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Ten Reasons to
Use Divisible
Load Theory

Thomas G.
Robertazzi
State University 
of New York, 
Stony Brook T he increasing prevalence of multiproces-

sor systems and data-intensive computing
has created a need for efficient scheduling
of computing loads, especially parallel
loads that are divisible among processors

and links. During the past decade, divisible load
theory has emerged as a powerful tool for model-
ing data-intensive computational problems.

DLT originated from a desire to create intelli-
gent sensor networks, but most recent applications
involve parallel and distributed computing. The first
published research on divisible load theory appeared
in a 1988 doctoral dissertation by James Cheng—
now director of venture technology at the Siemens
Technology-to-Business Center in Berkeley,
California—at the State University of New York,
Stony Brook. Cheng originally sought to develop
intelligent sensor networks that could make mea-
surements, compute, and communicate, but his 
thesis committee regarded his early work as too 
theoretical and required more application-related
material before giving their approval.

Cheng’s original 1988 paper contains an intuitive
proof of the DLT optimality principle, but a formal
proof did not appear until five years later, following
extensive search runs on an IBM mainframe in
1989.1 The theory’s linearity also gradually became
apparent in the early 1990s. Since then, an inter-
national group of researchers from several coun-
tries has participated in a cooperative effort to
develop DLT, generating more than 50 journal
papers and two books (www.ece.sunysb.edu).

Like other linear mathematical models such as

Markovian queuing theory and electric resistive 
circuit theory, DLT offers easy computation, a
schematic language, and equivalent network element
modeling.2 Because DLT does not recognize prece-
dence relations among data, it assumes that com-
putation and communication loads can be par-
titioned arbitrarily among numerous processors and
links, respectively. While it can incorporate sto-
chastic features, the basic model does not make sta-
tistical assumptions, which can be the Achilles’ heel
of a performance evaluation model.

APPLICATIONS
A typical divisible load scheduling application

might involve a credit card company that must
process 30 million accounts each month. The com-
pany could conceivably send 300,000 records to
each of 100 processors, but simply splitting the load
equally among processors does not take into account
different computer and communication link speeds,
the scheduling policy, or the interconnection net-
work. Divisible load theory provides the mathe-
matical machinery to do time-optimal processing.

Similarly, banks, insurance companies, and online
services often must process large numbers of cus-
tomer records for billing, data mining, or targeted
direct mail advertising, or to evaluate the prof-
itability of new policies. A midsize cap fund would
likewise have to process many complex financial
records to make the best investment decisions or
evaluate new investment strategies.

Processing digital images is yet another such
application. For example, it is physically and eco-

Divisible load theory offers a tractable and realistic approach to 
scheduling that allows integrated modeling of computation and 
communication in parallel and distributed computing systems.
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Consider a five-processor star network with root processor P0

processing some load itself while simultaneously distributing the
rest of the load to processors P1 thru P4. Let αi be the fraction of
load processed by each processor. The system parameters are wi,
the inverse computing speed of the ith processor; zi, the inverse
transmission speed of the ith link; Tcp, the computation intensity;
and Tcm, the communication intensity. Thus, αiwiTcp is the time
to process the ith load fragment on the ith processor and αiziTcm

is the time to transmit the ith load fragment on the ith link.
As Figure A shows, a Gantt-chart-like timing diagram can

represent a schedule in which transmission commences simul-
taneously on all links and computation follows load reception
on each processor. For a minimum time solution, all processors
must stop computing at the same instant; otherwise load could
be transferred from busy to idle processors.

To determine the optimal fragment size for processors 
1 through 4, set the equation for the solution time of processor
P0 equal to that for processor P1, the solution time equation for
P1 equal to that for P2, and so on. Chaining together the load
fragment size solutions results in a complete solution, where m
is the number of satellite processors:

(1)

For processor P0:

(2)

You can then use normalization (α0 + α1 + … + αm = 1) to
solve for all the optimal load fractions. If all processor and link
speeds are the same, the time to complete a solution is:

(3)

Finally, the linear speedup is:

(4)

The same methodology can handle sequential load distribu-
tion, sequential load distribution with installments, simultane-
ous load distribution in which the root does no processing, and
simultaneous load distribution in which computation and com-
munication commence at the same time.
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nomically impossible for researchers to analyze the
millions of images that satellites can quickly gen-
erate for particular patterns or features—as
required in oil and gas exploration, intelligence
gathering, and planetary exploration. Searching
millions of digitized fingerprint or facial recogni-
tion records for a match presents a similar chal-
lenge for law enforcement agencies.

Engineers and scientists at corporations, research
labs, and universities also must process large amounts
of data for various studies. Even modest engineering
experiments can generate copious amounts of data;
the collider projects at government-funded physics
labs already verge on generating petabytes of data
every year. Recent advances in sensor design and
implementation, improved data-collection capabili-

ties, and the integration of multiprocessor systems in
everything from cars to scientific equipment have cre-
ated a need for processing and predicting the perfor-
mance of sensor-generated loads.

TEN REASONS
Given the many potential situations in which a

tractable and accurate approach to divisible load
scheduling would be useful, I present 10 advantages
of using DLT for this purpose.

A tractable model
The optimality principle2 provides the key to divis-

ible load scheduling. Setting up a continuous-vari-
able model and assuming that all processors stop
computing at the same instant lets you determine the

Simple Divisible Load Theory Example

Figure A. Gantt-chart-like timing diagram for star architecture.
Transmission commences simultaneously on all links, and compu-
tation follows load reception on each processor.
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optimal amount of total load to assign to each
processor or link using a set of linear equations or,
as in queuing theory and many other cases, recur-
sive equations. DLT can thus account for heteroge-
neous computer and link speeds, interconnection
topology, and scheduling policy. It can also include
fixed delays, such as propagation delay in links.
Moreover, as the “Simple Divisible Load Theory
Example” sidebar shows, the model can use Gantt-
chart-like schematics to easily portray loads with dif-
ferent computation and communication intensities. 

DLT’s tractable nature contrasts with the tradi-
tional indivisible load problem. That is, when you
assign atomic jobs or tasks that each must run on
a single processor, combinatorial optimization is
often NP complete. Precedence relations provide
an additional complication. Although not applica-
ble to all computer-scheduling problems, DLT does
apply to an important class of such problems in
grid computing; signal, sensor, and experimental
data processing; and data-intensive and data-par-
allel computing.

Interconnection topologies
Over the years, researchers have successfully

applied divisible load modeling to a wide variety
of interconnection topologies, including linear
daisy chains,2,3 trees, buses,2 hypercubes, and two-
and three-dimensional meshes.4 Figure 1, for exam-
ple, illustrates a possible load distribution flow orig-
inating from a single processor in a 2D mesh
network. In addition, asymptotic results developed
for infinite-sized networks2 are useful in sequential
load distribution as speedup saturates with the
addition of more processors. 

The ability to guarantee performance close to
that of an infinite-sized network with a small to
moderate number of processors therefore provides
useful design information. It is worth noting, how-
ever, that finding an optimal schedule occurs in the
context of a specific interconnection network and
scheduling strategy.

Equivalent networks
Like other linear theories, including Markovian

queuing theory and resistive electric circuit theory,
DLT represents a complex network with an exactly
equivalent network element. For some network
topologies such as trees, aggregation can be recur-
sive, one subtree at a time. 

For example, consider either a pair of adjacent
processors and their connecting link in a linear
daisy-chain network or a single-level subtree in a
multilevel-tree network. You first set the comput-

ing speed of a single equivalent processor equal to
this subnetwork’s speed and then continue aggre-
gating subnetworks of processors, including inter-
mediate equivalent processors, until one processor
is left with a computing speed equivalent to the orig-
inal network. Final expressions for equivalent
processor computing speed can be either closed-
form or iterative.

Installments and sequencing
A number of applied optimization problems arise

in divisible load scheduling. For example, instead
of a node in a tree sequentially distributing load to
its children, improved performance results if load
is distributed in installments—some to child 1,
child 2, … child M; more to child 1, child 2, …
child M; and so on.5 Performance under sequential
multi-installment load distribution strategies tends
to saturate as the number of installments increases.

Some sequencing results are surprising. For
example, consider a linear daisy-chain network in
which all processors and links have the same speed.
Under one basic sequential scheduling strategy, if
load originates at any interior processor, the same
solution time results whether load is first distrib-
uted to the left or right parts of the network. Other
results are more intuitive. For example, distribut-
ing load over a slow link to a relatively fast proces-
sor can degrade overall network solution time.2

Scalability
Early DLT studies determined that if load is dis-

tributed from one node to its children sequentially,
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Figure 1. Load dis-
tribution flow in a 2D
network. The load
originates at node 
0 and propagates
throughout the mesh
in a diamond-shaped
pattern. (Reprinted
with permission
from the Poznan 
University of 
Technology.)
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as in a tree network, speedup saturates as more
nodes are added. If link speed is of the same order
as processor speed, optimal sequential load distri-
bution offers a 20 to 40 percent improvement in
overall solution time compared to equally dividing
the load among processors.6

Although simply increasing the number of
installments also saturates performance, recent
studies indicate that speedup is scalable if a node
transmits load simultaneously to all its children—
that is, speedup grows linearly in the number of
children. As long as a node CPU can load output
buffers to all links, performance scales. While there
is qualitative support for this scalability concept 
in parallel processing, DLT allows a quantitative
solution.

Metacomputing accounting
A devilish metacomputing problem—distributed

computing with payment to computer owners—
challenges developers to factor problem size and
system parameters into monetary accounting. DLT
can incorporate an intuitive linear model for com-
puting and communication costs.7 Simple to mod-
erately complex heuristic rules can be developed to
efficiently assign load in terms of both cost and per-
formance. DLT allows using similar rules for a
related problem in parallel processor configuration
design, namely how to optimally arrange links and
processors with certain characteristics—for exam-
ple, speed and cost—in a given topology. 

Time-varying modeling
The actual effort a computer can devote to a

divisible job depends on the status of other back-
ground jobs. Ongoing transmissions likewise
reduce a link’s capacity to transmit part of the job.
Figure 2 illustrates the time-varying effort one
divisible job receives on a single processor due to
background jobs sporadically utilizing CPU effort.
Developers can use integral calculus to apply solu-

tion-time optimization to divisible loads if they
know the start and end times and effort of such
background jobs and messaging.8 With less than
perfect knowledge of background processes, sto-
chastic modeling can be combined with determin-
istic DLT.

Unknown system parameters
It can be difficult to obtain accurate estimates of

available processor effort and link capacity, which
are key inputs to divisible load scheduling models.
Several recently proposed probing strategies9 send
some small fraction of a load to processors across
a network of links to estimate currently available
processing capacity at nodes and bandwidth on
links. Actual implementations must account for the
time-varying nature of available processor effort
and link capacity as well as processors’ release
times—the times at which processors become free 
to accept additional load. Further, load must be 
distributed on the fastest processors and links.
Nevertheless, these probing strategies offer a
promising approach to robust divisible load sched-
uling.

Extending realism
In recent years, researchers have attempted to

generalize divisible load scheduling by considering
systems with finite buffers,10 finite job granularity,
scheduling with processor release times, and sched-
uling multiple divisible loads. Other efforts have
sought to synthesize deterministic divisible load
modeling and stochastic modeling.6,8 Specialized
applications of divisible load scheduling include
databases6,11 and multimedia systems.

Experimental results
Experiments with actual distributed computer

systems demonstrate that DLT can be a useful pre-
diction tool, as the “Divisible Load Theory Ex-
perimental Work” sidebar illustrates.

FUTURE DIRECTIONS
With investigators scrambling to initiate DLT

research in various subareas, there is a need to inte-
grate work to date—for example, to assess time-
varying load sharing on hypercubes. In addition,
analytical proofs of divisible load optimality exist
for only a limited subset of topologies and sched-
uling policies. While there is no reason to believe
that the principle doesn’t hold in other environ-
ments, rigorous proofs are yet to follow. Beyond
these refinements, several potential breakthroughs
are on the horizon.
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Figure 2. Influence
of time-varying
background jobs on
available processor
effort. (a) The
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ward arrows
indicate background
jobs commencing
and terminating
execution, respec-
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effort available for a
single divisible job.
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Operating systems and languages
Integrating divisible load scheduling theory with

operating systems or data-parallel languages such
as high-performance Fortran and high-perfor-
mance C++ would be a notable accomplishment.
Research toward this goal includes pro- cessing
divisible and indivisible jobs on the same machine,

work on divisible jobs, and multiprogramming and
time-varying system analysis.

Monetary cost optimization
This novel application area involves optimizing

multiple criteria by minimizing the monetary cost
of processing and communicating a load while min-

In 1994, Maciej Drozdowski and colleagues at the Poznan
University of Technology in Poland began investigating the accu-
racy and predictability of divisible load theory. Their research
has focused on comparing the real execution time of applica-
tions with the model’s predictions. 

The team conducted experiments on transputer systems—sim-
ple dedicated platforms that give the user total system control—as
well as networks of Sun Microsystems, IBM SP-2, and PC work-
stations running parallel virtual machines (PVMs), a message pass-
ing interface, and Java. The test parallel applications included

• searching for a pattern in a text file, 
• compressing a file, 
• database join operations, and 
• graph coloring using a genetic search metaheuristic.

The difference between predicted values and experimental
data obtained using the transputer systems was about 1 percent,
due to the systems’ simplicity. With workstation networks, how-
ever, the difference ranged from 1 percent to as much as 40 per-
cent. The best accuracy occurred with long computations and
transfers of large volumes of data. In such cases, the linear part
of the computation and communication times dominated.

As computer and communication speeds have increased over
the years, the minimum size of divisible jobs that DLT can accu-
rately predict has increased commensurately. For relatively small
amounts of divisible data, other phenomena come into play,
including 

• operating system services’ nondeterministic execution time, 
• dependence of computation and communication speeds on

load size, and 
• possible nonuniformity of the load.

Figure B illustrates the difference between modeled predictions
and measured values for a relational database join operation on
six 133-MHz PCs in a 1999 experiment. The FIFO (first in, first
out) graph indicates results returned from processors to the orig-
inating processor in the same order that the load was received;
the LIFO (last in, first out) graph shows results returned in the
opposite order. The model’s accuracy increases with job size.

Since 1998, Bharadwaj Veeravalli and colleagues at the
National University of Singapore have been implementing
scheduling algorithms proposed in the DLT literature to real-
life situations that qualify as parallel computations, such as 

• low-level processing of images for edge-detection applica-
tions, 

• large-scale matrix-vector product computations, and 
• processing electromagnetic field-strength computations

for CAD applications.

For edge-detection applications, the researchers tested the
performance of DLT-recommended load distribution strategies
on both Hewlett-Packard workstation clusters running PVMs
and PC clusters comprised of high-speed Pentium series
machines. They processed images ranging from 512 × 512 to
3,000 × 3,000 pixels, which are typical of satellite pictures,
under several resource constraints. 

Veeravalli’s team also implemented a 200 × 100,000 matrix,
which is typical in designing industrial microwave ovens and
conducting finite-element methods for large-scale mechanical
engineering applications, on a PC cluster. They developed a dis-
tributed software architecture that carries out the load distrib-
ution on a bus network.

Finally, the researchers developed parallelization strategies for
SGI machines to compute electromagnetic field strengths around
a given circuit layout. This lets CAD designers tune the layout per
interference levels between any pair of copper strips in a design.

Overall, Veeravalli and colleagues have reported the differ-
ence between DLT predictions and experiment results to be from
5 to 10 percent.
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Figure B. Difference between modeled predictions and measured
values for a join-type relational database operation. Divisible 
load theory’s accuracy increases with job size. (Reprinted with
permission from: M. Drozdowski and P. Wolniewicz, “Experiments
with Scheduling Divisible Tasks in Clusters of Workstations,”
LNCS 1900, Springer Verlag, 2000, p. 318.)
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imizing solution time or maximizing speedup.
Potential DLT applications include software bro-
kers that distribute load to vendors doing divisible
load as well as other types of processing.

Measurement integration
Researchers have thus far studied the integration

of computation and communication in some detail
but have largely ignored the measurement aspect.
They usually assume that the measurement load is
available at an originating processor at certain
instants, which in some cases developers model
with a Poisson process. We need more elaborate yet
realistic models of measurement arrivals and tim-
ing and their coordination with computation and
communication. 

Queuing and divisible model integration
Some efforts have been made to use divisible load

theory and queuing theory jointly in modeling,6,8

but a tightly coupled and tractable integration of
the methodologies would be more useful.

T he future looks promising for technologies and
applications that use divisible load theory. In
part, this stems from the flexible analytic struc-

ture underlying DLT and its successful cousins,
queuing and circuit theory. The breadth of DLT’s
applications provides another reason for its poten-
tial widespread utility. The increasing ubiquity of
sensor-generated data, multiprocessor systems, and
data-intensive computing create a need for efficient
scheduling that should drive further work on the-
ory, applications, and software. �
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