
On the Complexity of Mapping Pipelined Filtering Services on
Heterogeneous Platforms

Anne Benoit, Fanny Dufossé and Yves Robert

LIP, École Normale Supérieure de Lyon, 46 allée d’Italie, 69364 Lyon Cedex 07, France
{Anne.Benoit|Fanny.Dufosse|Yves.Robert}@ens-lyon.fr

Abstract

In this paper, we explore the problem of mapping
filtering services on large-scale heterogeneous plat-
forms. Two important optimization criteria should be
considered in such a framework. The period, which is
the inverse of the throughput, measures the rate at which
data sets can enter the system. The latency measures
the response time of the system in order to process one
single data set entirely. Both criteria are antagonistic.
For homogeneous platforms, the complexity of period
minimization is already known [12]; we derive an
algorithm to solve the latency minimization problem in
the general case with service precedence constraints;
we also show that the bi-criteria problem (latency
minimization without exceeding a prescribed value for
the period) is of polynomial complexity. However, when
adding heterogeneity to the platform, we prove that min-
imizing the period or the latency becomes NP-complete,
and that these problems cannot be approximated by any
constant factor (unless P=NP). The latter results hold
true even for services without precedence constraints.

Key words: query optimization, web service, filter,
workflow, period, latency, complexity results.

1 Introduction

This paper deals with the problem of query optimiza-
tion over web services [12, 6]. The problem is close
to the problem of mapping pipelined workflows onto
distributed architectures, but involves several additional
difficulties due to the filtering properties of the services.

In a nutshell, pipelined workflows are a popular
programming paradigm for streaming applications like

video and audio encoding and decoding, DSP applica-
tions, etc [8, 13, 17]. A workflow graph contains several
nodes, and these nodes are connected to each other using
first-in-first-out channels. Data is input into the graph
using input channel(s) and the outputs are produced on
the output channel(s). The goal is to map each node onto
some processor so as to optimize some scheduling ob-
jective. Since data continually flows through these appli-
cations, typical objectives of the scheduler are through-
put maximization (or equivalently period minimization,
where the period is defined as the inverse of the through-
put) and/or latency (also called response time) mini-
mization [14, 15, 5, 16]. Consider for instance a video
and audio decoding application. We want that the video
begin as fast as possible, i.e., we want to minimize the la-
tency. Moreover, we need to respect the streaming band-
width, i.e., there is a bound on the period that should not
be violated. In such a case, the goal is thus to minimize
the latency with a bound on the period.

In the query optimization problem, we have a col-
lection of various services that must be applied on a
stream of consecutive data sets. As for workflows, we
have a graph with nodes (the services) and precedence
edges (dependence constraints between services), with
data flowing continuously from the input node(s) to the
output node(s). Also, the goal is to map each service
onto a processor, or server, so as to optimize the same
objectives as before (period and/or latency). But in ad-
dition, services can filter the data by a certain amount,
according to their selectivity. Consider a service Ci with
selectivity σi: if the incoming data is of size δ, then the
outgoing data will be of size δ×σi. The initial data is of
size δ0. We see that the data is shrunk by Ci (hence the
term “filter”) when σi < 1 but it can also be expanded if
σi > 1. Each service has an elementary cost ci, which
represents the volume of computations required to pro-
cess a data set of size δ0. But the volume of computa-

1

C1 C2 C3

Figure 1. Chaining services.

tions is proportional to the actual size of the input data,
which may have shrunk or expanded by the predecessors
of Ci in the mapping. Altogether, the time to execute a
data set of size σ × δ0 when service Ci is mapped onto
server Su of speed su is σ cisu . Here σ denotes the com-
bined selectivity of all predecessor ofCi in the mapping.

Consider now two arbitrary services Ci and Cj . If
there is a precedence constraint from Ci to Cj , we need
to enforce it. But if there is none, meaning that Ci and
Cj have no precedence constraints, we may still intro-
duce a (fake) edge, say from Cj to Ci, in the mapping,
meaning that the output of Cj is fed as input to Ci. If
the selectivity of Cj is small (σj < 1), then it shrinks
each data set, and Ci will operate on data sets of re-
duced volume. As a result, the cost of Ci will decrease
in proportion to the volume reduction, leading to a bet-
ter solution than running both services in parallel. Ba-
sically, there are two ways to decrease the final cost of
a service: (i) map it on a fast server; and (ii) map it
as a successor of a service with small selectivity. In
general, we have to organize the execution of the ap-
plication by assigning a server to each service and by
deciding which service will be a predecessor of which
other service (therefore building an execution graph, or
plan), with the goal of minimizing the objective func-
tion. The edges of the execution graph must include all
the original dependence edges of the application. We
are free to add more edges if it decreases the objective
function. Note that the selectivity of a service influences
the execution time of all its successors, if any, in the
mapping. For example if three services C1, C2 and C3

are arranged along a linear chain, as in Figure 1, then
the cost of C2 is σ1c2 and the cost of C3 is σ1σ2c3. If
Ci is mapped onto Si, for i = 1, 2, 3, then the period
is P = max

(
c1
s1
, σ1c2
s2

, σ1σ2c3
s3

)
, while the latency is

L = c1
s1

+ σ1c2
s2

+ σ1σ2c3
s3

. Here, we also note that selec-
tivities are independent: for instance if C1 and C2 are
both predecessors of C3, as in Figure 1 or in Figure 2,
then the cost of C3 becomes σ1σ2c3. With the mapping
of Figure 2, the period is P = max

(
c1
s1
, c2s2 ,

σ1σ2c3
s3

)
,

while the latency is L = max
(
c1
s1
, c2s2

)
+ σ1σ2c3

s3
. We

see from the latter formulas that the model neglects the
cost of joins when combining two services as predeces-
sors of a third one.

C1

C3

C2

Figure 2. Combining selectivities

To give some concrete examples, we note that this
model can be used when repeatedly searching regular
expressions in a file. A service corresponds to a regular
expression, and its selectivity is the probability to find
this expression in a given record of the file. Another
example is the sieve of Eratosthenes. Suppose that we
know all prime numbers smaller than 100. To compute
all prime numbers between 100 and 10000, we can as-
sociate a filtering service of selectivity p−1

p to any prime
number p ≤ 100; such a service transmits a number to
its successors if and only if this number is not a multiple
of p. Then a number between 100 and 10000 incoming
to a plan for this problem instance is transmitted through
all services if and only if it is prime. Clearly, selectivi-
ties are independent and combine multiplicatively in this
example.

All hypotheses and mapping rules of this paper are
those of Srivastava et al. [12, 6]. Although their papers
mainly deal with query optimization over web services
(already an increasingly important application with the
advent of Web Service Management Systems [9, 11]),
the approach applies to general data streams [3] and to
database predicate processing [7, 10]. Finally (and quite
surprisingly), we note that our framework is quite simi-
lar to the problem of scheduling unreliable jobs on par-
allel machines [1] where service selectivities correspond
to job failure probabilities.

As already pointed out, period and latency are both
very important objectives. The inverse of the period (the
throughput) measures the aggregate rate of processing
of data, and it is the rate at which data sets can enter
the system. The latency is the time elapsed between the
beginning and the end of the execution of a given data
set, hence it measures the response time of the system
to process the data set entirely. Minimizing the latency
is antagonistic to minimizing the period, and tradeoffs
should be found between these criteria. Efficient map-
pings aim at the minimization of a single criterion, ei-
ther the period or the latency, but they can also use a bi-
criteria approach, such as minimizing the latency under
period constraints (or the converse). The main objective
of this work is to assess the complexity of the previous

2

optimization problems, first with identical servers, and
then with different-speed servers.

In this paper, we establish several new and impor-
tant complexity results. First we introduce an optimal
polynomial algorithm for the latency minimization prob-
lem on a homogeneous platform. This result nicely
complements the corresponding result for period mini-
mization, that was shown to have polynomial complex-
ity in [12]. We also show the polynomial complexity
of the bi-criteria problem (minimizing latency while not
exceeding a threshold period). Moving to heterogeneous
resources, we prove the NP-completeness of both the pe-
riod and latency minimization problems, even for ser-
vices without precedence constraints. Therefore, the bi-
criteria problem also is NP-complete in this case. Fur-
thermore, we prove that there exists no constant fac-
tor approximation algorithms for these problems unless
P=NP. We also assess the complexity of several particu-
lar problem instances.

The rest of this paper is organized as follows. First
we formally state the optimization problems that we ad-
dress in Section 2. Next we detail two little examples
aimed at showing the intrinsic combinatorial complexity
of the problem (Section 3). Then Section 4 is devoted to
problems with identical resources (homogeneous plat-
forms), while Section 5 is the counterpart for different-
speed processors (heterogeneous platforms). Finally we
give some conclusions and perspectives in Section 6.

2 Framework

As stated above, the target application A is a set
of services (or filters, or queries) linked by prece-
dence constraints. We write A = (F ,G) where F =
{C1, C2, . . . , Cn} is the set of services and G ⊂ F × F
is the set of precedence constraints. If G = ∅, we have
services without precedence constraints. A service Ci is
characterized by its cost ci and its selectivity σi.

For the computing resources, we have a set S =
{S1, S2, . . . , Sp} of servers. In the case of homoge-
neous platforms, servers are identical while in the case
of heterogeneous platforms, each server Su is charac-
terized by its speed su. We always assume that there
are more servers available than services (hence n ≤ p),
and we search a one-to-one mapping, or allocation, of
services to servers. The one-to-one allocation function
alloc associates to each service Ci a server Salloc(i).

We also have to build a graph G = (C, E) that sum-
marizes all precedence relations in the mapping. The
nodes of the graph are couples (Ci, Salloc(i)) ∈ C, and
thus define the allocation function. There is an arc

(Ci, Cj) ∈ E if Ci precedes Cj in the execution. There
are two types of such arcs: those induced by the set of
precedence constraints G, which must be enforced in
any case, and those added to reduce the period or the
latency. Ancestj(G) denotes the set of all ancestors1

of Cj in G, but only arcs from direct predecessors are
kept in E . In other words, if (Ci, Cj) ∈ G, then we
must have Ci ∈ Ancestj(G) 2. The graph G is called
a plan. Given a plan G, the execution time of a service
Ci is costi(G) =

(∏
Cj∈Ancesti(G) σj

)
× ci

salloc(i)
. We

note LG(Ci) the completion time of service Ci with the
plan G, which is the length of the path from an entry
node to Ci, where each node is weighted with its execu-
tion time. We can now formally define the period P and
the latency L of a plan G:

P(G) = max
(Ci,Su)∈C

costi(G)

and

L(G) = max
(Ci,Su)∈C

LG(Ci).

In the following we study three optimization problems:
(i) MINPERIOD: find a plan G that minimizes the pe-
riod; (ii) MINLATENCY: find a plan G that minimizes
the latency; and (iii) BICRITERIA: given a bound on
the period K, find a plan G whose period does not ex-
ceed K and whose latency is minimal. Each of these
problems can be tackled, (a) either with an arbitrary
precedence graph G (case PREC) or without (case NO-
PREC); and (b) either with identical servers (su = s
for all servers Su, homogeneous case HOM), or with
different-speed servers (heterogeneous case HET). For
instance, MINPERIOD-NOPREC-HOM is the problem of
minimizing the period for services without precedence
constraints on homogeneous platforms while MINLA-
TENCY-PREC-HET is the problem of minimizing the la-
tency for arbitrary precedence constraints on heteroge-
neous platforms.

3 Working out examples

In this section we deal with two little examples. The
first one considers services without precedence con-
straints and different-speed processors (hence a problem
NOPREC-HET), while the second one involves prece-
dence constraints and identical resources (PREC-HOM).

1The ancestors of a service are the services preceding it, and the
predecessors of their predecessors, and so on.

2Equivalently, G must be included, in the transitive closure of E .

3

3.1 An example for the NOPREC-HET
problem

Consider a problem instance with three services C1,
C2 and C3 without precedence constraints. Assume
that c1 = 1, c2 = 4, c3 = 10, and that σ1 = 1

2 ,
σ2 = σ3 = 1

3 . Suppose that we have three servers of re-
spective speeds s1 = 1, s2 = 2 and s3 = 3. What is the
mapping which minimizes the period? and same ques-
tion for the latency? We have to decide for an assign-
ment of services to servers, and to build the best plan.

For MINPERIOD-NOPREC-HET (period optimiza-
tion), we can look for a plan with a period smaller than
or equal to 1. In order to obtain an execution time
smaller than or equal to 1 for serviceC3, we need the se-
lectivity of C1 and C2, and either server S2 or server S3.
Server S2 is fast enough to render the time of C3 smaller
than 1, so we decide to assign C3 to S2. Service C2 also
needs the selectivity of C1 and a server of speed strictly
greater than 1 to obtain an execution time less than 1.
Thus, we assign C1 to S1 and make it a predecessor of
C2. In turn we assignC2 to S3 and make it a predecessor
of C3. We obtain a period of min

(
1
1 ,

1
2

4
3 ,

1
2×3

10
2

)
= 1.

It is the optimal solution. In this plan, the latency is
equal to 1 + 4

6 + 10
12 = 5

2 .
For MINLATENCY-NOPREC-HET (latency opti-

mization), we have a first bound: 5
2 . Because of its cost,

service C3 needs at least one predecessor. If C1 is the
only predecessor ofC3, we have to assignC3 to S3 in or-
der to keep the latency under 5

2 . The fastest computation
time that we can then obtain for C3 is 1

2 + 1
2

10
3 , with C1

assigned to S2. In this case, the fastest completion time
for C2 is 5

2 : this is achieved by letting C2 be a successor
of C1 in parallel with C3. Suppose now that C2 is a pre-
decessor of C3, and that there is an optimal solution in
which C2 is the only predecessor of C3. Independently
of the choice of the servers assigned to C1 and C2, if
we put C1 without any predecessor, it will end before
C2. So, we can make it a predecessor of C3 without
increasing its completion time. So, we are looking for
a solution in which C1 and C2 are predecessors of C3.
There are three possibilities left: (i) C1 is a predecessor
of C2; (ii) C2 is a predecessor of C1; and (iii) C1 and C2

have no predecessors. In the first two cases, we compute
for each service a cost weighted by the product of the
selectivities of its predecessors. Then, we associate the
fastest server to the service with the longest weighted
cost and so on. We obtain 5

2 in both cases. For the last
case, we know that the real cost of C1 will have no in-
fluence on the latency, hence we assign it to the slowest
server S1. The weighted cost of the remaining services

is 4 for C2 and 10
6 for C3. So, we assign S3 to C2 and

S2 to C3. We obtain a latency of 4
3 + 1

2×3
10
2 = 13

6 . We
cannot obtain a strictly faster solution if C2 is not a pre-
decessor of C3. As a result, 13

6 is the optimal latency. In
this optimal plan for the latency, the period is 4

3 .

C3

C2

C1

C4

Figure 3. Precedence constraints.

3.2 An example for the PREC-HOM prob-
lem

Let A = (F ,G) be the following set of 4 services:
c1 = c2 = 1, c3 = c4 = 4, σ1 = 1

2 , σ2 = 4
5 ,

σ3 = σ4 = 2 and G = {(C1, C2), (C1, C3)} (see Fig-
ure 3). With this dependence set, we have 3 possible
combinations for ordering C1, C2, C3, and for each of
these orderings, 10 possible graphs when adding C4.
We target a homogeneous platform with four identical
servers of speed s = 1.

For MINPERIOD-PREC-HOM, suppose that we can
obtain a period strictly less than 2. C1 is the only service
that can be placed without predecessor, because c4 > 2,
and both C2 and C3 need C1 as an ancestor (precedence
constraints). C2 is the only remaining service of cost
strictly less than 4. It can be placed with C1 as unique
predecessor. Then we place C3 and C4 with predeces-
sors C1 and C2. We obtain a period P = 8

5 (see Fig-
ure 4), which is optimal.

Let us study MINLATENCY-PREC-HOM. With the
plan shown in Figure 5, we obtain a latency L = 1+ 1

2×
4 = 3. Suppose that we can obtain a latency strictly less
than 3. Again, C1 is the only service that can be placed
without any predecessor. As for MINPERIOD, C2 is the

C1 C2

C3

C4

Figure 4. Optimal plan for period.

4

C1

C4

C3

C2

Figure 5. Optimal plan for latency.

only service that can be placed afterC1. But in this case,
C3 and C4 cannot be placed after C2, because it would
give a latency L = 1+ 1

2×1+ 1
2×

4
5×4 > 3. Therefore,

3 is the optimal latency for this problem instance.

4 Homogeneous platforms

In this section we investigate the optimization prob-
lems with homogeneous resources. Problem MINPE-
RIOD-PREC-HOM (minimizing the period with prece-
dence constraints and identical resources) was shown
to have polynomial complexity in [12, 6]. We show
that Problem MINLATENCY-PREC-HOM is polynomial
too. Because the algorithm is quite complicated, we start
with an optimal algorithm for the simpler problem MIN-
LATENCY-NOPREC-HOM. Although the polynomial
complexity of the latter problem is a consequence of the
former, it is insightful to follow the derivation for ser-
vices without precedence constraints before dealing with
the general case. Finally, we show that both BICRITE-
RIA-NOPREC-HOM and BICRITERIA-PREC-HOM can
also be solved in polynomial time.

4.1 Latency

We describe here optimal algorithms for MINLA-
TENCY-HOM, without dependences first, and then for
the general case.

Theorem 1. (Services without precedence con-
straints) Algorithm 1 computes the optimal plan for
MINLATENCY-NOPREC-HOM in time O(n2).

Data: n services with selectivities σ1, ..., σp ≤ 1
without precedence constraints, σp+1, ..., σn > 1,
and ordered costs c1 ≤ · · · ≤ cp

Result: a plan G optimizing the latency
G is the graph reduced to node C1;1
for i = 2 to n do2

for j = 0 to i− 1 do3
Compute the completion time Lj(Ci) of Ci in4
G with predecessors C1, ..., Cj ;

end5
Choose j such that Lj(Ci) = mink{Lk(Ci)};6
Add the node Ci and the edges C1 → Ci, . . . ,7
Cj → Ci to G;

end8
Algorithm 1: Optimal algorithm for MINLATENCY-
NOPREC-HOM.

Proof. We show that Algorithm 1 verifies the following
properties:

• (A) LG(C1) ≤ LG(C2) ≤ · · · ≤ LG(Cp)

• (B) ∀i ≤ n, LG(Ci) is optimal

Because the latency of any plan G′ is the com-
pletion time of its last node (a node Ci such that
∀Cj , LG′(Ci) ≥ LG′(Cj)), property (B) shows that
L(G) is the optimal latency. We prove properties (A)
and (B) by induction on i: for every i we prove that
LG(Ci) is optimal and that LG(C1) ≤ LG(C2) ≤ · · · ≤
LG(Ci).

For i = 1: C1 has no predecessor in G, so
LG(C1) = c1. Suppose that there exists G′ such that
LG′(C1) < LG(C1). If C1 has no predecessor in G′,
then LG′(C1) = c1 = LG(C1). Otherwise, let Ci be a
predecessor of C1 in G′ such that Ci has no predecessor
itself. LG′(C1) > ci ≥ c1. In both cases, we obtain a
contradiction with the hypothesis LG′(C1) < LG(C1).
So LG(C1) is optimal.

Suppose that for a fixed i ≤ p, LG(C1) ≤ LG(C2) ≤
· · · ≤ LG(Ci−1) and ∀j < i, LG(Cj) is optimal. Sup-
pose that there exists G′ such that LG′(Ci) is optimal.
Let Ck be the predecessor of Ci of greatest cost inG′. If
ck > ci, we can choose in G′ the same predecessors for
Ci than for Ck, thus strictly reducing LG′(Ci). How-
ever, LG′(Ci) is optimal. So, we obtain a contradiction
and ck ≤ ci. Thus,

LG′(Ci) = LG′(Ck) +
(∏

Cj∈AncestLG′ (Ci)
σj

)
ci

≥ LG′(Ck) +
(∏

j≤k σj

)
ci

(by definition of Ck)
≥ LG(Ci)

(by construction of G)

5

Therefore, since LG′(Ci) is optimal by hypothesis, we
have LG′(Ci) = LG(Ci).
Suppose now that LG(Ci) < LG(Ci−1). Then, Ci−1 is
not a predecessor of Ci in G. We construct G′′ such that
all edges are the same as in G except those oriented to
Ci−1: predecessors of Ci−1 will be the same as prede-
cessors of Ci. We obtain

LG′′(Ci−1) = maxk≤j LG(Ck) +
∏
k≤j σkci−1

(by construction of node Ci−1)
≤ maxk≤j LG(Ck) +

∏
k≤j σkci

= LG(Ci)

However, LG(Ci−1) is optimal, and so LG(Ci−1) ≤
LG′′(Ci−1) ≤ LG(Ci), which leads to a contradiction.
Therefore, LG(C1) ≤ LG(C2) ≤ · · · ≤ LG(Ci).

At this point, we have proved that the placement of
all services of selectivity smaller than 1 is optimal, and
that LG(C1) ≤ LG(C2) ≤ · · · ≤ LG(Cp). We now
proceed with services Cp+1 to Cn.

Suppose that for a fixed i > p, ∀j < i, LG(Cj) is
optimal. For all k > p, we have

maxj≤k LG(Cj) +
∏
j≤k σj ∗ ci

= maxkj=p LG(Cj) +
∏k
j=1 σj ∗ ci

≥ LG(Cp) +
∏
j≤k σj ∗ ci

> LG(Cp) +
∏
j≤p σj ∗ ci

This relation proves that in G, service Ci has no pre-
decessor of selectivity strictly greater than 1. Suppose
that there exists G′ such that LG′(Ci) is optimal. Let
Ck be the predecessor of Ci in G′ of greatest cost. Then
Ancesti(G′) ∈ {1, k} and, similarly for the case i ≤ p,
we obtain LG′(Ci) ≥ LG(Ci), and thus LG(Ci) is opti-
mal.

Theorem 2. (General case) Algorithm 2 computes the
optimal plan for MINLATENCY-PREC-HOM in time
O(n6).

Data: n services, a set G of dependence constraints
Result: a plan G optimizing the latency
G is the graph reduced to the node C of minimal cost1
with no predecessor in G;
for i = 2 to n do2

// At each step we add one service to G, hence the3
n− 1 steps;
Let S be the set of services not yet in G and such4
that their set of predecessors in G is included in G;
for C ∈ S do5

for C′ ∈ G do6
Compute the set S′ minimizing the product7
of selectivities among services of latency
less than LG(C′), and including all
predecessors of C in G (using an algorithm
from [6], whose execution time is O(n3));

end8
Let SC be the set that minimizes the latency of9
C in G and LC be this latency;

end10
Choose a service C such that11
LC = min{LC′ , C

′ ∈ S};
Add to G the node C, and ∀C′ ∈ SC , the edge12
C′ → C ;

end13
Algorithm 2: Optimal algorithm for MINLATENCY-
PREC-HOM.

Proof. Let A = (F ,G) with F = {C1, C2, . . . , Cn)
be an instance of MINLATENCY-PREC-HOM. Let G be
the plan produced by Algorithm 2 on this instance, and
services are renumbered so that Ci is the service added
at step i of the algorithm. Then we prove by induction
on i that LG(C1) ≤ LG(C2) ≤ ... ≤ LG(Cn), and G is
optimal for L(Ci), 1 ≤ i ≤ n. In the following, we say
that a plan is valid if all precedence edges are included.
The plan G is valid by construction of the algorithm.

By construction,C1 has no predecessors inG. There-
fore, LG(C1) = c1. Let G′ be a valid plan such
that LG′(C1) is optimal. If C1 has no predecessors in
G′, then LG′(C1) = LG(C1). Otherwise, let Ci be
a predecessor of C1 which has no predecessors in G′.
G′ is valid, thus Ci has no predecessors in G. And
by construction of G, we have c1 ≤ ci. Therefore,
LG′(C1) ≥ ci ≥ c1 = LG(C1). Since LG′(C1) is opti-
mal, LG(C1) = LG′(C1) and thus LG(C1) is optimal.

Suppose that for a fixed i ≤ n, we have LG(C1) ≤
LG(C2) ≤ ... ≤ LG(Ci−1), and ∀j < i, LG(Cj) is
optimal. Let us prove first that LG(Ci−1) ≤ LG(Ci).
If Ci−1 is a predecessor of Ci, then the result is true.
Otherwise, and if LG(Ci−1) > LG(Ci), then Ci would
have been chosen at step i − 1 of the algorithm (line 9)

6

instead of Ci−1, which leads to a contradiction. It re-
mains to prove that LG(Ci) is optimal. Let us consider
a valid plan G′ such that LG′(Ci) is optimal.
(i) Suppose first that Ci has at least one predecessor
Cl with l > i in G′. For such predecessors, at least
one of them has its own set of predecessors included
in {C1, ..., Ci−1}. Let Ck be the service of maximal
latency LG′(Ck) of the previous set of predecessors.
Thus, k > i and the set of predecessors ofCk inG′ is in-
cluded in {C1, ..., Ci−1}. SinceG′ is a valid plan, the set
of predecessors ofCk in G is included in {C1, ..., Ci−1}.
Then, we prove that the value LCk computed at line 9
of the algorithm at step i verifies LCk ≤ LG′(Ck) (see
Property A below). ThenLG(Ci) ≤ LCk ≤ LG′(Ck) ≤
LG′(Ci).
(ii) If the set of predecessors of Ci in G′ is included
in {C1, ..., Ci−1}, then we can prove that LG′(Ci) ≥
LCi = LG(Ci), where LCi is the value computed at
step i (see Property B below).
In both cases (i) and (ii), since LG′(Ci) is optimal, we
have LG(Ci) = LG′(Ci), thus proving the optimality of
LG(Ci).

Proof of Properties A and B. Let Ck be a service with
k ≥ i (k > i for Property A, k = i for Property B).
Let G′ be a valid plan such that the set of predecessors
of Ck is included in {C1, ..., Ci−1}. Then we prove that
LG′(Ck) ≥ LCk , where LCk is the value computed at
step i of the algorithm. Let S = {Cu1 , ..., Cul} be the
set of predecessors of Ck in G′. Let S′ be the set of
services that are either in S, or predecessor of a service
of S in G. Let us show that

∏
Ci∈S σi ≥

∏
Ci∈S′ σi.

Let S1 be the set of predecessors of Cu1 in G, S2 the set
of predecessors ofCu2 inG not in S1∪{Cu1} and for all
i Si the set of predecessors of Cui inG not in

⋃
j<i Sj ∪

{Cui1 , ..., Cui−1}. Suppose that for one of the sets Si,
the product of selectivities

∏
Cj∈Si σj is strictly greater

than one. Then S1 ∪ ... ∪ Si−1 ∪ {Cui1 , ..., Cui−1} is a
valid subset for Cui because G′ is a valid plan and the
product of selectivities on this subset is strictly smaller
than the product of selectivities of the predecessors of
Cui in G. This is in contradiction with the optimality
of the set of predecessors of Cui chosen at line 7 of the
algorithm. This proves that for all i,

∏
Cj∈Si σj ≤ 1. In

addition, for all j < i, LG(Cj) is optimal. Hence the
latency of Ck in G with S′ as predecessor is smaller or
equal to its latency in G′, which proves that LG′(Ck) ≥
LCk .

Thus for 1 ≤ i ≤ n, LG(Ci) is optimal, and therefore
the plan computed by Algorithm 2 is optimal.

Cp+1

Cλ(3)Cλ(1)

Cn

Cλ(2) Cλ(p)

Figure 6. General structure for period min-
imization.

4.2 Bi-criteria problem

Theorem 3. Problem BICRITERIA-NOPREC-HOM is
polynomial and of complexity at most O(n2). Problem
BICRITERIA-PREC-HOM is polynomial and of com-
plexity at most O(n6).

Proof. For each problem it is possible to modify the al-
gorithm that minimizes the latency. See the extended
version [4] for the proof.

5 Heterogeneous platforms

In this section we investigate the optimization prob-
lems with heterogeneous resources. We show that
both period and latency minimization problems are NP-
complete, even for services without precedence con-
straints. Thus, bi-criteria problems on heterogeneous
platforms are NP-complete. We also prove that there
exists no approximation algorithm for MINPERIOD-
NOPREC-HET with a constant factor, unless P=NP.

5.1 Period

In this section, we show that problem MINPERIOD-
NOPREC-HET is NP-complete. The following property
was presented in [12] for homogeneous platforms, and
we extend it to different-speed servers.

Proposition 1. Let (F ,S) be an instance of the
problem MINPERIOD-NOPREC-HET. We suppose
σ1, σ2, ..., σp < 1 and σp+1, ..., σn ≥ 1. Then the opti-
mal period is obtained with a plan as in Figure 6.

Proof. Let G be an optimal plan for this instance. We
will not change the allocation of services to servers.
Hence, in the following, Ci denotes the pair (Ci, Su),
with Su the server assigned to Ci in G. Let i, j ≤ p
(recall that p is the largest index of services whose se-
lectivity is smaller than 1). Suppose that Ci is not an
ancestor of Cj and that Cj is not an ancestor of Ci. Let
A′k(G) = Ancestk(G) ∩ {C1, ..., Cp}. Informally, the

7

idea is to add the arc (Ci, Cj) to G and to update the
list of ancestors of each node (in particular, removing
all nodes whose selectivity is greater than or equal to 1).
Specifically, we construct the graph G′ such that:

• for every k ≤ p such that Ci /∈ Ancestk(G) and
Cj /∈ Ancestk(G), Ancestk(G′) = A′k(G)

• for every k ≤ p such that Ci ∈ Ancestk(G) or
Cj ∈ Ancestk(G), Ancestk(G′) = A′k(G) ∪
A′i(G) ∪A′j(G) ∪ {Ci, Cj}

• Ancesti(G′) = A′i(G)

• Ancestj(G′) = A′j(G) ∪A′i(G) ∪ {Ci}

• for every k > p, Ancestk(G′) = {C1, ..., Cp}

In G′, Ci is a predecessor of Cj and for all p < k ≤
n, Ck has no successor. Also, because Ci and Cj were
not linked by a precedence relation in G, G′ is always
a DAG (no cycle). In addition, for every node Ck of
G, we have Ancestk(G′) ⊃ A′k(G) = Ancestk(G) ∩
{C1, ..., Cp}. This property implies:

costk(G′) = ck
su
×
∏
Cl∈Ancestk(G′) σl

≤ ck
su
×
∏
Cl∈A′k(G) σl

≤ ck
su
×
∏
Cl∈Ancestk(G) σl

≤ costk(G).

Hence, P(G′) ≤ P(G) (recall that P(G) denotes the
period of G). Because G was optimal, P(G′) = P(G),
and G′ is optimal too. By induction we construct a plan
with the structure of Figure 6.

We point out that only the structure of the plan is
specified by Proposition 1. There remains to find the
optimal ordering of services C1 to Cp in the chain (this
corresponds to the permutation λ in Figure 6), and to
find the optimal assignment of services to servers.

Theorem 4. MINPERIOD-NOPREC-HET is NP-
complete.

Proof. Consider the decision problem associated to
MINPERIOD-NOPREC-HET: given an instance of the
problem with n services and p ≥ n servers, and a bound
K, is there a plan whose period does not exceed K?
This problem obviously is in NP: given a bound and a
mapping, it is easy to compute the period, and to check
that it is valid, in polynomial time.

To establish the completeness, we use a reduc-
tion from RN3DM, a special instance of Numerical
3-Dimensional Matching that has been proved to be

strongly NP-complete by Yu [18, 19]. Consider the fol-
lowing general instance I1 of RN3DM: given an integer
vector A = (A[1], . . . , A[n]) of size n, does there exist
two permutations λ1 and λ2 of {1, 2, . . . , n} such that

∀1 ≤ i ≤ n, λ1(i) + λ2(i) = A[i] (1)

We can suppose that 2 ≤ A[i] ≤ 2n for all i and that∑n
i=1A[i] = n(n + 1), otherwise we know that the in-

stance has no solution. Then we point out that Equa-
tion 1 is equivalent to

∀1 ≤ i ≤ n, λ1(i) + λ2(i) ≥ A[i]
⇐⇒ ∀1 ≤ i ≤ n,

(
1
2

)λ1(i)−1 × 2A[i]

2λ2(i) ≤ 2
(2)

We build the following instance I2 of MINPERIOD-
HET with n services and p = n servers such that
ci = 2A[i], σi = 1/2, si = 2i andK = 2. The size of in-
stance I1 is O(n log(n)), because each A[i] is bounded
by 2n. In fact, because RN3DM is NP-complete in the
strong sense, we could encode I1 in unary, with a size
O(n2), this does not change the analysis. We encode the
instance of I1 with a total sizeO(n2), because the ci and
si have size at most O(2n), hence can be encoded with
O(n) bits each, and there are O(n) of them. The size of
I2 is polynomial in the size of I1.

Now we show that I1 has a solution if and only if I2
has a solution. Assume first that I1 has a solution. Then
we build a plan which is a linear chain. Service Ci is
at position λ1(i), hence is filtered λ1(i) − 1 times by
previous services, and it is processed by server Sλ2(i),
matching the cost in Equation 2.

Reciprocally, if we have a solution to I2, then there
exists a linear chain G with period 2. Let λ1(i) be the
position of service Ci in the chain, and let λ2(i) be the
index of its server. Equation 2 is satisfied for all i, hence
Equation 1 is also satisfied for all i: we have found a
solution to I1. This completes the proof.

We add the following observation which we will need
below: the only solutions are chains. Indeed, if we had a
solution G′ that was not a chain, we would transform
it step by step into a chain, according to Proposition
1. At each step of transformation, we consider a pair
(C,C ′) and we add an edge C → C ′. If at a given step
we add the edge Ci → Cj , we have Ancestj(G′)
Ancestj(G). However costj(G) = 2 and all the se-
lectivities are strictly lower than 1. Then costj(G′) > 2.
That contradicts the hypothesis of optimality ofG′. This
proves the claim.

The proof also shows that the problem remains NP-
complete when all service selectivities are identical.

8

Proposition 2. For any K > 0, there exists no
K-approximation algorithm for MINPERIOD-NOPREC-
HET, unless P=NP.

Proof. Suppose that there exists a polynomial algorithm
that computes a K-approximation of this problem. We
use the same instance I1 of RN3DM as in the proof of
Theorem 4.

Let I2 be the instance of our problem with n services
such that, for 1 ≤ i ≤ n, ci = (2K)A[i]−1, σi = 1

2K ,
si = (2K)i and P = 1. From the previous proof, we
know that the only solutions are chains. In such a so-
lution chain, service Ci is placed in position λ1(i) in
the chain, and it is processed by server Sλ2(i), where
(λ1, λ2) is a solution of I1. In such solutions, we obtain
costi(G) = 2 for each i.

In any other solution, there is a service whose compu-
tation cost is larger than P = 1. In addition, all compu-
tation costs are integer power of 2K. That means that in
any other solution, the period is greater or equal to 2K.
Hence the only K-approximations are the optimal solu-
tions. If a polynomial algorithm finds such a solution,
we can compute the permutations λ1 and λ2 and solve
I1 in polynomial time. This contradicts the hypothesis
P 6= NP .

5.2 Latency

We first show that the optimal solution of MINLA-
TENCY-NOPREC-HET has a particular structure. We
then use this result to derive the NP-completeness of the
problem.

Definition 1. Given a planG and a vertex v = (Ci, Su)
of G, (i) v is a leaf if it has no successor in G; and (ii)
di(G) is the maximum length (number of links) in a path
from v to a leaf. If v is a leaf, then di(G) = 0.

Proposition 3. Let C1, ..., Cn, S1, ..., Sn be an instance
of MINLATENCY. Then, the optimal latency can be ob-
tained with a plan G such that, for any couple of nodes
of G v1 = (Ci1 , Su1) and v2 = (Ci2 , Su2),

1. If di1(G) = di2(G), v1 and v2 have the same pre-
decessors and the same successors in G.

2. If di1(G) > di2(G) and σi2 ≤ 1, then ci1/su1 <
ci2/su2 .

3. All nodes with a service of selectivity σi > 1 are
leaves (di(G) = 0).

Proof. Let G be an optimal plan for this instance. We
will not change the allocation of services to servers, so

we can design vertices of the graph asCi only, instead of
(Ci, Su). We want to produce a graph G′ which verifies
Proposition 3.
Property 1. In order to prove Property 1 of the proposi-
tion, we recursively transform the graphG, starting from
the leaves, so that at each level every nodes have the
same predecessors and successors.

For every vertex Ci of G, we recall that di(G) is the
maximum length of a path from Ci to a leaf in G. Let
Ai = {Cj | dj(G) = i}. A0 is the set of the leaves
of G. We denote by Gi the subgraph A0 ∪ ... ∪ Ai.
Note that these subgraphs may change at each step of
the transformation, and they are always computed with
the current graph G.
• Step 0. Let ci = maxCj∈A0 cj . Let G′ be the plan

obtained from G by changing the predecessors of every
service in A0 such that the predecessors of a service of
A0 inG′ are exactly the predecessors of Ci inG. LetBi
be the set of predecessors of Ci in G and let Cj ∈ Bi
be the predecessor of Ci of maximal completion time.
The completion time of a service C` of G−A0 does not
change: LG′(C`) = LG(C`). And, for each service Ck
in A0,

LG′(Ck) = LG′(Cj) +
(∏

C`∈Bi σ`
)
× ck

≤ LG′(Cj) +
(∏

C`∈Bi σ`
)
× ci

≤ LG′(Ci) = LG(Ci)

Therefore, ∀Ck ∈ A0, LG′(Ck) ≤ LG(Ci). Since for
Ck /∈ A0, LG′(Ck) ≤ LG(Ck), and since G was opti-
mal for the latency, we deduce thatG′ is also optimal for
the latency. This completes the first step of the modifi-
cation of the plan G.
• Step i. Let i be the largest integer such that Gi

verifies Property 1. If Gi = G, we are done since the
whole graph verifies the property. LetCi′ be a node such
that LGi(Ci′) = maxk LGi(Ck). Note that these finish
times are computed in the subgraph Gi, and thus they
do not account for the previous selectivities in the whole
graphG. LetCj be an entry node ofGi (no predecessors
in Gi) in a path realizing the maximum time LGi(Ci′),
and let C` be the predecessor in G of Cj of maximal
finish time LG(C`). Then G′ is the plan obtained from
G in changing the predecessors of every service of Ai
such that the predecessors of a service of Ai in G′ are
the predecessors of Cj in G. For Ck ∈ G \Gi, we have
LG′(Ck) = LG(Ck). Let Ck be a node of Gi. We have:

LG′(Ck)=LG′(C`) +
(∏

Cm∈Ancestj(G′) σm

)
× LGi(Ck)

≤LG(C`) +
(∏

Cm∈Ancestj(G) σm

)
× LGi(Ci′)

≤L(G)

9

and L(G) is optimal. So, L(G′) = L(G).
• Termination of the algorithm. Let Ck be a node of

G. If Ck is a predecessor of Cj in G or if Ck ∈ Gi, then
dk(G′) = dk(G). Otherwise, every path from Ck to a
leaf in G has been removed in G′, so dk(G′) < dk(G).
This proves that

∑
j dj(G) ≥

∑
j dj(G

′).
- If, at the end of step i,

∑
j dj(G) =

∑
j dj(G

′),
thenGi+1 verifies Property 1, and we can go to step i+1.

- However, if
∑
j dj(G) >

∑
j dj(G

′), some leaves
may appear since we have removed successors of some
nodes in the graph. In this case, we start again at step 0.

The algorithm will end because at each step, either
the value

∑
j dj(G) decreases strictly, or it is equal but

i increases. It finishes either if there are only leaves left
in the graph at a step with i = 0, or when we have al-
ready transformed all levels of the graph and Gi = G.

Property 2. Let G be an optimal graph for latency
verifying Property 1. Suppose that there exists a pair
(Ci, Su) and (Cj , Sv) such that di(G) > dj(G), σJ ≤
1, and ci/su > cj/sv . Let G′ be the graph obtained
by removing all the edges beginning and ending by
(Cj , Sv) and by choosing as predecessors of (Cj , Sv)
the predecessors of (Ci, Su) in G and as successors of
Cj the successors of Ci in G. Since σj ≤ 1, the cost
of successors can only decrease. The other edges do not
change. L(G′) ≤ L(G) and G is optimal, so G′ is opti-
mal and Property 1 of Proposition 3 is verified. We can
continue this operation until Property 2 is verified.

Property 3. The last property just states that all nodes
of selectivity greater than 1 are leaves. In fact, if such a
node Ci is not a leaf in G, we remove all edges from Ci
to its successors in the new graph G′, thus only poten-
tially decreasing the finish time of its successor nodes.
Indeed, a successor will be able to start earlier and it
will have less data to process.

Lemma 1. Let C1, ..., Cn, S1, ..., Sn be an instance of
MINLATENCY-HET such that for all i, ci and si are in-
teger power of 2 and σi ≤ 1

2 . Then the optimal latency
is obtained with a plan G such that

1. Proposition 3 is verified;

2. for all nodes (Ci1 , Su1) and (Ci2 , Su2) with
di1(G) = di2(G), we have ci1

su1
= ci2

su2
.

Proof. Let G be a plan verifying Proposition 3. Sup-
pose that there exists a distance to leaves d such that
the nodes at this distance do not respect Property 2 of
Lemma 1. Let A be the set of nodes (Ci, Su) of maxi-
mal ratio ci

su
= c with di(G) = d and A′ be the set of

other nodes at distance d. Let c′ be the maximal ratio
cj
sv

of nodes (Cj , Sv) ∈ A′. Since c′ < c and c, c′ are
integer power of 2, we have c′ ≤ c

2 .
We construct the plan G′ such that:

• For all node (Ci, Su) /∈ A, Ancesti(G′) =
Ancesti(G)

• For all node (Ci, Su) ∈ A, Ancesti(G′) =
Ancesti(G) ∪A′

The completion time of nodes of A′ and of nodes of
distance strictly greater than d in G does not change.
Let Td be the completion time of the service (Ck, Sv) at
distance d + 1 of maximal ratio ck

sv
. Let (Ci, Su) be a

pair of A. Let σ =
∑
Cj∈Ancesti(G) σj . Then we have

Ti(G′) = Td + σ × c′ + σ × (
∑
Cj∈A′ σj)× c

≤ Td + σ × c
2 + σ × 1

2 × c
≤ Td + σ × c
≤ Ti(G)

This proves that the completion time of the services
of A does not increase between G and G′. The com-
pletion time of services of distance smaller than d does
not increase because their sets of predecessors do not
change. G is a graph corresponding to Proposition 3,
that means it obtains the optimal latency and the latency
of G′ is smaller or equal to the latency of G. We can
conclude that G′ is optimal for latency.

We obtain by this transformation an optimal plan G′

for latency with strictly less pairs of nodes that does
not correspond to the property of Lemma 1 than in
G. In addition, G′ respect properties of Proposition 3.
By induction, we can obtain a graph as described in
Lemma 1.

Theorem 5. MINLATENCY-NOPREC-HET is NP-
complete.

Proof. Consider the decision problem associated to
MINLATENCY-HET: given an instance of the problem
with n services and p ≥ n servers, and a bound K, is
there a plan whose latency does not exceed K? This
problem obviously is in NP: given a bound and a map-
ping, it is easy to compute the latency, and to check that
it is valid, in polynomial time.

To establish the completness, we use a reduction from
RN3DM. Consider the following general instance I1 of
RN3DM: given an integer vectorA = (A[1], . . . , A[n])

10

of size n, does there exist two permutations λ1 and λ2

of {1, 2, . . . , n} such that

∀1 ≤ i ≤ n, λ1(i) + λ2(i) = A[i] (3)

We can suppose that
∑n
i=1A[i] = n(n + 1). We build

the following instance I2 of MINLATENCY-HET such
that:

• ci = 2A[i]×n+(i−1)

• σi =
(

1
2

)n
• si = 2n×(i+1)

• K = 2n − 1

The size of instance I1 is O(nlog(n)), because each
A[i] is bounded by 2n. The new instance I2 has size
O(n× (n2)), since all parameters are encoded in binary.
The size of I2 is thus polynomial in the size of I1.

Now we show that I1 has a solution if and only if I2
has a solution.

Suppose first that I1 has a solution λ1, λ2. We place
the services and the servers on a chain with serviceCi on
server Sλ1(i) in position λ2(i) on the chain. We obtain
the latency

L(G) =
∑
i

ci
sλ1(i)

∗
(

1
2n

)λ2(i)−1

=
∑
i 2
A[i]×n+(i−1)−n×(λ1(i)+1)−n×(λ2(i)−1)

=
∑
i 2

(A[i]−λ1(i)−λ2(i))×n+(i−1)

=
∑n
i=1 2i−1

= 2n − 1

This proves that if I1 has a solution then I2 has a solu-
tion.

Suppose now that I2 has a solution. Let G be an
optimal plan that respects properties of Lemma 1. Let
(Ci1 , Su1), (Ci2 , Su2) be two distinct nodes ofG. Let a1

and a2 be two integers such that ci1
su1

= 2a1 and ci2
su2

=
2a2 . The rest of the Euclidean division of a1 by n is
equal to i1 − 1, and the rest of the Euclidean division of
a2 by n is equal to i2 − 1. Since both nodes are distinct,
i1 6= i2 and we can conclude that ci1

su1
6= ci2

su2
. The ratios

cost/speed are all different and G verifies properties of
Lemma 1. As a result, G is a linear chain.

Let λ1, λ2 be two permutations such that for all i, the
service Ci is in position λ2(i) on the server Sλ1(i). We
want to achieve a latency strictly smaller than 2n, and
thus for every node (Ci, Sλ1(i)),

2A[i]×n+(i−1)−n×(λ1(i)+1)−n×(λ2(i)−1)<2n

⇐⇒ 2(A[i]−λ1(i)−λ2(i))×n+(i−1)<2n

⇐⇒ A[i]− λ1(i)− λ2(i)≤0

This proves that λ1, λ2 is a valid solution of I1. Thus,
I1 has a solution if and only if I2 has a solution, which
concludes the proof.

Proposition 4. For any K > 0, there exists no K-
approximation algorithm for MINLATENCY-NOPREC-
HET, unless P=NP.

The proof is similar to that of Proposition 2. See the
extended version [4] for full details.

5.3 Particular instances

In this section, we report the complexity of some
particular instances of MINLATENCY-NOPREC-HET.
Please refer to the extended version [4] for proofs:
• The problem remains NP-complete when we when we
impose that the plan is a linear chain.
• The problem becomes polynomial when all services
have same cost.
• The problem becomes polynomial when the optimal
plan is a star, or a bipartite graph.

6 Conclusion

In this paper, we have considered the important prob-
lem of mapping filtering service applications onto com-
putational platforms. Our main focus was to give an in-
sight of the combinatorial nature of the problem, and
to assess the impact of using heterogeneous resources
on the problem complexity. We considered the two ma-
jor objective functions, minimizing the period and mini-
mizing the latency, and also studied bi-criteria optimiza-
tion problems. Several instances of the problem have
been shown NP-complete, while others can be solved
with complex polynomial algorithms, such as the opti-
mal algorithm for MINLATENCY-PREC-HOM. We be-
lieve that this exhaustive study will provide a solid the-
oretical foundation for the study of single criterion or
bi-criteria mappings.

For NOPREC-HET, all problems (period, latency, and
hence bi-criteria) are NP-complete. In the extended ver-
sion [4], we provide an integer linear program and many
heuristics for MINPERIOD-NOPREC-HET, and experi-
ments show that in many cases our heuristics are close
to the optimal solution returned by the linear program.
We also have derived an integer linear program for MIN-
LATENCY-NOPREC-HET, but its exponential number of
variables renders it untractable, even for small problem
instances.

11

As future work, we intend to design heuristics for the
general problems MINPERIOD-PREC-HET and MIN-
LATENCY-PREC-HET, and to derive lower bounds so as
to assess their performance. Also, extending ideas of
task graph replication algorithms (such as those in [2])
to the framework of pipelined workflows with filtering
services looks a promising direction to further explore.

Acknowledgment

We thank the reviewers for their comments and sug-
gestions. This work was supported in part by the ANR
StochaGrid project.

References

[1] A. Agnetis, P. Detti, M. Pranzo, and M. S. Sodhi.
Sequencing unreliable jobs on parallel machines.
Journal on Scheduling, 2008. Available on-line at
http://www.springerlink.com/content/
c571u1221560j432.

[2] I. Ahmad and Y.-K. Kwok. On exploiting task duplica-
tion in parallel program scheduling. IEEE Trans. Paral-
lel Distributed Systems, 9(9):872–892, 1998.

[3] S. Babu, R. Motwani, K. Munagala, I. Nishizawa, and
J. Widom. Adaptive ordering of pipelined stream fil-
ters. In SIGMOD’04: Proceedings of the 2004 ACM
SIGMOD Int. Conf. on Management of Data, pages 407–
418. ACM Press, 2004.

[4] A. Benoit, F. Dufossé, and Y. Robert. On the com-
plexity of mapping filtering services on heterogeneous
platforms. Research Report 2008-30, LIP, ENS Lyon,
France, Oct. 2008. Available at graal.ens-lyon.
fr/˜fdufosse/.

[5] A. Benoit and Y. Robert. Mapping pipeline skeletons
onto heterogeneous platforms. J. Parallel Distributed
Computing, 68(6):790–808, 2008.

[6] J. Burge, K. Munagala, and U. Srivastava. Ordering
pipelined query operators with precedence constraints.
Research Report 2005-40, Stanford University, Novem-
ber 2005.

[7] S. Chaudhuri and K. Shim. Optimization of queries with
user-defined predicates. ACM Trans. Database Systems,
24(2):177–228, 1999.

[8] DataCutter Project: Middleware for Filtering Large
Archival Scientific Datasets in a Grid Environ-
ment. http://www.cs.umd.edu/projects/
hpsl/ResearchAreas/DataCutter.htm.

[9] D. Florescu, A. Grunhagen, and D. Kossmann. Xl: A
platform for web services. In CIDR 2003, First Biennial
Conference on Innovative Data Systems Research, 2003.
On-line proceedings at http://www-db.cs.wisc.
edu/cidr/program/p8.pdf.

[10] J. M. Hellerstein. Predicate migration: Optimizing
queries with expensive predicates. In In Proc. of the
ACM SIGMOD Conf. on Management of Data, pages
267–276, 1993.

[11] M. Ouzzani and A. Bouguettaya. Query processing
and optimization on the web. Distributed and Parallel
Databases, 15(3):187–218, 2004.

[12] U. Srivastava, K. Munagala, J. Widom, and R. Motwani.
Query optimization over web services. In VLDB ’06:
Proceedings of the 32nd Int. Conference on Very Large
Data Bases, pages 355–366. VLDB Endowment, 2006.

[13] K. Taura and A. A. Chien. A heuristic algorithm
for mapping communicating tasks on heterogeneous re-
sources. In Heterogeneous Computing Workshop, pages
102–115. IEEE Computer Society Press, 2000.

[14] N. Vydyanathan, U. Catalyurek, T. Kurc, P. Sad-
dayappan, and J. Saltz. An approach for optimizing
latency under throughput constraints for appli-
cation workflows on clusters. Research Report
OSU-CISRC-1/07-TR03, Ohio State University,
Columbus, OH, Jan. 2007. Available at ftp://ftp.
cse.ohio-state.edu/pub/tech-report/
2007.ShortversionappearsinEuroPar’
2008.

[15] N. Vydyanathan, U. Catalyurek, T. Kurc, P. Saddayap-
pan, and J. Saltz. Optimizing latency and throughput
of application workflows on clusters. Research Report
OSU-CISRC-4/08-TR17, Ohio State University, Colum-
bus, OH, Apr. 2008. Available at ftp://ftp.cse.
ohio-state.edu/pub/tech-report/2007.

[16] Q. Wu, J. Gao, M. Zhu, N. Rao, J. Huang, and S. Iyengar.
On optimal resource utilization for distributed remote vi-
sualization. IEEE Trans. Computers, 57(1):55–68, 2008.

[17] Q. Wu and Y. Gu. Supporting distributed application
workflows in heterogeneous computing environments.
In 14th International Conference on Parallel and Dis-
tributed Systems (ICPADS). IEEE Computer Society
Press, 2008.

[18] W. Yu. The two-machine flow shop problem with delays
and the one-machine total tardiness problem. PhD the-
sis, Technishe Universiteit Eidhoven, June 1996.

[19] W. Yu, H. Hoogeveen, and J. K. Lenstra. Minimiz-
ing makespan in a two-machine flow shop with delays
and unit-time operations is NP-hard. J. Scheduling,
7(5):333–348, 2004.

12

