
Reliability and performance optimization of pipelined real-time systems

Anne Benoit, Fanny Dufossé, Alain Girault, and Yves Robert
ENS Lyon and INRIA Grenoble Rhône-Alpes, France

{Firstname.Lastname}@inria.fr

Research Report LIP-2009-35

December 2009

Abstract:
We consider pipelined real-time systems, commonly found in assembly lines, consisting of a chain of tasks executing on
a distributed platform. Their processing is pipelined: each processor executes only one interval of consecutive tasks. We
are therefore interested in minimizing both the input-output latency and the period. For dependability reasons, we are also
interested in maximizing the reliability of the system. We therefore assign several processors to each task, so as to increase
the reliability of the system. We assume that both processors and communication links are unreliable and subject to transient
failures, the arrival of which follows a constant parameter Poisson law. We also assume that the failures are statistically
independent events. We study several variants of this multiprocessor mapping problem with several hypotheses on the target
platform (homogeneous/heterogeneous speeds and/or failure rates). We provide NP-hardness complexity results, and optimal
mapping algorithms for polynomial problem instances.

Keywords:
Pipelined real-time systems, interval mapping, multi-criteria (reliability, latency, period) optimization, complexity results,
dynamic programming algorithm.

1



Reliability and performance optimization of pipelined real-time systems∗

Anne Benoit, Fanny Dufossé, Alain Girault, and Yves Robert
ENS Lyon and INRIA Grenoble Rhône-Alpes, France

{Firstname.Lastname}@inria.fr

Abstract

We consider pipelined real-time systems, commonly
found in assembly lines, consisting of a chain of tasks
executing on a distributed platform. Their processing is
pipelined: each processor executes only one interval of con-
secutive tasks. We are therefore interested in minimizing
both the input-output latency and the period. For depend-
ability reasons, we are also interested in maximizing the re-
liability of the system. We therefore assign several proces-
sors to each task, so as to increase the reliability of the sys-
tem. We assume that both processors and communication
links are unreliable and subject to transient failures, the ar-
rival of which follows a constant parameter Poisson law.
We also assume that the failures are statistically indepen-
dent events. We study several variants of this multiproces-
sor mapping problem with several hypotheses on the target
platform (homogeneous/heterogeneous speeds and/or fail-
ure rates). We provide NP-hardness complexity results,
and optimal mapping algorithms for polynomial problem
instances.

Keywords: Pipelined real-time systems, interval map-
ping, multi-criteria (reliability, latency, period) optimiza-
tion, complexity results, dynamic programming algorithm.

1 Introduction

Pipelined real-time systems are commonly found in as-
sembly lines and are subject to strict dependability and real-
time constraints. They consist of a chain of tasks executing
on a distributed platform. Each task is a block of code with a
known amount of work to be processed. The role of the first
task of the chain is to acquire some data set from the envi-
ronment (thanks to sensor drivers), to process it, and finally
to transmit its result to the second task. Each subsequent
task receives its input data from its immediately preceding
task, processes it, and transmits its result to its immediately
successor task, except the last task that transmits it to the
environment (thanks to actuator drivers).

Tasks are assigned to processors of the platform using
an interval mapping, which groups consecutive tasks of the

∗Anne Benoit and Yves Robert are with the Institut Universitaire de
France. This work was supported in part by the ANR StochaGrid project
and by a Marie-Curie International Outgoing Fellowship within the 7th

European Community Framework Programme.

linear chain and assigns them to the same processor. Inter-
val mappings are more general than one-to-one mappings,
which establish a unique correspondence between tasks and
processors; they are very useful for reducing communica-
tion overheads, not to mention the many situations where
there are more tasks than processors and where interval
mappings are mandatory. The key performance-oriented
metrics to determine the best interval mapping are the pe-
riod and the latency. The period is the time interval re-
quired between the beginning of the execution of two con-
secutive data sets. Equivalently, the inverse of the period
is the throughput that measures the aggregate rate of pro-
cessing of data. The latency is the time elapsed between the
beginning and the end of the execution of a given data set,
hence it measures the response time of the system to process
the data set entirely. Minimizing the latency is antagonis-
tic to minimizing the period, and tradeoffs should be found
between these criteria.

Besides real-time constraints, expressed as an upper
bound on the period and/or the latency, pipelined real-time
systems must also satisfy crucial dependability constraints,
which are expressed as a lower bound on the reliability of
the mapping. Increasing the reliability is achieved by repli-
cating the intervals on several processors. Increasing the
replication level is therefore good for the reliability, but bad
for the period and latency. We thus have three antagonistic
criteria, the reliability, the period, and the latency.

We evaluate the reliability of a single task mapped onto
a processor according to the classical model of Shatz and
Wang [21], where each hardware component (processor or
communication link) is fail-silent and is characterized by a
constant failure rate per time unit λ: the reliability of a task
of duration d is therefore e−λd. For an interval of several
tasks mapped onto a single processor, we just have to sum
up the task durations, hence obtaining e−λD, whereD is the
sum of the task durations. For a mapping with replication,
we compute the reliability by building the Reliability Block
Diagram (RBD) corresponding to this mapping. Here we
face the delicate issue that computing the reliability is ex-
ponential in the size of the mapping (or equivalently the size
of the RBD). To solve this issue, we insert routing opera-
tions in the mapping to guarantee that the RBD is by con-
struction serial-parallel, therefore allowing us to compute
its reliability in linear time.

2



We first present the models in Section 2, and then discuss
related work in Section 3. The core of our contribution is
presented in Sections 4, 5, and 6. Finally, we conclude in
Section 7.

2 Framework

In this section, we detail the application model, the plat-
form model, the failure model, and the replication model.
We end with the formal definition of the mono- or multi-
criteria multiprocessor mapping problem.

2.1 Application model

An application is a chain of n tasks C = (τi)1≤i≤n. Each
task τi is a block of code that receives its input from its
predecessor τi−1, computes a known amount of work, and
produces an output data set of a known size. Therefore,
each task τi is represented by the pair (wi, oi), where wi
is the amount of work and oi is the output data size. By
convention, on = 0 because τn emits its result directly to
the environment through actuator drivers. Specifying the
size of the input data set required by a task is not necessary
since, by definition of a chain, it is equal to the size of the
output data set of its immediately preceding task. Figure 1
shows an example of a chain composed of n tasks.

τ1
o1 o2

τ2 τn
on−1

Figure 1. Example of a chain of n tasks.

Executing τi on a processor of speed s takes wi/s units
of time. Transmitting the result of τi on a link of bandwidth
b takes oi/b units of time. Knowing the values wi and oi
is not a critical assumption since worst-case execution time
(WCET) analysis has been applied with success to real-life
processors actually used in embedded systems. In partic-
ular, it has been applied to the most critical existing em-
bedded system, namely the Airbus A380 avionics software
running on the Motorola MPC755 processor [9, 22].

2.2 Platform model

The target platform consists of p processors connected
by point-to-point communication links. We note P the set
of processors: P = (Pu)1≤u≤p. We assume that commu-
nication links are homogeneous: this means that all links
have the same bandwidth b. On the contrary, each pro-
cessor Pu may have a different speed su. Such platforms
correspond to networks of workstations with plain TCP/IP
interconnects or other LANs.

In order to derive a realistic communication model, we
assume that the number of outgoing point-to-point connec-
tions of each processor is limited to K. A given processor
is thus capable of simultaneously sending messages to (and
receiving messages from) K other processors. Indeed, there
is no physical device capable of sending, say, 100 messages
to 100 distinct processors, at the same speed as if it was
a single message. The output bandwidth of the sender’s
network card would be a limiting factor. Our assumption
of bounded multi-port communications [14] is reasonable
for a large range of platforms, from large-scale clusters to
multi-core System-on-Chips (SoCs).

In addition, we assume that communications are over-
lapped with computations, that is, a processor can compute
the current instance of task τi and, in parallel, send to an-
other processor the result of the previous instance of τi.
This model is consistent with current processor architec-
tures where a SoC can include a processor and several com-
munication co-processors.

2.3 Interval mapping

The chain of tasks is executed repeatedly in a pipelined
manner to achieve a better throughput. As a consequence,
mapping the chain on the platform involves dividing the
chain into m intervals of consecutive tasks, and assign-
ing each processor to a unique interval. This technique is
known as interval mapping. Figure 2 shows an example of
a division of a chain of tasks into m intervals.

21 5 76 13 3534 42

I1 I2
o5 o13

Im
o33

Figure 2. A chain of tasks divided into m in-
tervals.

In a mapping without replication, each interval is as-
signed to a single processor, while in a mapping with
replication, each interval is assigned to several processors.
Replication is crucial to increase the reliability of the sys-
tem [10]. If the number of processors is greater than the
number of tasks, then each interval can be of size one (that
is, one task per interval), but this is rarely the case for real-
life systems. Also, having many small intervals is likely
to decrease the period but will also increase the communi-
cation costs and hence decrease the total reliability: thus a
trade-off is to be found.

For each 1 ≤ j ≤ m, the interval Ij is the set of consec-
utive tasks between indices fj and lj . Moreover, f1 = 1,
∀2 ≤ j ≤ m, fj = lj−1 + 1, and lm = n. The amount

3



of work processed by Ij is therefore Wj =
∑
τi∈Ij wi =∑lj

i=fj
wi. The size of the output data set produced by in-

terval Ij is that of its last task, that is, olj .

2.4 Failure model

Both processors and communication links can fail, and
they are fail-silent. Classically, we adopt the failure model
of Shatz and Wang [21]: failures are transient and the max-
imal duration of a failure is such that it affects only the cur-
rent operation executing onto the faulty processor, and not
the subsequent operations (same for communication links);
this is the “hot” failure model. Besides, the occurrence of
failures on a processor (same for a communication link) fol-
lows a Poisson law with a constant parameter λ, called its
failure rate per time unit. Modern fail-silent hardware com-
ponents can have a failure rate around 10−6 per hour.

Since communication links are homogeneous, we note
λ` their identical failure rate per time unit. Concerning the
processors, we note λu the failure rate per time unit of the
processor Pu, for each Pu in P .

Moreover, failure occurrences are statistically indepen-
dent events. Note that transient failures are the most com-
mon failures in modern embedded systems, all the more
when processor voltage is lowered to reduce the energy con-
sumption, because even very low energy particles are likely
to create a critical charge leading to a transient failure [25].

The reliability of a system measures its continuity of ser-
vice. It is defined as the probability that it functions cor-
rectly during a given time interval [2]. According to our
model, the reliability of the processor P (resp. the commu-
nication link L) during the duration d is r = e−λd, where
λ is the failure rate per time unit of P or L. Conversely,
the probability of failure of the processor P (resp. the com-
munication link L) during the duration d is f = 1 − r =
1 − e−λd. Hence, the reliability of the task τi on proces-
sor Pu is:

ru,i = e−λu wi / su (1)

Accordingly, the reliability of the interval I mapped on the
processor Pu is:

ru,I = e−λuWj / su =
∏
τi∈I

ru,i (2)

Equations (1) and (2) show that platform heterogeneity
may come from two factors: (i) processors having differ-
ent speeds, and (ii) processors having different failure rates.
We say that the platform is homogeneous if processors have
same speeds and same failure rates (hence the reliability and
the execution time of an interval no longer depends on the
processor it is assigned to) and we say that the platform is
heterogeneous otherwise.

2.5 Replication model

We use spatial redundancy to increase the reliability of
a system: in other words, we replicate the intervals on sev-
eral processors. Figure 3 shows an example of mapping by
interval with spatial redundancy: the interval I1 is mapped
on the processors {P1, P2, P3}, the interval I2 is mapped
on the processors {P4, P5}, and so on until the interval
Im mapped on the processors {Pt−1, Pt}. Concerning the
communications, the data-dependency ol1 is mapped on the
point-to-point links {L14, L15, L24, L25, L34, L35}, and so
on.

Pp−1

I1
ol1 ol2

I2 Im
olm−1

P1

P2

P3

P4

P5 Pp

Figure 3. An example of interval mapping.

To increase the reliability, each processor of a given in-
terval communicates with each processor of the next inter-
val. Specifically, for any 1 ≤ j ≤ m − 1, all the proces-
sors executing interval Ij send their result to all processors
executing the next interval Ij+1. Because of the bounded
number K of possible communications (see Section 2.2),
the maximum number of replicas per interval is also limited
to K.

2.6 Multiprocessor mapping problem

We study several variants of the multiprocessor interval
mapping problem. The inputs of the problem are a chain of
n tasks C = (τi)1≤i≤n, a hardware platform of p processors
P = (Pu)1≤u≤p, and a bound K on the maximal number
of replications for each interval of tasks. The output is an
interval mapping of C onto P , that is, a distribution of C into
m intervals and an assignment of each interval to at most K
processors of P , such that each processor executes only one
interval. Each variant of the mapping problem optimizes a
different set of criteria among the following ones:

• the reliability,
• the expected input-output latency,
• the worst-case input-output latency,
• the expected period,
• the worst-case period.

4



Our contribution is multifold. In Section 4, we show how
to compute the different objectives (reliability, expected and
worst-case latency, and expected and worst-case period) for
a given multiprocessor mapping. Then, for homogeneous
platforms, we prove that:

1. computing a mono-criterion mapping that optimizes
the reliability is polynomial (Section 5.1);

2. optimizing both the reliability and the period remains
polynomial (Section 5.2);

3. the problem of optimizing both the reliability and the
latency is NP-complete (Section 5.3).

For heterogeneous platforms, we prove that optimizing the
reliability only is NP-complete, and hence all the multi-
criteria mapping problems that include the reliability in
their criteria are also NP-complete (Section 6). Finally, we
state some concluding remarks in Section 7.

3 Related work

Several papers have dealt with workflow applications
whose dependence graph is a linear chain. The pioneering
papers [23, 24] investigate bi-criteria (period, latency) op-
timization of such workflows on homogeneous platforms.
An extension of these results to heterogeneous platforms is
provided in [5, 6].

All the previous papers deal with fully reliable platforms.
In our previous work [4], we have studied the (reliability,
latency) mapping problem with fail-silent processors. The
model in [4] is quite different, and much more crude, than
the one of this paper: each processor has an absolute proba-
bility of failing, independent of task durations, and the faults
are unrecoverable. To the best of our knowledge, we are not
aware of other published work on optimizing linear chain
workflows for reliability. However, many papers deal with
a single directed acyclic graph (DAG) instead of a pipelined
workflow, be it a fully general DAG [8], a linear chain [20],
or even independent tasks [15, 20]. The closest of the latter
papers is [20]: it contains a short section on linear chains,
with mono-criterion dynamic programming algorithm for
optimizing the reliability which is similar to Algorithm 1
(see Section 5.1).

Finally, the specific problem of bi-criteria (length, reli-
ability) multiprocessor scheduling has also been addressed
in [7, 1, 13, 19, 11, 12] for general DAGs of operations, but
except [1, 11, 12], these papers do not replicate the opera-
tions and have thus a very limited impact on the reliability.
Moreover, none consider chains of tasks and interval map-
pings, and therefore they attempt to minimize the length
of the mapping without distinguishing between the period
and the latency (the latter one being similar to the schedule
length).

4 Evaluation of a given mapping

In this section, we detail the computation of the different
objectives (reliability, expected and worst-case latency, and
expected and worst-case period) for a given mapping. We
compute the reliability of a mapping by building its relia-
bility block diagram (RBD) [18, 3]. Formally, a RBD is an
acyclic oriented graph (N,E), where each node of N is a
block representing an element of the system, and each arc
of E is a causality link between two blocks. Two particu-
lar connection points are its source S and its destination D.
An RBD is operational if and only if there exists at least
one operational path from S to D. A path is operational if
and only if all the blocks in this path are operational. The
probability that a block be operational is its reliability. By
construction, the probability that a RBD is operational is
equal to the reliability of the system that it represents.

In our case, the system is the multiprocessor interval
mapping, possibly partial, of the application on the plat-
form. A mapping is partial if not all intervals have been
mapped yet, but of course those intervals that are mapped
are such that all their predecessors are also mapped. Each
block represents an interval Ij placed onto a processor Pu
or a data-dependency olj between the two intervals Ij and
Ij+1 placed onto a communication link. The reliability of a
block is therefore computed according to Equation (2).

Computing the reliability in this way assumes that the
occurrences of the failures are statistically independent
events (see Section 2.4). Without this hypothesis, the fact
that some blocks belong to several paths from S toD makes
the computation of the reliability very complex. Concern-
ing hardware faults, this hypothesis is reasonable, but this
would not be the case for software faults [17].

The main drawback of the approach is that the computa-
tion of the reliability is, in general, exponential in the size
of the RBD. When the schedule is without replication, the
RBD is serial (i.e., there is a single path from S to D) so
the computation of the reliability is linear in the size of the
RBD. But when the schedule is with replications, the RBD
has no particular form, so the computation of the reliability
is exponential in the size of the RBD. The reason is that pro-
cessors are heterogeneous: the completion dates of a given
interval on its assigned processors are different, so the re-
ception dates by the processors of the next interval are dif-
ferent. This is true even when the application is a chain of
intervals rather than a general graph. See Figure 4 for an
illustration, where the RBD corresponding to the mapping
has no specific form.

One solution to compute the reliability of the mapping of
Figure 4 involves enumerating all the minimal cut sets of its
RBD [16]. A cut set in a RBD is a set of blocks C such that
there is no path from S to D if we remove all the blocks
of C from the RBD. A cut C is minimal if, whatever the

5



block that is removed from it, the resulting set is not a cut
anymore. It follows that the reliability of a minimal cut set
is the reliability of all its blocks put in parallel. The reliabil-
ity of the mapping can then be approximated by the reliabil-
ity of the alternative RBD composed of all the minimal cut
sets put in sequence. Because this RBD is serial-parallel,
this computation is linear in the number of minimal cut sets.
The problem is that, in general, the number of minimal cuts
is exponential in the size of the mapping.

I1/P1

I1/P2

S

I2/P3

I2/P4

D

ol1/L13

ol1/L14

ol1/L24

ol1/L23

I1

ol1
I2

P1

P2

P3

P4

Figure 4. A mapping of two intervals on four
processors and its unspecified RBD.

For this reason, we follow the approach of [11] and
we insert routing operations between the intervals to make
sure that the RBD representing a mapping is always serial-
parallel, therefore making tractable the computation of the
reliability. This is illustrated in Figure 5, where a routing
operationR has been mapped on processor P5 and the RBD
corresponding to the mapping is serial-parallel; as a conse-
quence, the reliability of this mapping can be computed in
a linear time w.r.t. the number of intervals.

DR/P5

I1/P1

I1/P2

S

I2/P3

I2/P4ol1/L25

ol1/L15

ol1/L54

ol1/L53

Figure 5. The serial-parallel RBD obtained
from the same mapping as in Figure 4 but
with an additional routing operation R.

Routing operations can be mapped on any processor. For
instance, in the mapping of Figure 5, R could have been
mapped on P1 instead of P5, therefore avoiding the need
for the communication (ol1/L15). Also, routing operations
are assumed to be executed in 0 time units [11], hence for
any processor Pu, the reliability of the block (R/Pu) is 1.

As we have advocated, inserting routing operations
yields the huge advantage of making the reliability compu-
tation linear in time. This comes at a cost in the execution
time of the system because of the increased number of com-
munications. However, it has been shown in [11] that the
overhead incurred by the routing operations is reasonable
(only +3.88% on average).

For an interval I of weight W mapped on the subset of
processors PI , let ec be its expected time of computation,
and let wc be its WCET (by the slowest processor of PI ).
Assume that the processors in PI are ordered according to
their speed, from the fastest P1 to the slowest Pt: that is,
∀1 ≤ u < t, we have su ≥ su+1. Then, the expected and
worst-case execution times of I on PI are:

ec(I,PI) =W×

∑t
u=1

(
1
su
ru,I

∏u−1
v=1 (1− rv,I)

)
1−

∏t
u=1(1− ru,I)

(3)

wc(I,PI) =
W

st
(4)

Equation (3) sums up, for each Pu, the case where the first
u− 1 fastest processors fail, and the u-th one is successful.
Then, for a mapping (I1,P1), . . . , (Im,Pm), the expected
latency EL and the expected period EP are:

EL =

m∑
i=1

ec(Ii,Pi) + oi (5)

EP = max{ max
1≤i≤m

{oi}, max
1≤i≤m

(ec(Ii,Pi)} (6)

The worst-case latency WL and the worst-case period
WP are defined similarly, but with the worst-case cost of
intervals (Equation (4)) instead of the expected cost (Equa-
tion (3)):

WL =

m∑
i=1

wc(Ii,Pi) + oi (7)

WP = max{ max
1≤i≤m

{oi} max
1≤i≤m

(wc(Ii,Pi)} (8)

Finally, thanks to the routing operations, the reliability
of the mapping (I1,P1), . . . , (Im,Pm) is:

r =

t∏
i=1

(
1−

∏
Pu∈Pi

(1−rcomm,i−1×ru,Ii×rcomm,i)

)
(9)

Equation (9) above is computed according to the generic
form of the RBD of Figure 5. To account for the fact that

6



the first interval I1 has no incoming communication, we just
set o0 = 0, hence rcomm,0 = 1. The same occurs for the
outgoing communication of the last interval Im. Finally,
routing operations do not appear in Equation (9) since their
reliability is always equal to 1.

5 Complexity results for homogeneous plat-
forms

In this section, we provide optimal polynomial algo-
rithms for the mono-criterion reliability optimization prob-
lem, and then for the bi-criteria (reliability, period) opti-
mization problem. Finally, we prove the NP-completeness
of the bi-criteria (reliability, latency) optimization problem.
Note that on homogeneous platforms, the expected latency
and worst-case latency are the same. This also holds true
for the expected period and worst-case period.

5.1 Reliability optimization

We present a mono-criterion polynomial-time algorithm
that maximizes the reliability of a given chain of tasks on
a given homogeneous platform. Algorithm 1 is a dynamic
programming algorithm. It is a simplified version of Al-
gorithm 2 for bi-criteria (reliability, period) optimization,
which we present in the next section.

Data: a number p of fully homogeneous processors of
failure rate λ, a list A of n tasks of sizes wi, and
a maximal number K of replications

Result: a reliability r
for k = 1 to min{K, p} do1

F (1, k) = 1− (1− rcomm,0×r1×rcomm,1)k;2

end3

F (0, 0) = 1;4

for i = 1 to n do5

F (i, 0) = 0;6

end7

for i = 2 to n do8

for k = i to p do9

F (i, k) =10

max1≤j<i,1≤q≤min{K,k}

{
F (j, k−q)×(

1−
(
1−rcomm,j−1×

∏
j≤l≤i rl×rcomm,i

)q)}
;

end11

end12

r = max1≤q≤p F (n, q);13

Algorithm 1: Optimal algorithm for reliability optimiza-
tion on fully homogeneous platforms.

Theorem 1. Algorithm 1 computes in timeO(n2p2) the op-
timal mapping for reliability optimization on fully homoge-
neous platforms.

Proof. In this algorithm, F (i, k) is the optimal reliability
when mapping the first i tasks on k processors, and it is
computed iteratively with the dynamic programming pro-
cedure.

5.2 Reliability/period optimization

We now present a bi-criteria (reliability, period)
polynomial-time algorithm that optimizes the reliability of
a mapping given a bound on the period. Recall that, for
homogeneous platforms, the worst-case period and the ex-
pected period are the same.

Data: a number p of fully homogeneous processors of
failure rate λ, a list A of n tasks of sizes wi, a
maximal number K of replications, and an
upper-bound P on the period

Result: a reliability r
for k = 1 to min{K, p} do1

if max{o0, w1, o1} ≤ P then2

F (1, k) =
(
1−(1−rcomm,0×r1×rcomm,1)k

)
;3

else4

F (1, k) = 0;5

end6

end7

for i = 1 to n do8

F (i, 0) = 0;9

end10

for i=2 to n do11

for k=i to p do12

F (i, k) =13

max1≤j<i,1≤q≤min{K,k}

{
F (j, k−q)×(

1−
(
1−rcomm,j×

∏
j<l≤i rl×rcomm,i

)q)∣∣∣max{oj ,
∑i
v=j+1 wv, oi} ≤ P

}
;

end14

end15

r = max1≤q≤p F (n, q);16

Algorithm 2: Optimal algorithm for reliability optimiza-
tion on fully homogeneous platforms, when a bound on
the period is given.

Theorem 2. Algorithm 2 computes in timeO(n2p2) the op-
timal mapping for reliability optimization on fully homoge-
neous platforms, when a bound on the period is given.

Proof. In this algorithm, F (i, k) is the optimal reliability of
a mapping of p processors on the i first tasks. The dynamic
programming procedure of Algorithm 1 has been modified
to account for the period bound.

7



Finally, we observe that the converse problem, namely
optimizing the period when a bound on the reliability is en-
forced, is polynomial too (use a binary search on the period
and repeatedly execute Algorithm 2 until the optimal value
is found).

5.3 Reliability/latency optimization

We now prove the NP-completeness of the bi-criteria (re-
liability, latency) optimization problem on homogeneous
platforms. As for the period, there is no difference be-
tween the worst-case latency and the expected latency on
such platforms.

Theorem 3. The problem of optimizing the reliability on
homogeneous platforms, with a bound on the latency, is NP-
complete.

Proof. Consider the associated decision problem: given an
homogeneous platform, a chain of tasks, a bound K on the
number of replications, a reliability r and a latency L, does
there exist a mapping of reliability at least r and latency
not exceeding L? This problem is obviously in NP: given
a mapping, it is easy to compute its reliability and latency,
and to check that it is valid in polynomial time.

To establish the completeness, we use a reduction from
2-PARTITION: given a setA of n numbers a1, . . . , an, does
there exist a subset A′ ⊂ A such that

∑
a∈A′ a =

∑
a/∈A′ a.

Let T = 1
2

∑
a∈A a. Let amin = min1≤i≤n{ai} and

amax = max1≤i≤n{ai}. We build the following instance
of our problem with 3n + 1 tasks and 6n identical proces-
sors:

• K = 2 and λ = 10−810−na−3nmax;

• s = b = 1 (unit processor speed and link bandwidth);

• B = 1
2amin

(
n
4 + na2max + T + 2

)
;

• ∀1 ≤ i ≤ n, w3i−2 = B, w3i−1 = 1
2 and w3i = ai;

• w3n+1 = B;

• ∀1 ≤ i ≤ n, ri = e−λwi and rcomm,i = 1;

• ∀1 ≤ i ≤ n, o3i−2 = 0, o3i−1 = ai and o3i = 0;

• L = (n+ 1)B + n
2 + 3T ;

• it follows that the reliability of the mapping is r =
(1 − (1 − e−λB)2)n+1×(1 − λ2(n4 +

∑
1≤i≤n a

2
i +

T )− λ4×22n(amax + 1)n).

The size of instance I2 is polynomial in the size of I1. We
now show that I1 has a solution if and only if I2 has a so-
lution. Suppose first that I1 has a solution A′. Then we
propose the following solution for I2:

• all intervals are replicated 2 times;

• any task of size B make up an interval;

• for all 1 ≤ i ≤ n, if ai ∈ A′, then T3i−1 and T3i are
assigned to two different intervals, else they constitute
one single interval.

This yields the following costs for the latency:

• the sum of computation costs does not depend of the
mapping: (n+ 1)B + n

2 + 2T ;

• for each ai ∈ A′, we add a communication cost ai.

We thus obtain a latency L = (n + 1)B + n
2 + 3T . Con-

cerning the reliability, it is the product of the reliability of
all intervals:

• the reliability of intervals of sizeB is (1−(1−e−λB)2);

• for each ai ∈ A′, the product of the reliability
of the two intervals for tasks T3i−1 and T3i−1 is
(1−(1−e−λ2 )2)(1−(1−e−λai)2), which is greater
than (1− λ2

4 )(1−λ2a2i );

• for each ai /∈ A′, the reliability of the interval for
tasks T3i−1 and T3i−1 is (1−(1−e−λ(ai+ 1

2 ))2), which
is greater than 1−λ2(ai+ 1

2 )
2.

We thus obtain, for the product of all these reliabilities,

r′ = (1− (1− e−λB)2)n ×∏
ai∈A′(1− (1− e−λ2 )2)(1− (1− e−λai)2) ×∏
a−i/∈A′

(
1−

(
1− e−λ(ai+

1
2 )
)2)

≥ (1− (1− e−λB)2)n ×∏
ai∈A′(1−

λ2

4 )(1− λ2a2i ) ×∏
a−i/∈A′(1− λ2(ai +

1
2 )

2)

≥ (1− (1− e−λB)2)n ×(
1−λ2

(
n
4 +
∑

1≤i≤n a
2
i+T

)
−λ422n(amax+1)n

)
Suppose now that I2 has a solution. The exponent in the

reliability bound implies that any interval is replicated at
least 2 times, and the bound on replication is 2. This means
that all intervals are replicated exactly 2 times. Suppose
that one of the tasks of size B is computed together with
another task in the same interval. This yields the bound on
reliability:

r′ < (1− (1− e−λB)2)n(1− (1− e−λ(B+amin))2)

< (1− (1− e−λB)2)n+1×
1−λ2(B+amin)

2

1−λ2B2(1−λB2 )2

< (1− (1− e−λB)2)n+1(1− λ2(B + amin)
2)

(1 + λ2B2(1− λB
2 )2 + 2λ4B4(1− λB

2 )4)

< (1− (1− e−λB)2)n+1×(1− 2λ2Bamin + 7λ4B4)

< r

8



This means that any task of size B makes up an interval.
Let A′ be the set of values i such that T3i−1 and T3i are not
in the same interval. We obtain the following formulas:

• For the reliability:

r ≤ (1− (1− e−λB)2)n ×∏
ai∈A′(1− (1− e−λ2 )2)(1− (1− e−λai)2) ×∏
ai /∈A′

(
1−

(
1− e−λ(ai+

1
2 )
)2)

≤ (1− (1− e−λB)2)n ×∏
ai∈A′(1−

λ2

4 (1− λ
4 )

2)(1− λ2a2i (1− λai)2 ×∏
ai /∈A′(1− (λ2 + λ2

4 + λ2ai)(1− λ
2 (ai +

1
2 ))

2)

≤ 1− λ2(n4 +
∑

1≤i≤n a
2
i +

∑
ai /∈A′ ai) + λ310na3nmax

• For the latency:

(n+1)B+
n

2
+
∑
ai∈A′

ai+2T ≤ (n+1)B+
n

2
+3T

This means
∑
ai /∈A′ ai ≤ T and

∑
ai∈A′ ai ≤ T . Hence,

A′ is a solution for I1. This concludes the proof.

We conclude that, on homogeneous platforms, the bi-
criteria (reliability, period) problem is polynomial, while
the bi-criteria problem (reliability, latency) is NP-complete.
As a consequence, the tri-criteria (reliability, period, la-
tency) problem is NP-complete too.

It is striking, and somewhat unexpected, that the bi-
criteria (reliability, period) problem is easier than the (reli-
ability, latency) one. The intuition for this difference is the
following: when the period bound is given, we know once
and for all which processors are fast enough to be enrolled
for a given interval. Therefore, the mapping choices are lo-
cal. On the contrary, the computation of the latency remains
global, and its final value, including communication costs,
depends upon the choices that will be made further on.

6 Complexity results for heterogeneous plat-
forms

In this section, we prove the NP-completeness of the re-
liability optimization problem on heterogeneous platforms.

Theorem 4. The problem of optimizing the reliability on
heterogeneous platforms is NP-complete.

Proof. Consider the associated decision problem: given a
heterogeneous platform, a chain of tasks, a bound on the
number K of replications, and a reliability r, does there
exist a mapping of reliability at least r? This problem
is obviously in NP: given a reliability and a mapping, it

is easy to compute the reliability and to check that it is
valid in polynomial time. To establish the completeness, we
use a reduction from 3-PARTITION. Consider the follow-
ing general instance I1 of 3-PARTITION: given 3n num-
bers a1, . . . , a3n and a number T such that

∑
1≤j≤3n aj =

nT , does there exist n independent subsets B1, . . . , Bn of
{a1, . . . , a3n} such that for all 1 ≤ i ≤ n,

∑
aj∈Bi aj = T ?

Let amin = min1≤i≤3n i{ai}.
We build the following instance I2 with n tasks and

p = 3n processors:

• λ = 10−8

nT 2 ;

• K = 3;

• γ = 1 + 1
2(T−1) ;

• ∀1 ≤ i ≤ n,wi = 1/n (all tasks have cost 1/n);

• ru,i = e−λu
wi
su ;

• rcomm,i = 1;

• ∀1 ≤ u ≤ 3n, λu = λ ∗ γau and su = 1;

• it follows that the reliability of the mapping is r =(
1− λ3γT

)n
.

The size of I2 is polynomial in the size of I1. We show that
I1 has a solution if and only if I2 has a solution.

Suppose first that I1 has a solution B1, . . . , Bn. We pro-
pose the following solution for I2:

• we have one interval per task;

• the i-th task is replicated three times and allocated to
the set of processors {Pu|u ∈ Bi}.

We obtain a reliability for task i which is equal to

(1−
∏

(1− e−λγ
ai
)) ≥ 1−

∏
(λγai) ≥ 1− λ3γT ,

hence a global reliability r ≥ (1− λ3γT )n.

Suppose now that I2 has a solution. We first show that
the optimal mapping consists of n intervals, one per task,
each replicated three times. Suppose that we know the
number of intervals in the optimal mapping. There are at
most n intervals, and we have enough processors to dupli-
cate all of them three times, and this increases the relia-
bility. We conclude that all intervals will be replicated three
times. Suppose now that one of this intervals contains t > 1
tasks. There are enough processors to split this interval into
t single-task intervals, each replicated 3 times. Let r1 be the

9



reliability of the original interval with t tasks, and rt the re-
liability of the same tasks assigned to t intervals replicated
3 times. By hypothesis of optimality, we have:

r1 ≥ rt
⇒ e−λγt ≥ 1− (1− e−λγT )t

⇒ λγt− 1
2 (λγt)

2 ≤ (λγT )t because λγT ≤ 1

⇒ λγ2− 1
2 (λγ2)

2 ≤ (λγ2)2 because γT−1 ≤ 2

⇒ λγ2 ≤ 3
2 (λγ2)

2

⇒ λγ2 ≥ 2
3

⇒ 4λ ≥ 2
3

However, λ ≤ 10−8, which contradicts the hypothesis. This
means that, in the optimal solution, any task constitutes an
interval.

Let, for all i, Bi = {aj , Ti mapped on Pj}. We obtain
the following reliability:

r =
∏

1≤i≤n

(1−
∏
aj∈Bi

(1− e−λγ
ai
)) ≥ (1− λ3γT )n.

Suppose that, for a value i,
∑
aj∈Bi aj 6= T . Then,

r ≤
∏

1≤i≤n(1−
∏
aj∈Bi(λγ

ai − 1
2 (λγ

ai)2))

≤
∏

1≤i≤n(1− λ3γ
∑
aj∈Bi

aj ∏
aj∈Bi(1−

1
2λγ

ai))

≤
∏

1≤i≤n(1− λ3γ
∑
aj∈Bi

aj (1− λ
2

∑
aj∈Bi γ

aj ))

≤
∏

1≤i≤n(1− λ3γ
∑
aj∈Bi

aj (1− 3λ
2 γ

T ))

≤
∏

1≤i≤n(1− λ3γ
∑
aj∈Bi

aj + 3λ4

2 γ
T+

∑
aj∈Bi

aj )

≤
∏

1≤i≤n(1− λ3γ
∑
aj∈Bi

aj )(1 +
3λ4

2 γ
T+

∑
aj∈Bi aj

1−λ3γ

∑
aj∈Bi aj

)

≤
∏

1≤i≤n(1− λ3γ
∑
aj∈Bi

aj )(1 +
3λ4

2 γ4T

1−λ3γ3T )

≤ (1 +
3λ4

2 γ4T

1−λ3γ3T )
n×
∏

1≤i≤n(1− λ3γ
∑
aj∈Bi

aj )

By hypothesis, we have
∑
aj∈Bi aj 6= T for a value i. Then

by convexity,

∏
1≤i≤n

(1− λ3γ
∑
aj∈Bi

aj ) ≤

(1− λ3γT )n−2×(1− λ3γT−1)×(1− λ3γT+1)

By hypothesis, we have:

(1− λ3γT )n ≤ r

≤ (1 +
3λ4

2 γ4T

1−λ3γ3T )
n(1− λ3γT )n−2

(1− λ3γT−1)(1− λ3γT+1)

⇒ (1− λ3γT )2 ≤ (1 +
3λ4

2 γ4T

1−λ3γ3T )
n

(1− λ3γT−1)(1− λ3γT+1)

≤ (1 +
3λ4

2 γ4T

1−λ3γ3T )
n(

(1− λ3γT )2 − λ3γT−1(γ − 1)2
)

⇒ (1− λ3γT )2 ≥
(
(1 +

3λ4

2 γ4T

1−λ3γ3T )
n − 1

)−1
(1 +

3λ4

2 γ4T

1−λ3γ3T )
nλ3γT−1(γ − 1)2

≥ 1+ 3λ4

4 nγ4T

3λ4

4 nγ4T
λ3γT−1(γ − 1)2

≥ 1+ 3λ4

4 nγ4T

3λnγ3T+1(T−1)2

However, 3λnγ3T+1(T − 1)2 ≤ 1 and 1 + 3λ4

4 nγ4T ≥ 1.
This contradicts the hypothesis. Then, if {B1, . . . , Bn} cor-
responds to a solution of I2, we have

∑
aj∈Bi aj = T for

1 ≤ i ≤ n. This shows that B1, . . . , Bn is a solution for I1,
which concludes the proof.

Because mono-criterion reliability optimization is al-
ready NP-complete, all multi-criteria problems with period
or latency or both, are also NP-complete on heterogeneous
platforms.

7 Conclusion

We have addressed problems related to the mapping of
linear chain workflows on homogeneous and heterogeneous
distributed platforms. The main goal was to optimize the
reliability of the mapping through task replication, while
enforcing bounds on performance-oriented criteria (period
and latency). We have been able to derive a comprehensive
set of NP-hardness complexity results, together with opti-
mal algorithms for polynomial instances. Altogether, these
results provide a solid theoretical foundation for the study of
multi-criteria mappings of linear chain workflows. Another
contribution of this paper is the introduction of a realistic
communication model that nicely accounts for the inherent
physical limitations on the communication capabilities of
state-of-the-art processors.

Communication failures have been incorporated in the
model through routing operations, which guarantee that
evaluating the system reliability remains computationally
tractable. An interesting research direction would be to in-
vestigate whether it is feasible to remove this routing proce-
dure, and accurately approximate the reliability of general
(non serial-parallel) systems.

10



Another direction for future work involves the design
of efficient heuristics for even more difficult problems that
would mix performance-related criteria (period, latency)
with several other objectives, such as reliability, resource
cost, and power consumption.

References

[1] I. Assayad, A. Girault, and H. Kalla. A bi-criteria scheduling
heuristics for distributed embedded systems under reliability
and real-time constraints. In Int. Conf. on Dependable Sys-
tems and Networks, DSN’04, pages 347–356, Firenze, Italy,
June 2004. IEEE.

[2] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr. Ba-
sic concepts and taxonomy of dependable and secure com-
puting. IEEE Trans. Dependable Secure Comput., 1(1):11–
33, Jan. 2004.

[3] H. Balaban. Some effects of redundancy on system reliabil-
ity. In National Symposium on Reliability and Quality Con-
trol, pages 385–402, Washington (DC), USA, Jan. 1960.

[4] A. Benoit, V. Rehn-Sonigo, and Y. Robert. Optimizing la-
tency and reliability of pipeline workflow applications. In
HCW’08, the 17th Heterogeneity in Computing Workshop.
IEEE Computer Society Press, 2008.

[5] A. Benoit and Y. Robert. Mapping pipeline skeletons onto
heterogeneous platforms. J. Parallel Distributed Computing,
68(6):790–808, 2008.

[6] A. Benoit and Y. Robert. Complexity results for through-
put and latency optimization of replicated and data-parallel
workflows. Algorithmica, 57(4):689–724, 2010.

[7] A. Dogan and F. Özgüner. Matching and scheduling algo-
rithms for minimizing execution time and failure probabil-
ity of applications in heterogeneous computing. IEEE Trans.
Parallel and Distributed Systems, 13(3):308–323, Mar. 2002.

[8] J. Dongarra, E. Jeannot, E. Saule, and Z. Shi. Bi-objective
scheduling algorithms for optimizing makespan and reliabil-
ity on heterogeneous systems. In ACM Symposium on Par-
allel Algorithms and Architectures (SPAA), pages 280–288.
ACM Press, 2007.

[9] C. Ferdinand, R. Heckmann, M. Langenbach, F. Martin,
M. Schmidt, H. Theiling, S. Thesing, and R. Wilhelm. Reli-
able and precise WCET determination for a real-life proces-
sor. In Int. Workshop on Embedded Software, EMSOFT’01,
volume 2211 of LNCS. Springer-Verlag, 2001.

[10] F. Gärtner. Fundamentals of fault-tolerant distributed com-
puting in asynchronous environments. ACM Computing Sur-
veys, 31(1):1–26, Mar. 1999.

[11] A. Girault and H. Kalla. A novel bicriteria scheduling
heuristics providing a guaranteed global system failure rate.
IEEE Trans. Dependable Secure Comput., 6(4):241–254,
Dec. 2009.

[12] A. Girault, E. Saule, and D. Trystram. Reliability versus
performance for critical applications. J. of Parallel and Dis-
tributed Computing, 69(3):326–336, Mar. 2009.

[13] M. Hakem and F. Butelle. A bi-objective algorithm for
scheduling parallel applications on heterogeneous systems
subject to failures. In Rencontres Francophones du Par-
allélisme, RENPAR’06, Perpignan, France, Oct. 2006.

[14] B. Hong and V. K. Prasanna. Adaptive allocation of inde-
pendent tasks to maximize throughput. IEEE Trans. Parallel
Distributed Systems, 18(10):1420–1435, 2007.

[15] E. Jeannot, E. Saule, and D. Trystram. Bi-objective ap-
proximation scheme for makespan and reliability optimiza-
tion on uniform parallel machines. In Euro-Par, volume
5168 of Lecture Notes in Computer Science, pages 877–886.
Springer, 2008.

[16] P. Jensen and M. Bellmore. An algorithm to determine the
reliability of a complex system. IEEE Trans. Reliability,
18:169–174, Nov. 1969.

[17] J. Knight and N. Leveson. An experimental evaluation of the
assumption of independence in multi-version programming.
IEEE Trans. Software Engin., 12(1):96–109, 1986.

[18] D. Lloyd and M. Lipow. Reliability: Management, Methods,
and Mathematics, chapter 9. Prentice-Hall, 1962.

[19] P. Pop, K. Poulsen, and V. Izosimov. Scheduling and volt-
age scaling for energy/reliability trade-offs in fault-tolerant
time-triggered embedded systems. In International Confer-
ence on Hardware-Software Codesign and System Synthesis,
CODES+ISSS’07, Salzburg, Austria, Oct. 2007. ACM.

[20] E. Saule and D. Trystram. Analyzing scheduling with tran-
sient failures. Information Processing Letters, 109(11):539–
542, 2009.

[21] S. Shatz and J.-P. Wang. Models and algorithms for
reliability-oriented task-allocation in redundant distributed-
computer systems. IEEE Trans. Reliability, 38(1):16–26,
Apr. 1989.

[22] J. Souyris, E. Pavec, G. Himbert, V. Jégu, G. Borios, and
R. Heckmann. Computing the worst case execution time of
an avionics program by abstract interpretation. In Interna-
tional Workshop on Worst-case Execution Time, WCET’05,
pages 21–24, Mallorca, Spain, July 2005.

[23] J. Subhlok and G. Vondran. Optimal mapping of sequences
of data parallel tasks. In PPoPP’95, pages 134–143. ACM
Press, 1995.

[24] J. Subhlok and G. Vondran. Optimal latency-throughput
tradeoffs for data parallel pipelines. In SPAA’96, pages 62–
71. ACM Press, 1996.

[25] D. Zhu, R. Melhem, and D. Mossé. The effects of energy
management on reliability in real-time embedded systems.
In International Conference on Computer Aided Design, IC-
CAD’04, pages 35–40, San Jose (CA), USA, Nov. 2004.

11


