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ABSTRACT
In this paper, we explore the problem of mapping filter-
ing streaming applications on large-scale homogeneous plat-
forms, with a particular emphasis on communication models
and their impact. Filtering application are streaming appli-
cations where each node also has a selectivity which either
increases or decreases the size of its input data set. This
selectivity makes the problem of scheduling these applica-
tions more challenging than the more studied problem of
scheduling “non-filtering” streaming workflows. We identify
three significant realistic communication models. For each
of them, we address the complexity of the following impor-
tant problems:
- Given an execution graph, how can one compute the period
and latency? A solution to this problem is an operation list
which provides the time-steps at which each computation
and each communication occurs in the system.
- Given a filtering workflow problem, how can one compute
the schedule that minimizes the period or latency? A solu-
tion to this problem requires generating both the execution
graph and the associated operation list.

Altogether, with three models, two problems and two ob-
jectives, we present 12 complexity results, thereby provid-
ing solid theoretical foundations for the study of filtering
streaming applications.

Categories and Subject Descriptors
F.2.2 [Analysis of algorithms and probem complex-
ity]: Nonnumerical Algorithms and Problems—Sequencing
and scheduling ; F.1.2 [Computation by abstract devices]:
Modes of Computation—Parallelism and concurrency

General Terms
Algorithms, Theory
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1. INTRODUCTION
This paper addresses the problem of mapping filtering

streaming applications, or filtering workflows, on parallel
platforms. This mapping problem was first studied in the
context of query optimization over web services: in [17, 8],
the authors consider the case where the web services were to
be mapped one-to-one (one service on one processor) onto
identical servers. A recent extension considers the same
problem with different-speed servers [5]. However, this work
does not model communication, and does not include com-
munication cost in the analysis. In this paper, we introduce
three different and realistic communication models, and we
revisit the problem in this more challenging framework.

Filtering workflows resemble traditional pipelined work-
flows, a popular programming paradigm for streaming ap-
plications like video and audio encoding and decoding, DSP
applications etc [10, 18, 22]. Filtering workflows consist of
a collection of services that must be applied on a stream of
consecutive data sets. These services are represented using a
workflow graph, which contains several nodes (the services),
and these nodes are connected to each other using first-in-
first-out channels (or dependence constraints between ser-
vices). Data is input into the graph using input channel(s)
and the outputs are produced on the output channel(s). So
far, the filtering workflows resemble regular workflows. How-
ever, in filtering workflows, the services filter incoming data
by a certain amount. More precisely, each service Ci has a
selectivity σi and an elementary cost ci. If an input of size
δi is provided to Ci, then the output is of size σiδi while the
computation requirement of the service is ciδi. Therefore,
when σi < 1, the service shrinks data (hence the name fil-
ter) and when σ > 1, the service expands the data. Just as
in regular workflows, the goal is to map these computations
on some parallel platform and then organize computations
and communications so as to optimize some scheduling ob-
jective. Since data continually flows through these applica-
tions, typical objectives of the scheduler are to minimize the
period (which is defined as the inverse of the throughput) or
the latency (also called response time) [19, 20, 6, 21].

In this paper, we only consider mapping filtering work-



flows on homogeneous machines: each server has the same
speed, and all servers are connected to each other by commu-
nication links of equal bandwidth. As in previous work [17,
8], we consider one-to-one mappings, where each server has
at most one service mapped to it. Clearly, for one-to-one
mappings, the number of servers must be equal to or more
than the number of services. We show in this paper that
most period or latency minimization are NP-complete even
in this setting1. Note that we do not need to specify which
service is mapped onto which server, since all servers are
equivalent and we only map one service to a server.

Instead, given a collection of services, we specify a plan,
which is the combination of an execution graph and an op-
eration list :
• The execution graph is a directed acyclic graph (DAG)

of services. If there is an edge from service Ci to Cj
in the execution graph, then output of service Ci is
sent to service Cj . The set of edges in the execution
graph must obey the original precedence constraints
but may also include additional edges to further filter
the incoming data of some services, thereby reducing
their actual execution time.
• The operation list describes the time-steps at which ev-

ery computation and every communication takes place.
We assume that the schedule is cyclic, so that the ex-
ecution list can be specified concisely.

For one-to-one mappings on a homogenous platform, a plan
fully describes a solution. Therefore, in order to minimize
period or latency, we just have to find the corresponding
execution graph and an operation list that minimizes our
objective.

Let δ0 be the size of the input data sets to the services
which have no predecessors. The size of the input data set
to a service Cj is δ0 times the product of the selectivities
of all of its ancestors. Therefore, in some cases, it may be
advantageous to add an edge (in the execution graph) that
did not exist in the original precedence constraints. For in-
stance, if we add an edge from Ci to Cj , where Ci has a small
selectivity, then Cj will require a smaller computation time
and have a smaller output. However, we can not add edges
arbitrarily since adding edges may increase communication
costs; for our example, Ci now has an extra communication
link to Cj due to the added edge.

All of the assumptions related to service costs and selectiv-
ities are those of Srivastava et al. [17, 8]. Although their pa-
pers mainly deal with query optimization over web services
(already an increasingly important application with the ad-
vent of Web Service Management Systems [11, 15]), the ap-
proach applies to general data streams [3] and to database
predicate processing [9, 13]. In addition, our framework is
quite similar to the problem of scheduling unreliable jobs on
parallel machines [1] where service selectivities correspond
to job failure probabilities. Due to lack of space, please refer
to [4] for more related work.

The emphasis of our work is on the impact of communica-
tion models. We consider two commonly used communica-
tion models. The no overlap communication model requires
that at any point, a server can either compute, or receive
an incoming communication, or send an outgoing commu-

1In general mappings, we can map several services onto the
same server. Problems with general mappings are straight-
forwardly shown NP-hard by reduction from 2-Partition or
bin packing [12].

nication. This models single threaded machines where ev-
ery operation is serialized. We define two variants for this
model, one where we enforce in-order execution, and another
where we allow out-of-order execution (which means inter-
leaving communications and computations of different data
sets) so as to reduce the idle-time incurred by the serial
ordering of the communications. The first variant is con-
servative (in the sense that it can always be implemented
without additional resource requirement) while the second
variant may require large buffering capacities. In contrast
to these variants which sequentialize operations, the over-
lap communication model considers the situation where a
server can compute and send/receive communications at the
same time, and represents multi-threaded machines. In all
models, communication is synchronous and we do not allow
preemption (interruption) of either computation or commu-
nication.

Our main result is that computing the period or the la-
tency in all these models turns out to be difficult. As already
stated, the minimization problems (finding the optimal plan
to minimize the period or the latency) are all NP-hard. This
result is surprising, since polynomial algorithms exist for
homogeneous machines when we do not model communi-
cation [17, 8]. Therefore, modeling communication costs
explicitly has a huge impact on the difficulty of mapping
filtering services. In addition, and quite unexpectedly, the
“orchestration” problems (given an execution graph, find the
optimal operation list) also are of combinatorial nature. Fi-
nally, the choice of the model has a tremendous impact on
the values that can be achieved. Many of our results and
counter-examples apply to regular workflows (without selec-
tivities), and should be of great interest to the whole com-
munity interested in scheduling streaming applications.

This paper is organized as follows. Section 2 describes
the framework of the problem in more details. Section 3 il-
lustrates the difference between communication models with
the help of several examples. The next two sections consti-
tute the core of the paper. Section 4 is devoted the period
minimization problem, while Section 5 is the counterpart for
latency minimization. Finally we give some conclusions and
perspectives in Section 6.

2. FRAMEWORK
This section is devoted to a precise statement of the dif-

ferent models and optimization problems. We then give a
formal definition of the period and of the latency. Surpris-
ingly, these formal definitions require quite a complicated
formulation, so we work out an example in full details, in
order to illustrate the differences between all the models.

2.1 Plans
As stated above, the target application A is a set of ser-

vices (or filters, or queries) linked by precedence constraints.
We write A = (F ,G) where F = {C1, C2, . . . , Cn} is the set
of services and G ⊂ F × F is the set of precedence con-
straints. A service Ci is fully described by its cost ci and its
selectivity σi.

The target machine is a homogeneous platform with p
servers (or processors) of same speed s. All servers are con-
nected to each other by communication links of equal band-
width b. The cost for transmitting a data of size δ is δ

b
. Let

δ0 be the size of input data.
We have to build a plan PL = (EG,OL), that is an ex-



ecution graph EG = (C, E) that summarizes all precedence
relations in the mapping, and an operation list OL that cap-
tures the occurrence of each computation and each commu-
nication. We deal with the operation lists later, after having
described the communication models. As for the execution
graph EG = (C, E), the nodes in C are the services in F
and input/output nodes. There is an arc (Ci, Cj) ∈ E if Ci
precedes Cj in the execution. There are two types of such
arcs: those induced by the set of precedence constraints G,
which must be enforced in any case, and those added to re-
duce the period or the latency. Let Ancestj(EG) denote the
set of all ancestors2 of Cj in the execution graph EG. Only
arcs from direct predecessors are kept in E . In other words,
if (Ci, Cj) ∈ G, then we must have Ci ∈ Ancestj(EG) 3.

For each service Ck in F , let Sin(k) be the set of its direct
predecessors in EG, and let Sout(k) be the set of its direct
successors. Entry nodes are nodes Ck such that Sin(k) = ∅;
for each of them we add an input node to C to model input
from the outside world. Similarly, for each exit node Ck in C
(with Sout(k) = ∅), we add an output node to C. We define:

Cin(k) =
δ0
b

X
Ci∈Sin(k)

0@ Y
Cj∈Ancesti(EG)

σj

1A

Ccomp(k) =

0@ Y
Cj∈Ancestk(EG)

σj

1A× δ0.ck
s

Cout(k) =
δ0
b
× |Sout(k)| ×

0@ Y
Cj∈Ancestk(EG)

σj

1A× σk
Here, Cin(k) is a lower bound of the time needed to re-

ceive input data from all the predecessors of Ck. The input
data from each predecessor Ci is of size δ0

Q
Cj∈Ancesti(EG) σj ,

hence it requires δ0
b

Q
Cj∈Ancesti(EG) σj time units for commu-

nication from Ci. We add the communication from all the
parents (immediate predecessors) to get the total incoming
communication time Cin(k). This lower bound may not be
met because of idle times due to server synchronizations for
the communications. However, we have not yet specified in
which order the different communications take place. This
specification requires discussion of communication models.
We discuss variations of both one-port [7] and multi-port
models [14] in Section 2.2.

The outgoing communication lower bound Cout(k) is de-
fined similarly, except that the outgoing communication to
each (immediate) successor is of same size. Finally, Ccomp(k)
is the execution time of Ck on the server, with the appropri-
ate size factor involving the selectivities of all its ancestors.
We assume that each service without successor in the exe-
cution graph performs a single output communication (this
models returning the results to the outside world). Before
discussing the communication models, we make two impor-
tant remarks that apply to all variants:
• The selectivity of a service influences the execution

time of all its successors (if any) in the mapping. In
other words, a service is “filtered” or “expanded” by

2The ancestors of a service are the services preceding it, and
the predecessors of their predecessors, and so on.
3Equivalently, G must be included, in the transitive closure
of E .

the combined selectivity of all its predecessors. This
implies that selectivities are independent, and that the
cost of join operations (in front of the service, after it
receives all its communication) is negligible. All these
hypotheses are enforced in the literature, but further
work could be devoted to generalizations of this simple
model.
• Since our platform is homogeneous, we can scale all

service costs as ck ← b
δ0
· ck
s

, allowing us to set δ0 =
b = s = 1 without loss of generality. At the end of the
computation, we can scale the computed period and
latency by the factor δ0

b
to obtain the actual values.

2.2 Communication models
This section presents the various communication models.

We first present the general overview and then we formally
state the constraints and the rules of the three models. We
present only an informal description of the models. Detailed
formulas are provided in [2].

With overlap.
In the first model, we assume full overlap of communi-

cations and computations, where each server can receive,
compute and send (independent) data simultaneously. This
model, denoted as Overlap, calls for multi-port communi-
cations: many incoming (resp. outgoing) communications
can take place at the same time, sharing the incoming (resp.
outgoing) bandwidth, provided that the total communica-
tion capacity of the server is never exceeded. Independent
computations take place in parallel to these communica-
tions. In this model, the server may operate concurrently
on different consecutive data sets: while receiving input for
a given data set, it can execute computations for some older
data set and sends output for some even older data set. We
define execution time Cexec(k) of a service/server pair Ck
as the maximum execution time of the send, receive and
compute operations of its service:

Cexec(k) = max{Cin(k), Ccomp(k), Cout(k)}

The period P is defined as the interval between the com-
pletion of consecutive data sets. With this definition, the
system can process data sets at a rate 1/P (the throughput).
In steady state, a new data set enters the system every P
time-units, and several data sets are processed concurrently
within the system. In the overlap model, the lower bound on
the period is the maximum of the quantities Cexec(k) over
all services Ck:

P = max
1≤k≤n

Cexec(k)

Given an execution graph, it turns out that we can generate
an order of communication/computations that achieves this
lower bound in the multi-port model: see [2]. Note that de-
termining the optimal execution graph is still NP-complete,
and therefore, the period minimization problem is still dif-
ficult. See [2] for a complete list of the resource constraints
that need to be satisfied for the Overlap model.

Without overlap.
In the models without overlap, a server performs commu-

nications and computations sequentially (instead of in paral-
lel). This is typical of an execution with single-threaded pro-
grams and (one-port) serialized communications. Despite its
apparent simplicity, the model calls for two variants.



• InOrder : In the first variant, called InOrder, each
server completely processes a data set before starting
the execution of the next one; it receives incoming com-
munications for data set number, say, i, one after the
other; then it executes the computations for this data
set, and then it sends the output data to all its succes-
sors, one communication after the other. Only after
completing this whole set of operations can the pro-
cessing of data set i+ 1 be started (with the incoming
communications).
• OutOrder : In this second variant, we allow for out-

of-order execution, namely starting some operation (say,
an incoming communication) for data set i+1 (or even
i+ j, j ≥ 2) while still processing data set i.

From an architectural point of view, we emphasize that
the InOrder and OutOrder variants may be overly pes-
simistic, as modern processors are capable of some inter-
nal parallelism. However, both operation modes correspond
to blocking send/receive MPI primitives [16], and servers
may encounter idle time due to the synchronizations in both
models. Nevertheless, we expect less idle time for the Out-
Order model than for the InOrder model, due to the addi-
tional schedule flexibility of the former model. Both variants
lead to a computation cost for server/service Ck is bounded
below by

Cexec(k) = Cin(k) + Ccomp(k) + Cout(k)

As before, a lower bound on the period is the maximum of
the execution times. But unlike the Overlap model with
multi-port communications, this lower bound cannot always
be reached: see the example in Section 2.3. Note that the
multi-port model is more flexible: since it permits sending
data to many other servers simultaneously, orchestrating the
communications in the multi-port model is an easier task
than for the one-port model. We refer to [2] for a list of
resource constraints to be enforced for each model. We em-
phasize that there is no closed-form formula for the period
with the InOrder and OutOrder models, which we be-
lieve is a new and surprising observation.

Latency.
We have just seen that models have a strong impact on

the computation of the period. This is also true for the la-
tency (or response time), but to a lesser extent. The latency
(or response time) is the time needed to execute a single
data set entirely. The overlap/no-overlap distinction is no
longer meaningful for optimizing this criterion. Indeed, we
can always fully serialize the processing of each data set and
minimize the execution time, or makespan, when processing
a unique data set. In other words, we delay the processing
of the next data set until the current one is completely ex-
ecuted, this suppresses all resource conflicts. With such a
strategy, the period is equal to the latency, which in turn is
equal to longest path from an input node to an output node
in the plan. However, the choice between one-port or multi-
port communications does have an impact on the latency.
This is illustrated by the example presented in Section 3.2.

Other variants.
Altogether, we have three models, one multi-port model

with overlap and two one-port variants without overlap; the
precise constraints that need be enforced are detailed in [2].
We note that other models can be introduced, for instance

one-port communications with computation/communication
overlap. However, we believe that we address the most real-
istic combinations: on single-threaded machines it is hard to
avoid doing everything sequentially, and on multi-threaded
machines, we can execute computations and (several) com-
munications concurrently. Another possibility is to consider
preemptive models where communication and/or computa-
tion can be interrupted, and the bandwidth of communica-
tion can vary during the communication. Such preemptive
models are beyond the scope of this paper.

We point out that the effective difference between one-
port and multi-port communications is not obvious: in most
cases, the optimal solution for the multi-port model obeys
the one-port constraints. In Section 3, we present examples
of execution graphs were the optimal latency and period for
the multi-port model are strictly smaller than the optimal
ones for the one-port model.

Characterizing solutions.
In this paper, we study two optimization problems:

(i) MinPeriod: find a plan PL = (EG,OL) that mini-
mizes the period; and (ii) MinLatency: find a plan PL =
(EG,OL) that minimizes the latency. For each problem
instance, independently of the model and of the objective
function, the solution includes the execution graph EG that
describes the set Ancesti for each service Ci. But this graph
alone does not give enough information to compute the sched-
ule, i.e., the moment at which each operation takes place.
We also need the complete list of the time-steps at which ev-
ery communication or computation begins and ends. In this
paper, we only consider cyclic schedules, that is, schedules
that repeat for each data set. Therefore, the description of
the operation list is polynomial (actually, quadratic) in the
number of services.

Formally, we define the operation list OL as follows:
• For each service Ci, BeginCalcn(i) is the time-step where

the computation of Ci on data set number n begins,
and EndCalcn(i) is the time-step where this computation
ends.
• For each edge Ci → Cj in the plan, BeginCommn

(i,j)

is the time-step where this communication involving
data set number n begins, and EndCommn

(i,j) is the
time-step where this communication ends.
• The schedule starts at time-step 0 with the data set

number 0, and we impose a cyclic behavior of period λ:8>>>>>>>>>><>>>>>>>>>>:

BeginCalcn(i) = BeginCalc0
(i) + λ× n

for each service Ci
EndCalcn(i) = EndCalc0

(i) + λ× n
for each service Ci

BeginCommn
(i,j) = BeginComm0

(i,j) + λ× n
for each communication Ci → Cj

EndCommn
(i,j) = EndComm0

(i,j) + λ× n
for each communication Ci → Cj

For every model, we have rules that must be satisfied by the
operation list in order to have a valid schedule. These rules
ensure that no resource constraint or model assumption is vi-
olated. For instance, in the InOrder model, EndComm(j, k)n <
BeginComm(i, j)n+1 for all services i, j, k and all data sets,
since all work for one data set must be done before starting
work on another data set. See [2] for the complete list of
rules.

Note that all models are non-preemptive: once initiated, a



communication or a communication cannot be interrupted.
Also, communications are synchronous, and the bandwidth
assigned to a given communication remains the same during
its whole execution (this is not really a restriction for the
one-port model but it is an important one for the multi-port
model). With the operation list we can define the period and
the latency of a plan PL:
• the period is P = λ;
• the latency is L = max{EndComm0

(i,j)|Ci → Cj ∈ E}.
Remember that output nodes execute a communication

to the outside world, so that the longest path for data set
number 0 ends by one such communication.

2.3 Illustrative Example
In this section, we work out a simple example of filtering

workflow in order to better understand the three models.
Consider an instance with 5 services, all of which have cost
4 and selectivity 1, without dependence constraints. Let the
execution graph EG be the graph presented in Figure 1.

out
in

C1

C2 C3

C5

C4

Figure 1: Example.

Latency.
We start with the latency because it is simpler. Assume

first one-port communications, hence the InOrder or Out-
Order models. As mentioned earlier, there is no difference
between these models for computing the latency; in both
cases we have to minimize the length of the longest path
in the graph. If the first data set enters the graph at time
t = 0, then the computation of service C1 is completed at
time 5. Then the computation of C2 begins at time 6 if C1

sends to C2 at time 5 before sending to C4 at time 6. The
computation of C3 begins at time 11. The computation of
C4 begins at time 7 and completes at time 11. Then, the
communication between C4 and C5 can be done at time 12.
In the meantime, C3 completes its computation at time 15.
Then, the computation of C5 can begin at time 16 and is
completed at time 20. With the last communication of C5,
this leads us to a latency of 21, which is the optimal value
for the one-port model.

C1

C2

C3

C4

C5

in Calc 2 4

1 Calc 3

2 5

1 5

4 3 out

5 10
15 20

Calc

Calc

Calc

Figure 2: Execution scheme.

This execution scheme is presented in figure 2 With multi-

port communications we cannot achieve a better latency for
this example, so we derive the same solution. See Section 3.2
for an example where the multi-port latency is smaller than
the one-port latency.

Period.
Looking at the above operation list, we can obtain a period
P = 5 for the model Overlap: if we keep the same list and
only change λ = 21 into λ = 5, we have no resource conflict.
In fact we can achieve a period of 4 for the Overlap model,
and this is clearly optimal as each computation has cost
4. To do so, we modify the following in the operation list:
λ = 4, BeginComm0

(4,5) = 12, and EndComm0
(4,5) = 13. For

example, between time 5 and 9, server C1 receives data set
number 3, computes the data set number 2, and sends data
set number 1 to C2 and C4. The resulting execution scheme
is presented in Figure 3.

C1

C2

C3

C4

C5

in Calc 2 4

1 Calc 3

2 5

1 5

4 3 out

5 10
15 20

Calc

Calc

Calc

Figure 3: Optimal execution scheme for Overlap.

For the model OutOrder, the minimum possible period
is 7, since server C5 has two incoming communications of
length 1, one computation of length 4 and one outgoing
communication of length 1 (we get the same bound with
C1). This value cannot be obtained for service C5 with the
current operation list: the receive of data from C4 for data
set 1 (at time 12 + 7 = 19) coincides with its computation
for data set 0. In order to achieve a period 7, we must
move the idle time to “less loaded servers.” For example,
we can set BeginComm0

(4,5) = 14, and BeginCalc0
(4) = 8. We

keep BeginComm0
(1,4) = 6, so that there is an idle time be-

tween the end of this communication and the beginning of
the computation. C4 has another idle time at the end of
this computation at time 12, and the cycle resumes for data
set 1 at time 13 = 6 + 7 = BeginComm1

(1,4). The resulting
execution scheme is presented in Figure 4.

C1

C2

C3

C4

C5

in Calc 2 4

1 Calc 3

2 5

1 5

4 3 out

5 10
15 20

Calc

Calc

Calc

Figure 4: Optimal execution scheme for OutOrder.

For the model InOrder, we have the same lower bound
for the period as for the model OutOrder, namely 7. With
the previous operation list, we obtain a period 10 because of
the cost of C5: the beginning of the receive for data set 1 has



to wait for the end of the send of data set 0. This difference
of 3 between 7 and 10 corresponds to the idle time between
the end of the receive from C4 and the beginning of the re-
ceive from C3, which is the difference of the lengths of the
path C1 → C4 → C5 and of the path C1 → C2 → C3 → C5.
This idle time can be reduced by shareing it between C1,
C4 and C5 as follows. The time spent in computations and
communications is 7 for C1, 6 for C4 and 7 for C5 respec-
tively. The optimal solution is to give an idle time 2

3
for

C1, 1 + 2
3

for C4 and 2
3

for C5. We obtain the following

values: BeginComm0
(1,4) = 6 + 2

3
,EndComm0

(1,4) = 7 + 2
3
,

BeginCalc0
(4) = 7+ 2

3
, EndCalc0

(4) = 11+ 2
3
, BeginComm0

(4,5) =

13 + 1
3
, and EndComm0

(4,5) = 14 + 1
3
. The other values do

not change. We obtain a period 23
3

, which the reader may
find surprising! The resulting execution scheme is presented
in Figure 5.

C1

C2

C3

C4

C5

in Calc 2 4

1 Calc 3

2 5

1 5

4 3 out

5 10
15 20

Calc

Calc

Calc

6 + 2
3 13 + 1

3

Figure 5: Optimal execution scheme for InOrder.

In this example, with the same operation list, we obtain
three different periods for the three different models. More
interestingly, the optimal period is different for each model,
and is obtained with a different operation list.

3. COUNTER-EXAMPLES
In this section we give three examples to show the diffi-

culty introduced by communication costs with the different
models.

3.1 With and without communication cost
Our first example shows the impact of communication

costs on the optimal solution for the period: without com-
munications, the optimal plan always is a linear chain for the
services whose selectivities do not exceed 1 [17]. Here we will
prove that this property is no longer true in the Overlap
model.

Consider the following instance with 202 services: services
C1 and C2 have selectivities σi = 0.9999 and costs ci =
100, while services Ci for 3 ≤ i ≤ 202 have selectivities
σi = 100 and costs ci = 100

0.9999
. For the model without

communication cost, we obtain the optimal period of 100
by chaining the services with selectivity less than 1 (C1 and
C2), and making C2 the immediate predecessor of all other
services. But because of the outgoing communications of C2,
this solution gives us a period 200 with the model Overlap.
We claim that the only optimal solution with the model
Overlap is the plan presented in Figure 6, which does not
have the property that it chains the services with selectivity
at most 1.

We prove by contradiction that this is only solution with
period at most 100. Consider another plan with period less
than 100. Let i be an integer with 3 ≤ i ≤ 202. The cost

in

in

C1

C2

C3

C4

C102

C103

C202

C104

out

out

out

out

out

out

Figure 6: Optimal solution with communication
costs.

of Ci is strictly greatest than 100, hence it must have C1

or C2 or both as a predecessor. But if C1 precedes C2, C1

can only have 99 other successors, and C2 can only have 100
successors (due to communication costs). There is a slot
missing, unless some Ci has a successor Cj where 3 ≤ i, j ≤
202 and i 6= j. But then the computation time of Cj in G
would beY

Ck∈Ancestj(G)

σk × σi × cj ≥ 0.99992 ∗ 100 ∗ 100 > 100

Therefore, the property of chaining all filters with “small”
selectivities no longer works for models which have commu-
nication costs, making it more difficult to compute the plan
with optimal period.

3.2 One-port/multi-port for latency
In this example, we study the difference between one-port

and multi-port communications when computing the latency
when the execution graph is given. Consider a problem in-
stance with 12 services C1 to C12, all with unit cost. We
assume that σ2 = σ3 = 2, σ4 = σ5 = σ6 = 3, and the
other selectivities are equal to 1. The execution graph EG
is represented in Figure 7.

The computations of services C1,...,C6 can be completed
at time 2. With multi-port communications, the communi-
cations between these services and services C7,...,C12 can be
executed within 6 time-steps; they all complete at time 8.
The computations of services C7,...,C12 complete at time 14
(the size of each input is 6), and the output communications
to the outside world all complete at time 20, which leads to
a latency L = 20.

This latency cannot be achieved with one-port commu-
nications. To see this, first note that the computation of
any service Ci with 1 ≤ i ≤ 6 cannot be completed before
time 2. Then the difference between the beginning of the
computation of any service Cj with 7 ≤ j ≤ 12 and the la-
tency is at least 12, because of the cost of their computation
and of their outgoing communication. Hence, to obtain a
latency of 20, all communications from services C1,...,C6 to
services C7,...,C12 must be completed within 6 time-steps.
But this value is equal to Cout(i) for 1 ≤ i ≤ 6 and to Cin(j)
for 7 ≤ j ≤ 12: there cannot be any idle time on any ser-
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Figure 7: Execution graph for the example with the
latency.

vice between the first incoming data and the last outgoing
data. Suppose that there exists a valid operation list for
one-port communications without idle-time and capable of
executing all the communications within 6 time steps. Let
Cj be the service such that BeginComm0

(1,j) = 2 and let Ck

be the service such that BeginComm0
(1,k) = 3. We know that

these two services exist because there cannot be any idle
time on C1. Then Ck is necessarily idle between time 2 and
3 because the only incoming communication on Ck of cost
1 is C1 → Ck. This contradiction proves that the optimal
latency with one-port communications on this instance is
strictly greater than 20.

Note that this result also holds for traditional workflows
(without selectivities), where the execution graph of the ex-
ample can be viewed as the original DAG of a workflow
where the weight of a node Ck is Ccomp(k) and where the vol-
ume of a communication from Ci to Ck is

Q
Cj∈Ancesti(EG) σj .

To the best of our knowledge, this is a new and important
observation for scheduling classical streaming applications.

3.3 One-port/multi-port for period
In this example, we study the difference between one-port

and multi-port communications when computing the period,
given the execution graph, in the Overlap model. The ex-
ample with the period is more complicated than the one with
the latency because different data sets can be processed con-
currently. Consider the following problem instance with 8
services of small cost, so that communications are the bot-
tleneck: ∀i, ci = 1/100. We let σ1 = σ2 = 3, σ3 = 4, σ4 = 2,
and σi = 1/100 for 5 ≤ i ≤ 8 (output communications are
negligible). The execution graph EG is represented in Fig-
ure 8.

With the multi-port model, the optimal value of the pe-
riod is given by the maximum time needed for communi-
cations, i.e. P = 12. Can we obtain this value with one-
port communications? Notice that Cout(1) = Cout(2) =
Cout(3) = 12 and Cin(5) = Cin(6) = Cin(7) = 12. That
means that if there exists a solution, then there must be no
idle time on these servers.

Suppose that there exists a valid operation list of period
λ = 12. Consider the steady-state operation, and let t be a
time-step at which a communication from C3 to C5 begins.
Then, as there is no idle time on C3 for outgoing commu-
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Figure 8: Execution graph for the example with the
period.

nications, there is a communication from C3 at time t + 4
(suppose it goes to C6) and at t+ 8 (suppose it goes to C7).

There is no idle time on C5 for incoming communications
either, hence there is an incoming communication on C5

that begins at time t + 4. This communication is of size
2 or 3. Suppose first that this communication is of size
3. This case is represented in Figure 9. We can suppose
that it comes from C1. We study the beginning time of the
communication from C1 to C7. There is no idle on C1, and
this server sends data to C5 between t+ 4 and t+ 7: hence
this communication begins at time t + 7, t + 10 or t + 13
(or t + 1 for the previous data set). Server C7 receive data
from C3 between t + 8 and t + 12. That means that the
communication from C1 cannot begin at t + 7, and nor at
t + 10. There only remains time t + 13. There remains an
idle slot between t+ 12 and t+ 13 for a communication, but
there is no communication of size 1. As there should be no
idle time on C7, we obtain a contradiction.

C3

C3

C1

C3

C7

C5

C6

t t+ λ

Figure 9: Case 1.

Suppose now that there is an incoming communication
to C5 of size 2 that begins at time t + 4, followed by a
communication of size 3 (suppose it comes from C1). We
study the beginning time of the communication from C1 to
C6. Server C1 sends data to C5 from time t + 6 to t + 9
and it has no idle time. Then the communication from C1

to C6 can begin at time t+ 9 or t+ 12 (or t for the previous
data set) or t+ 15 (or again t+ 3 for the previous data set).
This communication cannot begin at time t + 3 because it
is of size 3 and the communication from C3 to C6 begins at
time t+ 4. If it begins at time t+ 9, we obtain an idle time
of size 1 between t + 8 and t + 9, and if it begins at time
t, we obtain an idle time of size 1 between t + 3 and t + 4.
However, we have seen in the previous case that this is not
possible. We obtain a contradiction.

For minimizing the period in the Overlap model, we have



proven that multi-port communications are strictly“stronger”
than one-port communications. Just as in Section 3.2 for
the latency, we point out that this result still holds for tra-
ditional workflows (without selectivities).

C3

C3

C1

C3

C5

C6

C7

t t+ λ

Figure 10: Case 2.

4. PERIOD MINIMIZATION
In this section, we study two problems related to period

computation and minimization. First we address the follow-
ing problem: given an execution graph, what is the com-
plexity of determining the operation list that leads to the
best period? We provide a polynomial algorithm for the
Overlap model, and show that the problem is NP-hard for
the InOrder and OutOrder models. Then we address
the general optimization problems MinPeriod-Overlap,
MinPeriod-InOrder and MinPeriod-OutOrder: what
is the complexity of determining the plan whose period is
optimal? We show that these three problems are NP-hard.

4.1 Optimal period for a given execution graph

Theorem 1. Given an execution graph, the problem of
computing the operation list that leads to the optimal period
has polynomial complexity with the Overlap model but is
NP-hard with the OutOrder and InOrder models.

Proof. Dealing with the Overlap model is not too diffi-
cult. In this model, all the communications can be executed
in time

T = max
1≤k≤n

{Cin(k), Cout(k)}

We just have to assign to any communication of size t a
fraction t/T of the available bandwidth. Remember that we
have normalized the bandwidth to b = 1. By doing so, the
communications will be executed in time T , and the sum of
incoming or outgoing communications on any server is less
than or equal to b = 1. We have not yet specified which
data sets are operated upon by the different servers. But
the previous discussion shows that every server can repeat
its operations every T time-units without conflict. If suffices
to let the first data set traverse the execution graph greedily:
each communication is performed as soon as possible, and
each computation is performed as soon as all the necessary
data (all incoming communication) is available. We then
repeat this scheme for every data set every T time units,
and we obtain an operation list of period T .

The NP-completeness reduction for non-overlapping mod-
els is rather involved. We present here a proof for the model
InOrder. We consider the associated decision problem and
show that is NP-complete: given an application A = (F ,G),
an execution graph EG for this application, and a bound

K, does there exist an operation list for EG such that the
period does not exceed K? This problem is obviously in
NP: given A, EG and an operation list, we have the period
λ and check whether it does not exceed K. To establish
completeness, we use a reduction from RN3DM [23]. We
consider an instance I1 of this problem: given an integer
vector A = (A[1], . . . , A[n]) of size n ≥ 2, does there exist
two permutations λ1 and λ2 of {1, 2, . . . , n} such that:

∀1 ≤ i ≤ n, λ1(i) + λ2(i) = A[i] (1)

We can suppose that 2 ≤ A[i] ≤ 2n for all i and thatPn
i=1A[i] = n(n+ 1), otherwise we know that the instance

I1 has no solution. We associate to I1 an instance I2 with
2n+ 5 services without dependence constraints, all of selec-
tivity 1, and whose costs are as follows:

• c1 = c2n+5 = n and c2n+3 = c2n+4 = 2n+ 1

• c2i = 2n+1 for 1 ≤ i ≤ n+1 and c2i+1 = 2n+1−A[i]
for 1 ≤ i ≤ n

• σi = 1 for 1 ≤ i ≤ 2n+ 5

The execution graph is represented in Figure 11. Finally, we
let K = 2n+3. The size of I2 is obviously linear in the size of
I1. Intuitively, we note that service C1 has many successors
and C2n+5 many predecessors. We need the ordering of the
associated communications to compute the optimal period
for this execution graph. We now show that I1 has a solution
if and only if I2 has a solution.

C2n+4

C2
C3

C4 C5

C2n+3
C2n+2

in
C2n+5

out

C1

Figure 11: graph G.

Suppose first that I1 has a solution λ1, λ2. We compute
the following operation list for I2: C1 first communicates
with C2n+4. Then services C2, C4, . . . , C2n are fed in the
ordering given by λ1. Finally C2n+4 is the last service to
receive data from C1. Receptions by C2n+5 are done in the
order C1, C2(n−λ2(1))+3, . . . , C2(n−λ2(n))+3, C2n+3. With
this orchestration, owing to Equation 1, the period is 2n+3.

Suppose now that I2 has a solution. For a data set k,
suppose that the computation of C2n+2 begins at time i and
that the computation of C2n+4 begins at time j. For services
C1, C2n+2 and C2n+4, the sum of the costs of communica-
tions and of computations is equal to 2n + 3. That means
that there is no idle time for the associated servers. Hence
at time i − 1 (resp. j − 1), there is a communication be-
tween servers C1 and C2n+2 (resp. C2n+4) for data set k.
Hence service C1 sends the result of its computation for data
set k between time-steps i − 1 and j or between time-steps
j − 1 and i. Therefore, |j − i| + 1 ≤ n + 2. For services
C2n+3, C2n+4 and C2n+5, the sum of the costs of commu-
nications and of computations is equal to 2n + 3. That



means that there is no idle time for the associated servers.
Hence the computation of data set k on C2n+3 and C2n+4

are completed at time i + 4n + 3 and j + 2n + 1 respec-
tively. C2n+5 receives the corresponding data from C2n+3

and C2n+4 at time i + 4n + 3 and j + 2n + 1 respectively.
Then service C2n+5 receives the data for the computation
of data set k between time i + 4n + 1 and j + 2n. Hence
|(i+4n+3)−(j+2n+1)|+1 = |(i−j)+2n+2|+1 ≤ n+2.
We obtain j − i = n + 1. As a consequence, for 1 ≤ i ≤ n,
the communication from C1 to C2i is done between time j
and j+n and the communication between C2i+1 and C2n+5

is done between time j+2n+2 and j+3n+2. Let λ1 be the
ordering of communications from C1 to services C2, ..., C2n

and λ2 be the permutation such that n + 1 − λ2 is the or-
dering of communication from C3, ..., C2n+1 to C2n+5. We
obtain

∀i, λ1(i) + (2n+ 1) + 1 + (2n+ 1−A[i]) + λ2(i) = 4n+ 3
∀i, λ1(i) + λ2(i) = A[i].

This completes the proof for the InOrder model. The proof
for the model OutOrder is provided in [2].

We should point out that Theorem 1 holds for regular
streaming applications (without selectivities). This is an
important and new result in that context.

4.2 Computing the optimal period
We now address the complexity of the period minimization

problem for the three models. Notice that the plan consists
of both the execution graph and the operation list. As it
turns out, computing the execution graph is NP-complete
for all three period minimization problems. Therefore, even
though we can compute the operation list for the Overlap
model in polynomial time, the overall problem for computing
a plan which minimizes the period is NP-complete.

On a positive note, we derived the following result on the
structure of the optimal execution graph: for any instance of
MinPeriod without dependence constraints, and using any
of the three models, there exists an optimal plan whose ex-
ecution graph is a forest (see [2] for the proof). This “struc-
tural” result reduces the search of optimal execution graphs.
Still, all minimization problems are NP-hard.

Theorem 2. Problems MinPeriod-Overlap, MinPe-
riod-OutOrder and MinPeriod-InOrder without depen-
dence constraints are all NP-hard.

The proof of Theorem 2 is provided in [2]. Again, the
NP-completeness reductions are quite involved.

We conclude this section by providing a particular poly-
nomial instance of the problem: If we restrict the search
for execution graphs and impose the restriction that the ex-
ecution graph must be a linear chain, then the execution
graph can be found in polynomial time using a greedy algo-
rithm (see [2] for the proof). In addition, for this case, the
operation list can be found quickly as well. Therefore, the
problem of finding a plan which minimizes the period can
be solved in polynomial time for all three communication
models in this instance.

5. LATENCY MINIMIZATION
This section is the counterpart of Section 4 for the la-

tency. First we address the following problem: given an

execution graph, what is the complexity of determining the
operation list that leads to the best latency? This problem
turns out to be NP-hard for all models (while determining
the best period was polynomial for the Overlap model).
The general optimization problems MinLatency-Overlap,
MinLatency-InOrder and MinLatency-OutOrder are
all NP-hard. All these results imply technically involved
reduction proofs.

5.1 Optimal latency for a given execution graph
As for the optimization of the period, the latency of a

plan depends upon the operation list. We prove in this sec-
tion that the computation of the optimal latency for a given
execution graph is NP-hard for the three models.

Theorem 3. Given an execution graph, the problem of
computing the optimal operation list that leads to the optimal
latency is NP-hard for the three models.

The proof of Theorem 3 is provided in [2]. Also, we de-
rive a polynomial case, namely computing the latency for
a tree-shaped execution graph (see [2]). As for the period
(Theorem 1), we point out that Theorem 3 holds for regular
streaming applications (without selectivities). Again, this is
an important and new result in that context.

5.2 Computing the optimal latency
In this section, we address the complexity of the latency

minimization problem for the three models. Note here that
the fact that finding the operation list given an execution
graph is NP-complete does not automatically imply that the
problem of finding the plan is NP-complete. For example,
the optimal plan may always consists of a simple execution
graph for which the operation list can be computed in poly-
nomial time. Therefore, in order to prove that the latency
minimization problem is NP-complete, we have to argue that
either (i) computing the execution graph that minimizes la-
tency is NP-complete (as we did for the period minimization
proofs) or (ii) that the plans that minimize latency contain
the “difficult” execution graphs that do not allow us to com-
pute the best operation list easily. In this instance, we prove
the following result using the second option.

Theorem 4. Problems MinLatency-Overlap, MinLa-
tency-OutOrder and MinLatency-InOrder without de-
pendence constraints are all NP-hard.

The proof of Theorem 4 is provided in [2]. We conclude
this section by providing the complexity of the problems
where we impose the restriction that the execution graph
must be a chain or a forest:
• The problem MinLatency when restricting to plans

whose execution graphs are linear chains is polynomial
for all models: see [2] for a proof.
• The problem MinLatency when restricting to plans

whose execution graphs are forests is NP-hard for all
models: see [2] for a proof.

6. CONCLUSION
In this paper, we have explored the problem of mapping

filtering streaming applications on large-scale homogeneous
platforms, with a particular emphasis on communication
models and their impact. We have identified three natu-
ral and realistic communication models, with and without



communication/computation overlap, and with one-port or
bounded multi-port communications. We have addressed
the following important problems:
• Given an execution graph, what is the complexity of

computing the period or the latency?
• What is the complexity of the general period or latency

minimization problem?
We have been able to provide the complexity of all the 12
optimization problems, thereby providing solid theoretical
foundations for the study of filtering streaming applications.
Several of our results apply to regular workflow applications,
which broadens the scope and significance of our results to
quite a large applicative framework.

In the future, we plan to explore models that allow pre-
emption. This would require to carefully assess the cost
of interruptions. Another important extension of this work
would be to tackle bi-criteria problems: given a threshold
period, what is the optimal latency? and conversely, given a
threshold latency, what is the optimal period? All bi-criteria
problems are trivially NP-hard (since mono-criterion prob-
lems already are) but we can search for approximation algo-
rithms, or at least efficient heuristics.
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