sparse matrices
- Gaussian elimination
- Symmetric matrices and graphs
- Ordering sparse matrices
 - Fill-reducing orderings
 - Impact of fill reduction algorithm on the shape of the tree
- 3 Related research activities in the team
- Preliminary work towards a parallel out-of-core solver
 - Preliminary Study
 - Out-of-core Storage of the Factors
 - Experimental Results
 - Preliminary Performance Analysis
 - Future work

Plan de l'exposé

Introduction to Sparse Matrix Computations

- Motivation and main issues
- Sparse matrices
- Gaussian elimination
- Symmetric matrices and graphs
- Ordering sparse matrices
 - Fill-reducing orderings
 - Impact of fill reduction algorithm on the shape of the tree
 - Related research activities in the team
 - Preliminary work towards a parallel out-of-core solver
 - Preliminary Study
 - Out-of-core Storage of the Factors
 - Experimental Results
 - Preliminary Performance Analysis
 - Future work

Motivations

 $\bullet\,$ solution of linear systems of equations $\rightarrow\,$ key algorithmic kernel

```
Continuous problem \downarrow Discretization \downarrow Solution of a linear system Ax = b
```

- Main parameters :
 - Numerical properties of the linear system (symmetry, pos. definite, conditioning, ...)
 - Size and structure :
 - * Large (> 100000×100000 ?), square/rectangular
 - Dense or sparse (structured / unstructured)
 - ★ Target computer (sequential/parallel)
 - ightarrow Algorithmic choices are critical

Motivations for designing efficient algorithms

- Time-critical applications
- Solve larger problems
- Decrease elapsed time (parallelism ?)
- Minimize cost of computations (time, memory)

Difficulties

- Access to data :
 - Computer : complex memory hierarchy (registers, multilevel cache, main memory (shared or distributed), disk)
 - Sparse matrix : large irregular dynamic data structures.
 - \rightarrow Exploit the locality of references to data on the computer (design algorithms providing such locality)
- Efficiency (time and memory)
 - Number of operations and memory depend very much on the algorithm used and on the numerical and structural properties of the problem.
 - The algorithm depends on the target computer (vector, scalar, shared, distributed, clusters of Symmetric Multi-Processors (SMP), GRID).
 - ightarrow Algorithmic choices are critical

Plan de l'exposé

Introduction to Sparse Matrix Computations

- Motivation and main issues
- Sparse matrices
- Gaussian elimination
- Symmetric matrices and graphs
- Ordering sparse matrices
 - Fill-reducing orderings
 - Impact of fill reduction algorithm on the shape of the tree
 - Related research activities in the team
 - Preliminary work towards a parallel out-of-core solver
 - Preliminary Study
 - Out-of-core Storage of the Factors
 - Experimental Results
 - Preliminary Performance Analysis
 - Future work

Sparse matrices

Example :

can be represented as

$$\mathbf{A}\mathbf{x} = \mathbf{b},$$

where $\mathbf{A} = \begin{pmatrix} 3 & 2 & 0 \\ 0 & 2 & -5 \\ 2 & 0 & 3 \end{pmatrix}$, $\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$, and $\mathbf{b} = \begin{pmatrix} 5 \\ 1 \\ 0 \end{pmatrix}$

Sparse matrix : only nonzeros are stored.

Sparse matrix?

Matrix dwt_592.rua (N=592, NZ=5104); Structural analysis of a submarine

Factorization process

Solution of $\mathbf{A}\mathbf{x}=\mathbf{b}$

- ullet A is unsymmetric :
 - \mathbf{A} is factorized as : $\mathbf{A} = \mathbf{L}\mathbf{U}$, where
 - ${\bf L}$ is a lower triangular matrix, and
 - ${f U}$ is an upper triangular matrix.
 - Forward-backward substitution : Ly = b then Ux = y
- A is symmetric :
 - $\mathbf{A} = \mathbf{L}\mathbf{D}\mathbf{L}^{\mathrm{T}}$ or $\mathbf{L}\mathbf{L}^{\mathrm{T}}$

Factorization process

Solution of $\mathbf{A}\mathbf{x}=\mathbf{b}$

- ullet A is unsymmetric :
 - \mathbf{A} is factorized as : $\mathbf{A} = \mathbf{L}\mathbf{U}$, where
 - ${\bf L}$ is a lower triangular matrix, and
 - ${f U}$ is an upper triangular matrix.
 - Forward-backward substitution : $\mathbf{L}\mathbf{y} = \mathbf{b}$ then $\mathbf{U}\mathbf{x} = \mathbf{y}$
- A is symmetric :
 - $\mathbf{A} = \mathbf{L}\mathbf{D}\mathbf{L}^{\mathrm{T}}$ or $\mathbf{L}\mathbf{L}^{\mathrm{T}}$

Difficulties

- Only non-zero values are stored
- $\bullet\,$ Factors ${\bf L}$ and ${\bf U}$ have far more nonzeros than ${\bf A}$
- Data structures are complex
- Computations are only a small portion of the code (the rest is data manipulation)
- Memory size is a limiting factor

 \rightarrow out-of-core solvers

Key numbers :

1- Average size : 100 MB matrix;

Factors = 2 GB; Flops = 10 Gflops;

- 2- A bit more "challenging" : Lab. Géosiences Azur, Valbonne
 - Complex matrix arising in 2D $16 imes 10^6$, $150 imes 10^6$ nonzeros
 - Storage : 5 GB (12 GB with the factors?)
 - Flops : tens of TeraFlops
- 3- Typical performance (MUMPS) :
 - PC LINUX (P4, 2GHz) : 1.0 GFlops/s
 - Cray T3E (512 procs) : Speed-up \approx 170, Perf. 71 GFlops/s

Typical test problems :

BMW car body, 227,362 unknowns, 5,757,996 nonzeros, MSC.Software

Size of factors : 51.1 million entries Number of operations : 44.9 $\times 10^9$

Typical test problems :

BMW crankshaft, 148,770 unknowns, 5,396,386 nonzeros, MSC.Software

Size of factors : 97.2 million entries Number of operations : 127.9 $\times 10^9$

Sources of parallelism

Several levels of parallelism can be exploited :

- At problem level : problem can de decomposed into sub-problems (e.g. domain decomposition)
- At matrix level arising from its sparse structure
- At submatrix level within dense linear algebra computations (parallel BLAS, ...)

Data structure for sparse matrices

- Storage scheme depends on the pattern of the matrix and on the type of access required
 - band or variable-band matrices
 - "block bordered" or block tridiagonal matrices
 - general matrix
 - row, column or diagonal access

Data formats for a general sparse matrix ${f A}$

What needs to be represented

- Assembled matrices : MxN matrix A with NNZ nonzeros.
- <u>Elemental matrices</u> (unassembled) : MxN matrix **A** with NELT elements.
- Arithmetic : Real (4 or 8 bytes) or complex (8 or 16 bytes)
- Symmetric (or Hermitian)
 → store only part of the data.
- Distributed format ?
- Duplicate entries and/or out-of-range values?

Assembled matrix : illustration

Example of a 3x3 matrix with 5 nonzeros

	1	2	3
1	a11		
2		a22	a23
3	a31		a33

Coordinate format A $[1: NNZ] = a_{11}$ a_{22} a_{31} a_{23} a_{33} Compressed Sparse Column (CSC) format $[1:N+1] = 1 \quad 3 \quad 4 \quad 6$

Assembled matrix : illustration

Example of a 3x3 matrix with 5 nonzeros

	1	2	3
1	a11		
2		a22	a23
3	a31		a33

Coordinate format $A \qquad [1:NNZ] = a_{11} \quad a_{31} \quad a_{22}$ a_{23} a_{33} Compressed Sparse Column (CSC) format |RN [1:NNZ] = 1 3 2 23 $A \quad [1:NNZ] = a_{11} \quad a_{31} \quad a_{22} \quad a_{23}$ a_{33} $[1:N+1] = 1 \quad 3 \quad 4 \quad 6$ IP column J corresponds to IRN/A locations IP(J)...IP(J+1)-1

Example of elemental matrix format

$$\mathbf{A}_{1} = \begin{array}{ccc} 1 \\ 2 \\ 3 \end{array} \begin{pmatrix} -1 & 2 & 3 \\ 2 & 1 & 1 \\ 1 & 1 & 1 \end{array} \end{pmatrix}, \quad \mathbf{A}_{2} = \begin{array}{ccc} 3 \\ 4 \\ 5 \end{array} \begin{pmatrix} 2 & -1 & 3 \\ 1 & 2 & -1 \\ 3 & 2 & 1 \end{array} \end{pmatrix}$$

• N=5 NELT=2 NVAR=6 $\mathbf{A} = \sum_{i=1}^{NELT} \mathbf{A}_i$

- ELTPTR [1 :NELT+1] = 1 4 7 • ELTVAR [1 :NVAR] = 1 2 3 3 4 5 ELTVAL [1 :NVAL] = -1 2 1 2 1 1 3 1 1 2 1 3 -1 2 2 3 -1 1
- Remarks :
 - NVAR = ELTPTR(NELT+1)-1
 - ▶ NVAL = $\sum S_i^2$ (unsym) ou $\sum S_i(S_i + 1)/2$ (sym), avec $S_i = ELTPTR(i+1) - ELTPTR(i)$
 - storage of elements in ELTVAL : by columns

File storage : Rutherford-Boeing

- Standard ASCII format for files
- Header + Data (CSC format). key xyz :
 - x=[rcp] (real, complex, pattern)
 - y=[suhzr] (sym., uns., herm., skew sym., rectang.)
 - z=[ae] (assembled, elemental)
 - ex : M_T1.RSA, SHIP003.RSE
- Supplementary files : right-hand-sides, solution, permutations...
- Canonical format introduced to guarantee a unique representation (order of entries in each column, no duplicates).

File storage : Rutherford-Boeing

DNV	-Ex 1 :	Tubular	joint-19	999-01-1	7				M_	T1
	173	33710	97	58	492558	1	231394		0	
rsa	1		975	78	97578	4	925574		0	
(10)I8)	(1	018)	(3	e26.16)					
	1	49	96	142	187	231	274	346	417	487
	556	624	691	763	834	904	973	1041	1108	1180
	1251	1321	1390	1458	1525	1573	1620	1666	1711	1755
	1798	1870	1941	2011	2080	2148	2215	2287	2358	2428
	2497	2565	2632	2704	2775	2845	2914	2982	3049	3115
	1	2	3	4	5	6	7	8	9	10
	11	12	49	50	51	52	53	54	55	56
	57	58	59	60	67	68	69	70	71	72
	223	224	225	226	227	228	229	230	231	232
	233	234	433	434	435	436	437	438	2	3
	4	5	6	7	8	9	10	11	12	49
	50	51	52	53	54	55	56	57	58	59
	-0.2624	98928823	7320E+10	0.66	229605408	357440E+	09 0.	23627532	66740760	E+11
	0.3372	208164869	0030E+08	-0.48	514301627	99610E+	08 0.	15736528	96140010	E+08
	0.1704	33238841	9270E+10	-0.73	007631908	374110E+	-09 -0.	71135209	95891850	E+10
	0.1813	304872309	7540E+08	0.29	551244461	19170E+	-07 -0.	26069311	00955540	E+07
	0.1606	504091391	9180E+07	-0.23	778603669	09130E+	-08 -0.	11051803	86670390	E+09
	0.1610	63628032	4100E+08	0.42	300824754	35230E+	-07 -0.	19512806	18776270	E+07
	0.4498	320095189	1750E+08	0.20	662394846	515530E+	09 0.	37922374	38608430	E+08
	0 9819	999904237	0710E+08	0.38	811693680	90200E+	08 -0	46244805	72242580	E+08

Plan de l'exposé

Introduction to Sparse Matrix Computations

- Motivation and main issues
- Sparse matrices
- Gaussian elimination
- Symmetric matrices and graphs
- Ordering sparse matrices
 - Fill-reducing orderings
 - Impact of fill reduction algorithm on the shape of the tree
 - Related research activities in the team
 - Preliminary work towards a parallel out-of-core solver
 - Preliminary Study
 - Out-of-core Storage of the Factors
 - Experimental Results
 - Preliminary Performance Analysis
 - Future work

Gaussian elimination

$$\begin{split} \mathbf{A} &= \mathbf{A}^{(1)}, \ \mathbf{b} = \mathbf{b}^{(1)}, \ \mathbf{A}^{(1)} \mathbf{x} = \mathbf{b}^{(1)} : \\ \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} \stackrel{2 \leftarrow 2 - 1 \times a_{21}/a_{11}}{3 \leftarrow 3 - 1 \times a_{31}/a_{11}} \\ \\ \mathbf{A}^{(2)} \mathbf{x} = \mathbf{b}^{(2)} \\ \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ 0 & a_{22}^{(2)} & a_{23}^{(2)} \\ 0 & a_{32}^{(2)} & a_{33}^{(2)} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2^{(2)} \\ b_3^{(2)} \end{pmatrix} \stackrel{b_2^{(2)} = b_2 - a_{21}b_1/a_{11} \dots}{a_{32}^{(2)} = a_{32} - a_{31}a_{12}/a_{11} \dots} \\ \\ \\ \hline Finally \mathbf{A}^{(3)} \mathbf{x} = \mathbf{b}^{(3)} \\ \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ 0 & a_{22}^{(2)} & a_{23}^{(2)} \\ 0 & 0 & a_{33}^{(3)} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2^{(2)} \\ b_3^{(3)} \end{pmatrix} \stackrel{a_{(33)}^{(3)} = a_{(33)}^{(2)} - a_{32}^{(2)}a_{22}^{(2)}/a_{22}^{(2)} \dots \\ \\ \\ \\ \\ Typical Gaussian elimination step k : \boxed{a_{ij}^{(k+1)} = a_{ij}^{(k)} - \frac{a_{ik}^{(k)}a_{kj}^{(k)}}{a_{kk}^{(k)}}}$$

Relation with $\mathbf{A} = \mathbf{L}\mathbf{U}$ factorization

- One step of Gaussian elimination can be written : $\mathbf{A}^{(k+1)} = \mathbf{L}^{(k)}\mathbf{A}^{(k)} , \text{ with}$ $\mathbf{L}^{k} = \begin{pmatrix} \mathbf{1} & & \\ & \mathbf{1} & & \\ & & -\mathbf{1}_{\mathbf{n},\mathbf{k}} & & \mathbf{1} \end{pmatrix} \text{ and } l_{ik} = \frac{a_{ik}^{(k)}}{a_{kk}^{(k)}}.$ • Then, $\mathbf{A}^{(n)} = \mathbf{U} = \mathbf{L}^{(n-1)} \dots \mathbf{L}^{(1)}\mathbf{A}$, which gives $\mathbf{A} = \mathbf{L}\mathbf{U}$, with $\mathbf{L} = [\mathbf{L}^{(1)}]^{-1} \dots [\mathbf{L}^{(n-1)}]^{-1} = \begin{pmatrix} \mathbf{1} & \mathbf{0} \\ & & \\ & & \mathbf{1}_{i,j} & \mathbf{1} \end{pmatrix}$
- $\bullet\,$ In dense codes, entries of ${\bf L}$ and ${\bf U}$ overwrite entries of ${\bf A}.$
- Furthermore, if **A** is symmetric, $\boxed{\mathbf{A} = \mathbf{L}\mathbf{D}\mathbf{L}^{\mathrm{T}}}$ with $d_{kk} = a_{kk}^{(k)}$: $A = LU = A^t = U^t L^t$ implies $(U)(L^t)^{-1} = L^{-1}U^t = D$ diagonal and $U = DL^t$, thus $A = L(DL^t) = LDL^t$

Gaussian elimination and sparsity

Step k of **LU** factorization (a_{kk} pivot) :

- For i>k compute $l_{ik}=a_{ik}/a_{kk}$ (= a_{ik}^{\prime}),
- ullet For i>k, j>k $a_{ij}'=a_{ij}-rac{a_{ik} imes a_{kj}}{a_{kk}}$

or

$$a_{ij}' = a_{ij} - l_{ik} \times a_{kj}$$

- If $a_{ik} \neq 0$ et $a_{kj} \neq 0$ then $a'_{ij} \neq 0$
- If a_{ij} was zero \rightarrow its non-zero value must be stored

fill-in

- Idem for Cholesky :
- For i>k compute $l_{ik}=a_{ik}/\sqrt{a_{kk}}\;(=a_{ik}'),$
- For $i > k, j > k, j \le i$ (lower triang.)

$$a_{ij}' = a_{ij} - \frac{a_{ik} \times a_{jk}}{\sqrt{a_{kk}}}$$

or

$$a_{ij}' = a_{ij} - l_{ik} \times a_{jk}$$

Example

• Original matrix

х	х	х	х	х
x	x			
x		x		
x			x	
х				x

- Matrix is full after the first step of elimination
- \bullet After reordering the matrix (1st row and column \leftrightarrow last row and column)

No fill-in

• Ordering the variables has a strong impact on

- the fill-in
- the number of operations

 $\rm TAB.:$ Benefits of Sparsity on matrix of order 2021 \times 2021 with 7353 nonzeros. (Dongarra etal 91) .

Procedure	Total storage	Flops	Time (sec.)
			on CRAY J90
Fu∥ Syst.	4084 Kwords	5503 $ imes 10^{6}$	34.5
Sparse Syst.	71 Kwords	1073×10^{6}	3.4
Sparse Syst. and reordering	14 Kwords	42×10^{3}	0.9
Efficient implementation of sparse solvers

 Indirect addressing is often used in sparse calculations : e.g. sparse SAXPY

```
do i = 1, m
    A( ind(i) ) = A( ind(i) ) + alpha * w( i )
enddo
```

- Even if manufacturers provide hardware for improving indirect addressing
 - It penalizes the performance
- Switching to dense calculations as soon as the matrix is not sparse enough

Effect of switch to dense calculations

Matrix from 5-point discretization of the Laplacian on a 50×50 grid (Dongarra etal 91)

Density for	Order of	Millions	Time
switch to full code	full matrix	of flops	(sec.)
No switch	0	7	21.8
1.00	74	7	21.4
0.80	190	8	15.0
0.60	235	11	12.5
0.40	305	21	9.0
0.20	422	50	5.5
0.10	531	100	3.7
0.005	1420	1908	6.1

Sparse structure should be exploited if density < 10%.

Plan de l'exposé

Introduction to Sparse Matrix Computations

- Motivation and main issues
- Sparse matrices
- Gaussian elimination
- Symmetric matrices and graphs
- Ordering sparse matrices
 - Fill-reducing orderings
 - Impact of fill reduction algorithm on the shape of the tree
 - Related research activities in the team
 - Preliminary work towards a parallel out-of-core solver
 - Preliminary Study
 - Out-of-core Storage of the Factors
 - Experimental Results
 - Preliminary Performance Analysis
 - Future work

Symmetric matrices and graphs

- \bullet Assumptions : ${\bf A}$ symmetric and pivots are chosen on the diagonal
- Structure of ${\bf A}$ symmetric represented by the graph $G^0=(V^0,E^0)$
 - \blacktriangleright Vertices are associated to columns : $V^0=\{1,...,n\}$
 - Edges E^0 are defined by $: (i,j) \in E^0 \leftrightarrow a_{ij} \neq 0$
 - G^0 undirected (symmetry of A)

Symmetric matrices and graphs

• Remarks :

- ▶ Number of nonzeros in column $j = |Adj_{G^0}(j)|$
- ► Symmetric permutation ≡ renumbering the graph

The elimination graph model

Construction of the elimination graphs Let v_i denote the vertex of index i. $G_0 = G(\mathbf{A})$, i = 1. At each step delete v_i and its incident edges Add edges so that vertices in $Adj(v_i)$ are pairwise adjacent in $G_i = G(\mathbf{H}_i)$.

 G_i are the so-called *elimination graphs*.

A sequence of elimination graphs

$$H0 = \begin{vmatrix} 1 \times & \times \\ \times & 2 \times \times \\ \times & 3 & \times \\ \times & 4 & \\ \times & 5 & \times \\ \times & \times & 6 \end{vmatrix}$$

$$H1 = \begin{bmatrix} 2 \times \times & + \\ \times & 3 & \times \\ \times & 4 \\ \times & 5 \times \\ + & \times & 6 \end{bmatrix}$$

$$H2 = \begin{bmatrix} 3 + \times + \\ + 4 & + \\ \times & 5 \times \\ + + \times & 6 \end{bmatrix}$$
$$H3 = \begin{bmatrix} 4 + + \\ + 5 \times \end{bmatrix}$$

$$\mathbf{b} = \begin{bmatrix} \mathbf{4} + \mathbf{+} \\ \mathbf{+} \mathbf{5} \\ \mathbf{+} \\ \mathbf{+} \\ \mathbf{6} \end{bmatrix}$$

Introducing the filled graph $G^+(\mathbf{A})$

- Let $\mathbf{F} = \mathbf{L} + \mathbf{L}^{\mathrm{T}}$ be the filled matrix, and $G(\mathbf{F})$ the *filled graph* of \mathbf{A} denoted by $G^{+}(\mathbf{A})$.
- Lemma (Parter 1961) : $(v_i, v_j) \in G^+$ if and only if $(v_i, v_j) \in G$ or $\exists k < \min(i, j)$ such that $(v_i, v_k) \in G^+$ and $(v_k, v_j) \in G^+$.

A first definition of the elimination tree

- A spanning tree of a connected graph G is a subgraph T of G such that if there is a path in G between i and j then there exists a path between i and j in T.
- Let A be a symmetric positive-definite matrix $A = LL^{T}$ its Cholesky factorization, and $G^{+}(A)$ its filled graph (graph of $F = L + L^{T}$).

Definition

The elimination tree of A is a spanning tree of $G^+(\mathbf{A})$ satisfying the relation $PARENT[j] = min\{i > j | l_{ij} \neq 0\}$.

Graph structures

Properties of elimination tree

- Another perspective also leads to the elimination tree
- $\bullet\,$ Dependency between columns of ${\bf L}$:
 - Column i > j depends on column j iff $l_{ij} \neq 0$
 - Output See a directed graph to express this dependency
 - Simplify redundant dependencies (*transitive reduction* in graph theory)
- The transitive reduction of the directed filled graph gives the elimination tree structure

Symmetric matrices and graphs

Directed filled graph and its transitive reduction

Directed filled graph

Transitive reduction

Plan de l'exposé

- Introduction to Sparse Matrix Computations
 - Motivation and main issues
 - Sparse matrices
 - Gaussian elimination
 - Symmetric matrices and graphs
- Ordering sparse matrices
 - Fill-reducing orderings
 - Impact of fill reduction algorithm on the shape of the tree
- 3 Related research activities in the team
- Preliminary work towards a parallel out-of-core solver
 - Preliminary Study
 - Out-of-core Storage of the Factors
 - Experimental Results
 - Preliminary Performance Analysis
 - Future work

Ordering sparse matrices

Ordering sparse matrices : objectives/outline

- Reduce fill-in and number of operations during factorization : (local and global heuristics).
 - Increase parallelism (wide tree)
 - Decrease memory usage (deep tree)
- Equivalent orderings :

(Traverse tree to minimize working memory)

- Reorder unsymmetric matrices to special forms :
 - block upper triangular matrix :
 - with (large) non-zero entries on the diagonal (maximum transversal).
- Combining approaches

Plan de l'exposé

Introduction to Sparse Matrix Computations

- Motivation and main issues
- Sparse matrices
- Gaussian elimination
- Symmetric matrices and graphs
- Ordering sparse matrices
 - Fill-reducing orderings
 - Impact of fill reduction algorithm on the shape of the tree
 - Related research activities in the team
 - Preliminary work towards a parallel out-of-core solver
 - Preliminary Study
 - Out-of-core Storage of the Factors
 - Experimental Results
 - Preliminary Performance Analysis
 - Future work

Fill-reducing orderings

Three main classes of methods for minimizing fill-in during factorization

- Global approach : The matrix is permuted into a matrix with a given pattern
 - Fill-in is restricted to occur within that structure
 - Cuthill-McKee (block tridiagonal matrix)
 - Nested dissections ("block bordered" matrix).

Fill-reducing orderings

- Local heuristics : At each step of the factorization, selection of the pivot that is likely to minimize fill-in.
 - Method is characterized by the way pivots are selected.
 - Markowitz criterion (for a general matrix).
 - Minimum degree (for symmetric matrices).
- Hybrid approaches : Once the matrix is permuted in order to obtain a block structure, local heuristics are used within the blocks.

Ordering sparse matrices Fill-reducing orderings

Cuthill-McKee and Reverse Cuthill-McKee

Consider the matrix :

The corresponding graph is

Cuthill-McKee algorithm

- Goal : reduce the profile/bandwidth of the matrix (the fill is restricted to the band structure)
- Level sets (such as Breadth First Search) are built from the vertex of minimum degree (priority to the vertex of smallest number) We get : $S_1 = \{2\}, S_2 = \{1\}, S_3 = \{4, 5\}, S_4 = \{3, 6\}$ and thus the ordering 2, 1, 4, 5, 3, 6.

The reordered matrix is :

Reverse Cuthill-McKee

- \bullet The ordering is the reverse of that obtained using Cuthill-McKee i.e. on the example $\{6,3,5,4,1,2\}$
- The reordered matrix is :

 More efficient than Cuthill-McKee at reducing the envelop of the matrix.

Illustration : Reverse Cuthill-McKee on matrix dwt_592.rua

Harwell-Boeing matrix : dwt_592.rua, structural computing on a submarine. NZ(LU factors)=58202

Illustration : Reverse Cuthill-McKee on matrix dwt_592.rua

NZ(LU factors)=16924

Nested Dissection

Recursive approach based on graph partitioning.

Local heuristics to reduce fill-in during factorization

Let G(A) be the graph associated to a matrix A that we want to order using local heuristics.

Let Metric such that $Metric(v_i) < Metric(v_j)$ implies v_i is a better than v_j

Generic algorithm

Loop until all nodes are selected

 $\label{eq:Step1} {\sf Step1}: {\sf select \ current \ node \ } p \ ({\sf so \ called \ pivot}) \ {\sf with \ minimum \ metric \ value,}$

Step2 : update elimination graph,

Step3 : update $Metric(v_j)$ for all non-selected nodes v_j .

Step3 should only be applied to nodes for which the Metric value might have changed.

Reordering unsymmetric matrices : Markowitz criterion

• At step k of Gaussian elimination :

• Minimum degree : Markowitz criterion for symmetric diagonally dominant matrices

Minimum degree algorithm

• Step 1 :

Select the vertex that possesses the smallest number of neighbors in G^0 .

(a) Sparse symmetric matrix

(b) Elimination graph

The node/variable selected is 1 of degree 2.

• Notation for the elimination graph

- Let $G^k = (V^k, E^k)$, the graph built at step k.
- G^k describes the structure of \mathbf{A}_k after elimination of k pivots.
- G^k is non-oriented (\mathbf{A}_k is symmetric)
- Fill-in in $A_k \equiv$ adding edges in the graph.

Illustration

Step 1 : elimination of pivot 1

(a) Elimination graph

 $\begin{array}{c}1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6\end{array}$ X $\begin{pmatrix} & & & & \\ & \times \times & 5 & \\ & \times \times & 5 & \\ & \times \times & 7 & \times \times \\ & & & \times & 8 & \times \\ & & & & \times & 8 & \times \\ & & & & & \times & 9 & \times \\ & & & & & & \times & 10 \end{bmatrix}$ X

(b) Factors and active submatrix

Minimum degree algorithm applied to the graph :

- Step k : Select the node with the smallest number of neighbors
- G^k is built from G^{k-1} by suppressing the pivot and adding edges corresponding to fill-in.

Illustration (cont'd)

Graphs G_1, G_2, G_3 and corresponding reduced matrices.

(a) Elimination graphs

(b) Factors and active submatrices

- × Original nonzero
- Original nonzero modified

Nonzeros in factors

Minimum Degree does not always minimize fill-in !!!

Consider the following matrix

Combining reordering techniques

Example (1) of hybrid approach

- Top-down followed by bottom-up processing of the graph : Top-down : Apply nested dissection (ND) on complete graph Bottom-up : Local heuristic on each subgraph
- Generally better for large-scale irregular problems than
 - pure nested dissection
 - local heuristics

(1 cont) hybrid approach

Elimination graph

Plan de l'exposé

Introduction to Sparse Matrix Computations

- Motivation and main issues
- Sparse matrices
- Gaussian elimination
- Symmetric matrices and graphs
- Ordering sparse matrices
 - Fill-reducing orderings
 - Impact of fill reduction algorithm on the shape of the tree
 - Related research activities in the team
 - Preliminary work towards a parallel out-of-core solver
 - Preliminary Study
 - Out-of-core Storage of the Factors
 - Experimental Results
 - Preliminary Performance Analysis
 - Future work
Impact of fill reduction on the shape of the tree

Reordering technique	Shape of the tree	observations
AMD		 Deep well-balanced Large frontal matrices on top
AMF		 ● Very deep unbalanced ● Small frontal matrices

Reordering technique	Shape of the tree	observations
PORD		 deep unbalanced Small frontal matrices
SCOTCH		 Very wide well-balanced Large frontal matrices
METIS		 Wide well-balanced Smaller frontal matrices (than SCOTCH)

Importance of the shape of the tree

Suppose that each node in the tree corresponds to a task that :

- consumes temporary data from the children,
- produces temporary data, that is passed to the parent node.
- Wide tree
 - Good parallelism
 - Many temporary blocks to store
 - Large memory usage
- Deep tree
 - Less parallelism
 - Smaller memory usage

Scheduling tasks in the tree (tree traversal)

- Assumption : parents are processed as soon as all children have completed (postorder of the tree)
- Given a tree, memory usage depends on tree traversal.

Memory-minimizing schedules

- M_i : memory peak for complete subtree rooted at i,
- $temp_i$: temporary memory produced by node i,
- m : memory for storing the parent.

Theorem

The minimum of $\max_j (x_j + \sum_{i=1}^{j-1} y_j)$ is obtained when the sequence (x_i, y_i) is sorted in decreasing order of $x_i - y_i$,

Corollary

An optimal child sequence is obtained by rearranging the children nodes in decreasing order of $M_i - temp_i$.

<u>Interpretation</u>: At each level of the tree, child with relatively large peak of memory in its subtree (M_i large with respect to $temp_i$) should be processed first.

 \Rightarrow Apply on complete tree starting from the leaves.

Plan de l'exposé

- Introduction to Sparse Matrix Computation
 - Motivation and main issues
 - Sparse matrices
 - Gaussian elimination
 - Symmetric matrices and graphs
 - Ordering sparse matrices
 - Fill-reducing orderings
 - Impact of fill reduction algorithm on the shape of the tree

Related research activities in the team

- Preliminary work towards a parallel out-of-core solver
 - Preliminary Study
 - Out-of-core Storage of the Factors
 - Experimental Results
 - Preliminary Performance Analysis
 - Future work

Projects

- GRAAL/LIP (ENS Lyon / INRIA / UCBL / CNRS)
 - Scheduling for parallel sparse direct solvers
- Strong collaboration with ENSEEIHT-IRIT (Toulouse)
- Software is vital to validate/experiment our research

Projects

- GRAAL/LIP (ENS Lyon / INRIA / UCBL / CNRS)
 - Scheduling for parallel sparse direct solvers
- Strong collaboration with ENSEEIHT-IRIT (Toulouse)
- Software is vital to validate/experiment our research

Software

MUMPS (MUltifrontal Massively Parallel Solver)

MUMPS solves large systems of linear equations of the form Ax=b by factorizing A into A=LU or LDLT

- Symmetric or unsymmetric matrices (partial pivoting)
- Parallel factorization and solution phases (uniprocessor version also available)
- Iterative refinement and backward error analysis
- Various matrix input formats
 - assembled format
 - distributed assembled format
 - sum of elemental matrices
- Partial factorization and Schur complement matrix
- Version for complex arithmetic
- Several orderings interfaced : AMD, AMF, PORD, METIS

Software (2)

MUMPS (MUltifrontal Massively Parallel Solver)

- Main contributors : P. Amestoy, I. Duff, A. Guermouche, J.Koster, J.-Y. L'Excellent, S. Pralet
- Recent features :
 - sparse, multiple right-hand sides,
 - hybrid scheduling,
 - improved numerical features for symmetric matrices,
 - distributed (2D cyclic) Schur complement,
 - preprocessing duplicate entries,
 - scilab and matlab interfaces, ...
- \approx 800 users (academic + industrial users, eg : Boeing, BRGM, EADS, CEA, Dassault, EADS, EDF, MIT, NASA, SAMTECH, ...),
- Freely available
- More info : http ://graal.ens-lyon.fr/MUMPS or http ://www.enseeiht.fr/apo/MUMPS

E. Agullo

MUMPS (Multifrontal sparse solver)

1 Analysis and Preprocessing

- Preprocessing (max. transversal, scaling)
- Fill-in reduction on $\mathbf{A} + \mathbf{A}^T$
- Partial static mapping (elimination tree)

Pactorization

- Multifrontal (elimination tree of $\mathbf{A} + \mathbf{A}^T$) $Struct(\mathbf{L}) = Struct(\mathbf{U})$
- Partial threshold pivoting
- Node parallelism
 - Partitioning (1D Front 2D Root)
 - Dynamic distributed scheduling

Solution step and iterative refinement

$\ensuremath{\operatorname{FIG.:}}$ Communication schemes for three approaches.

1.0	-Λ	2			0
1	l,	9	υ.		u

$\ensuremath{\operatorname{FIG}}\xspace$: Communication schemes for three approaches.

D. AGOLL	

$\ensuremath{\operatorname{FIG.:}}$ Communication schemes for three approaches.

D. AGOLL	

$\ensuremath{\operatorname{FIG}}\xspace$: Communication schemes for three approaches.

$\ensuremath{\operatorname{FIG}}\xspace$: Communication schemes for three approaches.

1. AGU 1100	1.0	T	0	- A	ų,
		υ.	5		

MUMPS : dynamic scheduling

Graph of tasks = tree Each task = partial factorization of a dense matrix Some parallel tasks mapped at runtime (80 %)

MUMPS : dynamic scheduling

Graph of tasks = tree Each task = partial factorization of a dense matrix Some parallel tasks mapped at runtime (80 %)

MUMPS : dynamic scheduling

Graph of tasks = tree Each task = partial factorization of a dense matrix Some parallel tasks mapped at runtime (80 %)

Related research activities in the team

Trace of execution(BBMAT, 8 proc. CRAY T3E)

Current/related work

- Parallel Out-of-core Solvers
 - strong demand from users
 - PhD Emmanuel Agullo, ENS Lyon
- Improve performance of solution phase
 - successive solution steps with same matrix
 - out-of-core context
 - PhD Mila Slavova, CERFACS
- Provide functionalities for external solvers
 - Schur complement
 - hybrid direct-iterative solvers : PhD Azzam Haidar, CERFACS
- Software/engineer work
 - Aurélia Fèvre : engineer, employed by INRIA
- Grid TLSE project :
 - a web expertise site for sparse linear algebra
 - project coordinator : ENSEEIHT-IRIT

Current/related work

- Parallel Out-of-core Solvers
 - strong demand from users
 - PhD Emmanuel Agullo, ENS Lyon
- Improve performance of solution phase
 - successive solution steps with same matrix
 - out-of-core context
 - PhD Mila Slavova, CERFACS
- Provide functionalities for external solvers
 - Schur complement
 - hybrid direct-iterative solvers : PhD Azzam Haidar, CERFACS
- Software/engineer work
 - Aurélia Fèvre : engineer, employed by INRIA
- Grid TLSE project :
 - a web expertise site for sparse linear algebra
 - project coordinator : ENSEEIHT-IRIT

Plan de l'exposé

- Introduction to Sparse Matrix Computations
 - Motivation and main issues
 - Sparse matrices
 - Gaussian elimination
 - Symmetric matrices and graphs
- Ordering sparse matrices
 - Fill-reducing orderings
 - Impact of fill reduction algorithm on the shape of the tree
- Related research activities in the team
- Preliminary work towards a parallel out-of-core solver
 - Preliminary Study
 - Out-of-core Storage of the Factors
 - Experimental Results
 - Preliminary Performance Analysis
 - Future work

Matrice BRGM : • 5 M variables • 140 M non zéros

Minimiser le temps écoulé

Out-of-core, svp	et vite !	
Mémoire physique Disque	Minimiser le temps écoulé	
Mémoire nécessaire		
Recours aux disques		

Out-of-core, svp	et vite !	Tout de suite.
Mémoire physique Disque	Minimizer le temps ésquié	
Mémoire nécessaire	Minimiser le temps écoule	
Recours aux disques		

Preliminary work towards a parallel out-of-core solver

Méthode multifrontale

Méthode multifrontale (Duff, Reid'83)

Plan de l'exposé

Introduction to Sparse Matrix Computations

- Motivation and main issues
- Sparse matrices
- Gaussian elimination
- Symmetric matrices and graphs

Ordering sparse matrices

- Fill-reducing orderings
- Impact of fill reduction algorithm on the shape of the tree

Related research activities in the team

- Preliminary work towards a parallel out-of-core solver
 - Preliminary Study
 - Out-of-core Storage of the Factors
 - Experimental Results
 - Preliminary Performance Analysis
 - Future work

Preliminary Study

- MUMPS : Multifrontal Parallel Solver for both LU and LDL^{T} .
- Simulation of an out-of-core behaviour :
 - Free factors as soon as they are computed
 - Only factorization step is possible (factors are lost)
- Selected values : the bigger over all processors for :
 - the size of factors
 - the peak of active memory
 - the peak of total memory

Typical Memory Behaviour

• Typical memory behaviour (AUDIKW_1 matrix, METIS)

Consequence

- First step : store factors on disk (well adapted for few processors)
- Second step : stack should also be out-of-core (larger problems or many processors)

Plan de l'exposé

Introduction to Sparse Matrix Computations

- Motivation and main issues
- Sparse matrices
- Gaussian elimination
- Symmetric matrices and graphs
- Ordering sparse matrices
 - Fill-reducing orderings
 - Impact of fill reduction algorithm on the shape of the tree
 - Related research activities in the team
 - Preliminary work towards a parallel out-of-core solver
 - Preliminary Study
 - Out-of-core Storage of the Factors
 - Experimental Results
 - Preliminary Performance Analysis
 - Future work
Out-of-core Storage of the Factors

Synchronous Version :

- Use standard write operations
- Factors are written to disk (possibly with low-level system buffering) as soon as they are computed
- Solution step :
 - 1 Read a factor block
 - 2 Work with the factor

 \Rightarrow Factors may be read twice (forward elimination and backward substitution)

Plan de l'exposé

Introduction to Sparse Matrix Computations

- Motivation and main issues
- Sparse matrices
- Gaussian elimination
- Symmetric matrices and graphs
- Ordering sparse matrices
 - Fill-reducing orderings
 - Impact of fill reduction algorithm on the shape of the tree
 - Related research activities in the team
 - Preliminary work towards a parallel out-of-core solver
 - Preliminary Study
 - Out-of-core Storage of the Factors
 - Experimental Results
 - Preliminary Performance Analysis
 - Future work

Experimental Environment

- MUMPS : Multifrontal Parallel Solver for both LU and LDL^{T} .
- Test platform : *IBM* machine at *IDRIS* (Orsay, France) composed of 4-way and 32-way Power4+ processors. Memory limits per processor :

Number of procs	1	2-16	17-64	65-
Max memory	16 GB	4GB	3.5GB	1.3GB

• Test problems : large matrices (from PARASOL, SAMTECH, CEA/CESTA, M. Sosonkina).

	Order	nnz	$nnz(L U) \times 10^6$	$Ops imes 10^9$	
Symmetric matrices					
AUDIKW_1	943695	39297771	1368.6	5682	
CONESHL_MOD	1262212	43007782	790.8	1640	
Unsymmetric matrices					
CONV3D64	836550	12548250	2693.9	23880	
UL TRASOUND80	531441	33076161	981.4	3915	

(Statistics with METIS)

Results : we can solve

• bigger problems

• same problems with less memory (cf preliminary study) example : ULTRASOUND80

	total mem per proc	active mem per proc
1 proc (16GB)	1101 million reals	218 million reals
4 procs	360 million reals	154 million reals

• same problems with less processors

Matrix	Strategy	min procs
ULTRASOUND80	in-core	8
	out-of-core	2
CONV3D64	in-core	32
	out-of-core	16

 CONV3D64 on 1 proc with 16 GB memory : OOC version ok, IC version runs out of memory

Plan de l'exposé

Introduction to Sparse Matrix Computations

- Motivation and main issues
- Sparse matrices
- Gaussian elimination
- Symmetric matrices and graphs
- Ordering sparse matrices
 - Fill-reducing orderings
 - Impact of fill reduction algorithm on the shape of the tree
 - Related research activities in the team
 - Preliminary work towards a parallel out-of-core solver
 - Preliminary Study
 - Out-of-core Storage of the Factors
 - Experimental Results
 - Preliminary Performance Analysis
 - Future work

Preliminary Performance Analysis

- Compare performance of IC and OOC strategies (when enough memory for both)
 - synchronous I/O
 - asynchronous I/O with a buffer
 - in-core
- Time for factorization :

FIG.: Factorization time (matrix CONESHL_MOD)

Remarks

Impact of locality

- In several cases, out-of-core version as good as in-core version !
- Explanation : better memory locality (frontal matrix always in the same area of memory)

Impact of platform

- (GPFS) no guarantee that each processor accesses its own disk...
- \Rightarrow Disk contention when increasing the number of procs

First experiments with guaranteed access to local disks

- cluster of Itanium2 processors (Grenoble), 3 GB per node
- In parallel : between 1 and 10 % performance loss maximum

Study of the solution step

Solution time becomes critical

- asynchronous prefetch mechanisms needed
- avoid I/O of small granularity
- more complex memory management (multiple or cyclic workspaces)

Limitations of the Multifrontal Method?

Out-of-Core : left-looking vs multifrontal

- Rothberg and Schreiber (1999); Rotkin and Toledo (2004)
- (switch to) left-looking to avoid large frontal matrices
- possibly more I/O in multifrontal (if active memory is OOC)

However :

- Frontal matrices can be distributed on several processors
- Multifrontal method : each data is written once, read once
- Guermouche, L'Excellent '05 : pre-allocating the parent can reduce the volume of active memory (and of I/O)

Simulation of an out-of-core stack management

When assembling a node (type 1, master or slave of type 2, supposed to fit in memory), different scenarios :

- pessimistic scheme : all its children have been prefetched
- intermediate scheme : children loaded from disk one by one
- optimistic scheme : only load a small block of each child

Plan de l'exposé

Introduction to Sparse Matrix Computations

- Motivation and main issues
- Sparse matrices
- Gaussian elimination
- Symmetric matrices and graphs
- Ordering sparse matrices
 - Fill-reducing orderings
 - Impact of fill reduction algorithm on the shape of the tree
 - Related research activities in the team
 - Preliminary work towards a parallel out-of-core solver
 - Preliminary Study
 - Out-of-core Storage of the Factors
 - Experimental Results
 - Preliminary Performance Analysis
 - Future work

Out-of-core factorization : Future work

- Assess memory limits of parallel multifrontal approach (simulations)
- Out-of-core stack memory
 - Sequential case : window mechanism
 - Parallel case :
 - Stack memory is not exactly accessed in LIFO order
 - \Rightarrow find heuristics to prefetch contribution blocks and/or modify scheduling
- Adapt hybrid scheduling strategies to parallel out-of-core factorization
- Cases that almost fit in memory : try to keep most of the factors in-core
- (parallel) out-of-core processing (assembly/factorization) of large frontal matrices