
Analysis of Scheduling Algorithms with Reservations

Lionel Eyraud-Dubois2, Grégory Mounié1 and Denis Trystram1

1LIG , Grenoble Universités, 2LIP, ÉNS Lyon,
ENSIMAG-montbonnot, 51 avenue Kuntzmann 46 allée d’Italie,

F-38330 Montbonnot St. Martin, France 69364 Lyon Cedex 07, France
{mounie, trystram}@imag.fr Lionel.Eyraud-Dubois@ens-lyon.fr

Abstract

In this work, we analyze the problem of scheduling a set
of independent jobs on a homogeneous parallel computer.
This problem has been widely studied from both a theo-
retical perspective (complexity analysis, and predictability
of scheduling algorithms) and practical side (schedulers in
production systems). It is common for some processors of a
cluster to become unavailable for a certain period of time
corresponding to reservations. These reservations repre-
sent blocks of time and quantities of resources set asigned
in advance for specific applications.

We propose here to investigate the scheduling problem
where there are restricted resource availabilities. Our main
result is to provide a deep analysis for this problem (com-
plexity, lower bounds and upper bounds) for several vari-
ants of list scheduling algorithms. More precisely, we show
that the problem of scheduling with any reservations can
not be approximated. This leads to the study of restricted
versions of this problem where the amount of reservation is
limited.

Our analysis is based on an old bound of Graham for
resource constraint list scheduling for which we propose a
new simpler proof by considering the continuous version of
this problem.

Keywords. Scheduling, list scheduling, cluster comput-
ing, Parallel Tasks, reservations.

LIG is supported by CNRS, INPG, INRIA, UJF. This work has been par-
tially realized within the ”action de recherche concertée” Otaphe of IN-
RIA. A part of this work has also been conducted under the frame of the
Network of Excellence CoreGrid of the European Community (W.P. 6).

1-4244-0910-1/07/$20.00 c©2007 IEEE.

1. Introduction and Motivation

1.1. Scheduling on new computing plat-
forms.

Today, many high performance applications are imple-
mented in clusters or computational grids. Clusters are
collections of homogeneous standard processors intercon-
nected by a fast communication network [4]. More than 70
percent of parallel and distributed systems of the top-500
are clusters. Although huge progress has been done for im-
plementing specific applications on such systems, most re-
searchers of the field agree that they lack of high level soft-
ware tools for running any application without too much
effort for the programmer. In such tools, scheduling is a
crucial issue. The jobs (corresponding to applications) are
submitted to one particular node of the cluster. The schedul-
ing problem consists in determining the processors that will
perform each job and the time when it will start its exe-
cution. The objective is to minimize the execution time
(makespan).

In this work, we consider the parallel tasks model [5,
7]. In this model, the jobs can be executed on a number
of processors which is fixed for each job. A more detailed
description is given in section 2.

This general scheduling problem has been widely stud-
ied by theoretical approaches, with several variations taking
into account several characteristics of the target platform.
The scheduling algorithms that are used on actual clusters
are usually very simple, based on a First Come First Serve
policy (FCFS in short). It is a very popular technique which
has been implemented in many actual platforms. The prin-
ciple is to put the jobs into queues and execute them in a
FIFO order. Since this policy may be very bad for the small
jobs, it is usually implemented with a back-filling mecha-
nism that allows to put small jobs if it remains enough room.
Such a technique can be more or less aggressive as it is dis-
cussed in section 2.

Another popular policy is the list scheduling. Here, the
principle is to build a list of ready jobs and to allocate them
to the available processors according to some priority rules.
Like FCFS, the list schedulers have a low complexity, but
the makespan can be guaranteed in the worst case. That
make them very good candidates for practical tools. In this
work, we concentrate on list scheduling since it is the only
policy that exhibits performance guarantees.

1.2. Reservations.

The main focus of this paper is the presence of restricted
availability periods that constraints the scheduling algo-
rithm. There is an increasing demand for advanced reser-
vation mechanisms in software tools for batch scheduling:
the users have the possibility to reserve some resources in
advance, and have a guarantee that these resources will be
available at the requested time. This feature is useful in at
least two situations: first, for Grid Computing, when users
want to run their application at several different remote
sites, reservation is a way to make sure that the application
starts at the same time on all sites; secondly, for demon-
stration purposes, when a user wants to show the operation
of an application on a scheduled meeting. To the best of
our knowledge, there has been no study on the impact of
this feature on the performances of the standard scheduling
algorithms in the parallel tasks model.

1.3. Results on related models with reser-
vations.

Several analysis of the impact of restricted availability of
some processors on scheduling algorithms have been con-
ducted under various approaches (probabilistic analysis [3],
average analysis [16], etc..). Most theoretical studies which
consider unavailability constraints are performed in the con-
text of sequential (single processor) tasks. Most well known
negative results on independent task scheduling can triv-
ially be applied to this problem and lead to straightforward
lower bounds for approximation ratios of standard heuris-
tics. A recent survey about scheduling under availability
constraints may be found in [14].

The scheduling under availability constraints has been
studied in the context of the open/flow shop problems, but
also in the case of sequential task scheduling on multipro-
cessor machine. The classification of availability into vari-
ous kinds of constraints [15, 17] is perfectly relevant, but in
our opinion it is not sufficient. We need additional hypoth-
esis as shown in section 4.2 in order to get an approxima-
tion ratio better than the ratio of m proved by [13] for list
scheduling algorithms.

According to our knowledge, most of the existing work,
like [2], considers models where preemption is allowed.

1.4. Contributions.

The first contribution of this paper is to analyze the
scheduling problem in the presence of reservations. We give
a preliminary inapproximability result which states that the
problem of scheduling a set of independent jobs with the
objective of minimizing the makespan by a list policy is ar-
bitrary far from the optimal if no restriction is put on the
reservations. This leads to define a new problem of schedul-
ing with restricted reservation windows where at least some
proportion α of the total amount of resources is available.
This is a more realistic situation, because most software
tools impose a limit on the reservation feature to ensure a
good behavior of the system.

We focus on list algorithms, which are low cost algo-
rithms with relatively good performance. We provide a
lower bound of the problem of scheduling with restricted
reservations by exhibiting instances whose resulting list
schedule is 2

α −1 longer than the optimal. Then, we analyze
the general list algorithm, and derive an approximation ratio
of 2

α , close to the lower bound.

2. Preliminaries about the basic problem with-
out reservations

2.1. Basic scheduling model

In this work, we consider a classical computational
model which has been considered in many related problems
of scheduling parallel applications on clusters. In the fol-
lowing, we will denote it as the RIGIDSCHEDULING prob-
lem.

Let us consider a set of n independent applications (that
will be called jobs in the following) to be processed on a
cluster of m identical processors.

Each job j requires a given number of processors
(denoted by qj); job j can be scheduled on any subset of
processors on the cluster. The execution time of job j is
pj . We recall below the formal definition of this problem
(according to the well-known 3 field notation, it is denoted
as P |pj , sizej |Cmax [10]):

An instance of RIGIDSCHEDULING is represented by an
integer m (the number of machines) and n jobs (character-
ized by a duration pj > 0 and a number of required proces-
sors qj ∈ [1..m], for 1 ≤ j ≤ n).

The question is to determine a feasible schedule which
minimizes the makespan.

A solution of such an instance is a set of n starting times,
(σi)i=1..n, such that the resulting schedule is feasible:

∀t ≥ 0,
∑

i∈It

qi ≤ m

2

where It = {i ∈ [1..n] |σi ≤ t < σi + pi}.
The objective is to minimize the makespan of the sched-

ule, defined as the largest completion time of the tasks:
Cmax = maxi∈[1..n](σi + pi).

This problem is NP-Hard, since the standard problem
of scheduling sequential tasks on two processors is already
weakly NP-Hard (it is exactly the same as PARTITION1).
The RIGIDSCHEDULING problem is NP-Hard in the strong
sense, even when m is fixed to a value greater or equal to 5
[6].

The execution of jobs is usually represented as a packing
in the Gantt chart. But it is interesting to remark that this
model does not consider contiguity. This is a reasonable
assumption because in most recent cluster architectures, all
processors are identical and fully connected, so applications
can be executed on any subset of processors of the cluster.

Another restriction is that it is an off-line model: all jobs
are assumed to be present in the system at the beginning
of the scheduling step. However, in an actual system, jobs
are submitted over time, and the algorithm has to react on-
line to these unpredictable events. Nevertheless, the study
of off-line algorithms is important, because it gives insights
about the intrinsic performance of different strategies. Fur-
thermore, any off-line algorithm may be used in an on-line
fashion, with a doubling factor for the performance ratio on
the makespan criterion [18]. The idea is to schedule jobs in
successive batches so that all new jobs arriving during the
execution of a batch will only be considered after the whole
current batch is finished.

2.2. Classical algorithms

One of the simplest and probably the most popular algo-
rithm is First Come First Served (FCFS). Such an algorithm
considers tasks in the order of their arrival in the system,
and greedily schedules each task until there is not enough
resources available to schedule a task. The algorithm then
waits for enough resources to be freed by the completion
of the previously scheduled tasks. The main reason for its
popularity is that its behavior is perfectly understood by the
users and administrator of the cluster. But its major draw-
back is that it leads to a very poor utilization of the ma-
chine, since a task requiring a large number of processors
may cause a large part of the resource to be left idle.

A common optimization is the use of back-filling tech-
niques, which exist in several variants. For example, conser-
vative back-filling considers all tasks, and greedily sched-
ules each task at the earliest possible date, without delaying
any previously scheduled task. Unlike pure FCFS, it might
happen that a given task x gets to run before another task y
that was submitted before it, but in that case the task y could
not have been scheduled earlier, even if x was not present.

1and thus optimally solvable in pseudo-polynomial time.

This kind of algorithms is common in the batch schedul-
ing literature [1], which contains several more aggressive
variants that allow a task to delay an earlier task if it can
be scheduled right now. Aggressivity improves the utiliza-
tion of the machine, but it may make it possible for a job
to starve, being constantly delayed by other smaller jobs
arriving in a continuous stream.

From a theoretical point of view, FCFS, even with con-
servative backfilling, has no constant performance guar-
antee for the makespan criterion. Indeed, on a machine
with m nodes, it is possible to build an instance with op-
timal makespan 1, and whose resulting FCFS schedule has
makespan m.

The most aggressive variant of back-filling is more fo-
cused on improving the utilization of the resources than re-
specting the order of arrival of the tasks: it allows any task
to delay a previously scheduled task, if this task is able to
start earlier than the delayed task. The resulting algorithm
is exactly the same as the initial definition of List Schedul-
ing as introduced by Garey and Graham [8] in the context
of scheduling with resource constraints. For independent
tasks, this algorithm has a performance guarantee of s + 1,
where s is the number of resources shared among tasks.
In this problem, the only resource is processors, so List
Scheduling has a performance guarantee of 2 (which can
be tightened to 2− 1

m , see a simpler proof in the appendix).
Let us emphasize that this result is quite different from

the well-known 2 − 1
m result about list scheduling with se-

quential tasks [11, 12]. In the sequential model with in-
dependent tasks, FCFS is a list scheduling algorithm. But
with parallel tasks, FCFS does not behave like a list algo-
rithm, since it may keep some resources idle even if there
are tasks ready to be scheduled. To distinguish the classical
list scheduling algorithm from the sequential tasks model,
usually denoted as LS, we will denote the list scheduling
algorithm with resource constraints as LSRC.

2.3. Performance guarantees

We recall briefly below the standard definition of perfor-
mance ratio ρA for an approximation algorithm A.

ρA = inf {r ≥ 1|ρA(I) ≤ r for all problem instances I}

where ρA(I) is the ratio between the criterion value of
the solution produced by A on instance I and the best solu-
tion for I .

3. Modelization

In this section, we present the general problem of
scheduling in the presence of reservations, which we will
denote as RESASCHEDULING, and analyze it.

3

3.1. Formal problem

An instance of the RESASCHEDULING problem can be
formally described by an integer m (the number of ma-
chines), a set of n independent jobs (Ti)i=1..n (charac-
terized by a duration pi > 0 together with a number
of required processors qi ∈ [1..m]) and n′ reservations
(Rj)j=n+1..n+n′ (characterized by a duration pj > 0, a
number of processors qj ∈ [1..m] and a starting time
rj > 0).

The problem is to provide a feasible schedule which min-
imizes the makespan.

We will only consider feasible instances, i.e. those
whose reservations can be scheduled on the m machines:

∀t ≥ 0,
∑

j∈Jt

qj ≤ m

where Jt = {j ∈ [n + 1..n + n′] | rj ≤ t < rj + pj}.
We can thus equivalently consider that the given reser-

vations yield an unavailability function U , defined at every
time by U(t) =

∑
j∈Jt

qj . U(t) is the number of unavail-
able machines at time t; U is piecewise constant, and an
instance is feasible if and only if ∀t, U(t) ≤ m.

Similarly to the previous section, a solution is a set of n
starting times, (σi)i=1..n, such that the resulting schedule
is feasible: ∀t ≥ 0,

∑
i∈It

qi ≤ m − U(t), where It is
defined as in the previous section.

The objective is here to minimize the makespan of the
schedule.

3.2. Analysis

First, it is straightforward to remark that this problem is
NP-hard since it contains the problem of scheduling inde-
pendent parallel rigid jobs [5] (Pm | sizej , pj |Cmax) with-
out reservations (n′ = 0). Finding a schedule with minimal
makespan is a difficult problem, even without reservations.

With the way the RESASCHEDULING problem has been
defined, it is impossible to design a polynomial-time ap-
proximation algorithm to solve it. Informally, this comes
from the fact that it is possible to insert a very large and
very long reservation that starts just at the optimal value of
Cmax. This reservation will not disturb any optimal sched-
ule, but it will lead to an arbitrarily large makespan for any
non optimal schedule.

Theorem 1 If P &= NP , there is no polynomial algorithm
for the RESASCHEDULING problem with a finite perfor-
mance ratio, even in the restricted case m = 1 (only one
machine) or n′ = 1 (only one reservation).

BBBB
(ρ + 1)k(B + 1)

Figure 1. Transformation from 3PARTITION

Proof: We prove here the theorem in the case m = 1 using
a reduction from 3PARTITION. The n′ = 1 case can be eas-
ily obtained by the same technique, with a reduction from
RIGIDSCHEDULING.

Let us assume, by contradiction, that A is an algorithm
for solving the RESASCHEDULING problem, with a perfor-
mance guarantee of ρ. Let IP be an instance of 3PARTI-
TION (3k integers xi and an integer B such that

∑
xi =

kB) [9]. We build an instance I of the RESASCHEDULING
problem, with one machine, such that the time between two
reservations is exactly B (see figure 1):

• m = 1;

• n = 3k jobs with ∀i, qi = 1 and pi = xi;

• k reservations (Rj)j=n+1..n+k defined by qj =
1, rn+1 = B, and rj = rj−1 + B + 1 for n + 1 <
j ≤ n + k 2. The lengths of the reservations are
pj = 1 for j &= n + k. The length of the last reser-
vation is pn+k = ρk(B +1)+1 (and thus ends at time
(ρ + 1)k(B + 1)).

If there is a solution to 3PARTITION for the instance IP

(i.e. it is possible to partition [1..n] into k groups Gl of three
elements such that ∀l,

∑
i∈Gl

xi = B), then it is possible
to realize a schedule of makespan C∗

max = k(B + 1) − 1
by scheduling the tasks of group Gl between the (l − 1)th
and the lth reservations3. Since A is a ρ-approximation al-
gorithm, it must yield a schedule with makespan CA

max ≤
ρ(k(B + 1) − 1) < ρk(B + 1). Since A can schedule no
task between times k(B + 1)− 1 and (ρ + 1)k(B + 1), we
must have CA

max = C∗
max. Hence, the schedule of A yields

a solution to the instance IP by assigning the tasks between
two reservations to the same group.

The converse is straightforward. !

4. Restricted problems

We are going to study two restrictions of the general
problem, that will allow us to yield performance bounds for
the LSRC algorithm.

2i.e. rj = (j − n)(B + 1) − 1 for n + 1 ≤ j ≤ n + k
3This schedule is optimal because the machine is used to perform a task

each time it is available

4

pn+1 pn+2

qn+1

qn+2

U1

U2

U3 = 0
t1 t2 t3

Figure 2. An example of non-increasing
reservations and the transformation used in
the proof

4.1. Non-increasing reservations

In this section, we are going to study a subset of all pos-
sible instances for RESASCHEDULING, containing all in-
stances with non-increasing reservations (or equivalently,
non-decreasing availabilities; see figure 2). Though it may
not seem very relevant in our setting, this restriction on
availabilities is quite common in the literature [15], and usu-
ally it allows to derive better algorithms.

This additional constraint adds a new hypothesis on the
unavailability function U , which is now supposed to be non-
increasing. For simplicity, we will note in the following the
available resources at time t as m(t) = m − U(t). The
following proposition shows a performance guarantee for
LSRC for these instances.

Proposition 1 For every instance I with non-increasing
reservations, we have:

CLSRC
max ≤

(
2 − 1

m(C∗
max)

)
C∗

max ≤
(

2 − 1
m

)
C∗

max

Proof: Consider a transformation of the instance I into an
instance I ′ defined as follows: set mI′

= mI(C∗
max), and

mI′
(t) = mI(t) for all t ≤ C∗

max. It is clear that both
instances have the same optimal value C∗

max, and that a fea-
sible solution for I ′ is also a feasible solution for I .

Assume that U I′
takes k different values U1, · · · , Uk =

0, with U I′
(t) = Uj for tj ≤ t < tj+1 (we have thus

t1 = 0 and tk+1 = ∞). Then we can build an instance I ′′ of
RIGIDSCHEDULING by replacing the reservations by k − 1
tasks Tn+1, · · · , Tn+k−1, defined by qn+j = Uj − Uj+1

and pn+j = tj+1 (see figure 2). It is clear that to every
feasible schedule of I ′ corresponds a feasible schedule of
I ′′ (the opposite being not necessarily true).

However, if we place the additional tasks of I ′′ at the
head of the list, the LSRC algorithm will yield the same
schedule for instance I ′′ and for instance I ′. From theo-
rem 2, we have CLSRC

max (I ′′) ≤
(
2 − 1

mI′′

)
C∗

max(I ′′). Since
the optimal schedule for I ′ is feasible for I ′′, we have
C∗

max(I ′′) ≤ C∗
max(I ′).

Considering now that CLSRC
max (I) ≤ CLSRC

max (I ′) =
CLSRC

max (I ′′), and that C∗
max(I) = C∗

max(I ′), we have the
final result :

CLSRC
max (I) ≤

(
2 − 1

mI(C∗
max(I))

)
C∗

max(I)

!

4.2. Restricted reservations

In actual scheduling systems that feature advance reser-
vations, there is a limit imposed on users, in order to avoid
that the cluster be totally blocked by the reservations. For
example, it is common to disallow reservations that require
more than half of the machines of the cluster. In this section,
we extend the model to deal with this kind of constraints,
and derive results about the LSRC algorithm.

Keeping this goal in mind, we define another, more re-
alist constraint to restrict the possible instances to the prob-
lem RESASCHEDULING. Given a parameter α ∈]0; 1], we
define the (sub)problem α-RESASCHEDULING by restrict-
ing all reservations at a given time to require no more than
(1 − α)m machines, and tasks to require no more than αm
machines. More formally:

∀t ≥ 0, U(t) =
∑

j∈Jt

qj ≤ (1 − α)m

∀i ≤ n, qi ≤ αm

These constraints define instances in which always at
least αm machines are available; and since no task can re-
quire more machines, it is always possible to schedule at
least one task. This will rule out the pathological instances
of the previous section, and will allow to derive perfor-
mance guarantees.

Of course, this problem remains strongly NP-Hard, so
we are interested in the performance of list scheduling in
this context.
Lower bound. We are going to give a lower bound for the
performance of LSRC, which shows that it is not possible
to prove a performance guarantee ρ ≤ 2

α − 1 for general
LSRC. To show it, we build an instance for the case α = 2

k ,
where k is an integer, in which the optimal schedule uses
m machines almost all the time, but there is an order of the
list for which LSRC uses only αm machines almost all the
time.

Proposition 2 If 2
α is an integer, the performance guaran-

tee of LSRC is at least 2
α − 1 + α

2 .

Proof: Assume that α = 2/k, with k ∈ N. We define an
instance I with m = k2(k− 1) machines, that contains two
different kinds of tasks (see figure 3):

5

• k tasks, from T1 to Tk, with pi = 1/k and qi = (k −
1)2;

• k − 1 tasks, from Tk+1 to T2k−1, with pi = 1 and
qi = k(k − 1) + 1;

Cmax = 5 × 6 + 1 = 31

C∗
max = 6

60
31

25

1

150

30

Figure 3. An optimal schedule and the cor-
responding LSRC schedule, for α = 1

3 (m =
180).

Additionally, I contains one reservation that starts at
time 1, and occupies m(1 − α) = m − 2m/k = k(k −
1)(k − 2) processors during 2k time units.

Since (k−1)×(k(k−1)+1)+(k−1)2 = (k−1)(k(k−
1) + k) = (k − 1)k2 = m, it is possible to schedule all
tasks before time 1. The optimal makespan for this instance
is thus C∗

max = 1.
On the other hand, LSRC, when the list ordered by in-

creasing i, schedules all the tasks from the first set to be-
gin at time 0 (this is possible since k × (k − 1)2 ≤ m).
But then, no task from the second set can start its execu-
tion before these tasks have finished (i.e. time 1/k) because
k(k − 1)2 + k(k − 1) + 1 = m + 1. But it is impossible
that two tasks from the second set run concurrently if they
start later than time 0. Indeed, after time 1, only 2m/k =
2k(k − 1) processors are available, and 2 tasks from the
second set occupy 2k(k − 1) + 2 processors. These tasks
must then be scheduled sequentially, and the makespan of
the resulting schedule is Cmax = 1

k + k − 1 = 2
α − 1 + α

2 .
!

0

2

4

6

8

10

0 0.2 0.4 0.6 0.8 1

Pe
rf

or
m

an
ce

gu
ar

an
te

e

α

Upper bound
B1
B2

Figure 4. Upper and lower bounds for the per-
formance of LSRC on the α-RESASCHEDULING
problem, as a function of α.

For a more general α, a similar but more tedious instance
proves that

ρ ≥
⌈

2
α

⌉
− 1 +

1⌊
1−(α/2)

1−(α/2)(%2/α&−1)

⌋
+ 1

≡ B1

≥
⌈

2
α

⌉
− +2/α, − 1

2/α
≡ B2

The bound B2 is a bit less precise than B1, but easier
to express. Figure 4 plots these bounds together with the
upper bound proven below, and shows that the upper and
lower bounds can be arbitrarily close to each other for some
values of the parameter α.
Upper bound. As we have stated before, the standard list
scheduling algorithm without reservation in the parallel task
model has a performance guarantee equal to 2− 1

m (see ap-
pendix). If we restrict to αm processors, we can easily ob-
tain a first bound by simply applying any list scheduling on
the available processors. Thus, we will get a performance
guarantee of 2

α . For α = 1
2 , we obtain a bound of 4.

Proposition 3 For the problem α-RESASCHEDULING,
LSRC has a performance guarantee ρ which is at most 2

α .

Proof:
The proof is a direct adaptation of theorem 2 (see ap-

pendix), with t′ set to t + 1
αC∗

max. !

5. Conclusion

In this paper, we have analyzed the problem of schedul-
ing a set of n independent jobs in the presence of reserva-
tions. We focused on list scheduling algorithms because of
their simplicity and solid theoretical foundations. We de-
fined the problem of scheduling with restricted reservations

6

in order to avoid stupid effects that lead to algorithms whose
makespan are arbitrary far from the optimal ones. Then, we
provided a lower bound (2

α − 1 + α
2) and derived a per-

formance guarantee for any list scheduling algorithms (2
α)

which is close to the lower bound.
An immediate but not trivial perspective is to study some

variants of list scheduling that can improve the upper bound
(for instance adding a priority based on sorting the jobs by
decreasing durations).

Another further direction is to investigate different kind
of heuristics like those based on packing (partition on
shelves) algorithms.

References

[1] M. Baker, G. Fox, and H. Yau. Cluster computing
review, 1995.

[2] J. Blazewicz, P. Dell’Olmo, M. Drozdowski, and
P. Maczka. Scheduling multiprocessor tasks on par-
allel processors with limited availability. European
Journal of Operational Research, 149:377–389, 2003.

[3] E.G. Coffman Jr., P. R. Jelenkovic, and B. Poonen.
Reservation probabilities. Advances in Performance
Analysis, 1999.

[4] D. E Culler and J. P. Singh. Parallel Computer Archi-
tecture. Pitman/MIT Press, 1989.

[5] M. Drozdowski. Handbook of Scheduling — Al-
gorithms, Models, and Performance Analysis, chap-
ter 25 - Scheduling parallel tasks — Algorithms and
complexity, pages 25–25. Computer and Information
Science Series. Chapman & Hall/CRC, Boca Raton-
London-New York-Washington, D.C., 2004.

[6] J. Du and J. Y.-T. Leung. Complexity of schedul-
ing parallel task systems. SIAM J. Discrete Math.,
2(4):473–487, 1989.

[7] D. G. Feitelson. Scheduling parallel jobs on clus-
ters. In Rajkumar Buyya, editor, High Performance
Cluster Computing, volume 1, Architectures and Sys-
tems, pages 519–533. Prentice Hall PTR, Upper Sad-
dle River, NJ, 1999. Chap. 21.

[8] Garey and Graham. Bounds for multiprocessor
scheduling with resource constraints. SICOMP: SIAM
Journal on Computing, 4, 1975.

[9] M.R. Garey and D.S. Johnson. Computers and in-
tractability: A guide to the theory of NP-complete
ness. W.H. Freeman, New York, 1979.

[10] R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. H.
G. Rinnooy Kan. Optimization and approximation in
deterministic sequencing and scheduling: A survey.
Ann. Discrete Mathematics, 5:287–326, 1979.

[11] R.L. Graham. Bounds for certain multiprocessing
anomalies. Bell Systems Technical Journal, 45:1563–
1581, 1966.

[12] Ronald L. Graham. Bounds on multiprocessing tim-
ing anomalies. SIAM Journal of Applied Mathematics,
17(2):416–429, 1969.

[13] Chung-Yee Lee. Machine scheduling with an avail-
ability constraint. Journal of Global Optimization,
9(Issue 3 - 4):395 – 416, Dec 1996.

[14] Chung-Yee Lee. Handbook of Scheduling — Algo-
rithms, Models, and Performance Analysis, chapter
22 - Machine scheduling with availability constraints.
Computer and Information Science Series. Chap-
man & Hall/CRC, Boca Raton-London-New York-
Washington, D.C., 2004.

[15] Zhen Liu and Eric Sanlaville. Preemptive scheduling
with variable profile, precedence constraints and due
dates. Discrete Applied Mathematics, 58(3):253–280,
1995.

[16] Zhen Liu and Eric Sanlaville. Stochastic schedul-
ing with variable profile and precedence constraints.
SIAM Journal on Computing, 26(1):173–187, 1997.

[17] G. Schmidt. Scheduling on semi-identical processors.
J. of Operational Research, A28:153–162, 1984.

[18] D. B. Shmoys, J. Wein, and D. P. Williamson.
Scheduling parallel machines on-line. SIAM J. Com-
put., 24(6):1313–1331, 1995.

7

6. Appendix

6.1. Revisiting Graham’s bound

In this section, we propose a new and simpler proof of
the well-know result of Graham on list scheduling with re-
source constraints [8], in the case of independent jobs and a
single resource (s = 1).
Notations. Let I be an instance of n independent paral-
lel tasks to be sheduled on m machines. Each task i uses
qi machines and must be executed in an exclusive way for
a time pi, without preemption. We will note pmax the
maximum execution time of the tasks max1≤i≤n(pi), and
W (I) the total work of the instance, defined as W (I) =∑

1≤i≤n piqi.
Given a list scheduling algorithm A, we will note A(I)

the schedule produced by A for the instance I . This sched-
ule is represented by a function σ that gives the starting time
σi of every task Ti. For a given time t, we will note It the
set of tasks running at time t: It = {i ∈ [1..n] |σi ≤ t <
σi +pi}, and r(t) the number of machines used at time t by
A(I): r(t) =

∑
i∈It

qi.

Lemma 1

∀t, t′ ∈ [0, CA(I)
max [, t′ ≥ t + pmax ⇒ r(t) + r(t′) > m

Proof: If t′ ≥ t + pmax, then necessarily It′ ∩ It = ∅. On
the other hand, since t′ ≤ CA(I)

max , there is at least one task
Ti running at time t′. The algorithm A has chosen not to
start this task at time t. By definition of a list algorithm, this
means that the task Ti cannot be executed together with the
tasks from It. Since this can only be because of a lack of
resources, we have r(t) + qi > m.

The result follows immediately. !
Remark. Since both r(t) and r(t′) are integers, we can
write more precisely: r(t) + r(t′) ≥ m + 1.

We can now establish the main result:

Theorem 2 If A is a list algorithm, then for every instance
I with m machines,

CA
max(I) ≤

(
2 − 1

m

)
C∗

max(I)

Proof: Let us consider an instance I with m processors. We
are going to prove that if there exists a real number x such
that CA

max ≥ (2 − x)C∗
max, then x ≥ 1

m .
Since C∗

max ≥ pmax, we have:

∀t ∈ [0, (1 − x)C∗
max[, r(t) + r(t + C∗

max) ≥ m + 1

After integrating this relation, we obtain:

X ≡
∫ (1−x)C∗

max

0
r(t)+r(t+C∗

max)dt ≥ (m+1)(1−x)C∗
max

With some rearrangement of this integral, we can bound
it by the total work of the instance:

X =
∫ (1−x)C∗

max

0
r(t)dt +

∫ (2−x)C∗
max

C∗
max

r(t)dt

=
∫ (2−x)C∗

max

0
r(t)dt −

∫ C∗
max

(1−x)C∗
max

r(t)dt

and since r(t) ≥ 1 for all t,

≤
∫ CA

max

0
r(t)dt − xC∗

max = W (I) − xC∗
max

Obviously, since mC∗
max is the total area available to the

optimal schedule, we have W (I) ≤ mC∗
max. We deduce:

(m − x)C∗
max ≥ X ≥ (m + 1)(1 − x)C∗

max

We deduce the final result: x ≥ 1
m . !

8

