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ABSTRACT

We explore the possibilities offered by a programming mculgd-
porting components, workflows and skeletons. In particwar
describe how $cm (Spatio-Temporal Component Model), an al-
ready existing programming model supporting components an
workflows, can be extended to also provide algorithmic skele
concepts. Programmers are therefore enabled to assenmigaap
tions specifying both temporal and spatial relations ammrgpo-
nents and instantiating predefined skeleton composite cnemnts
to implement all those application parts that can be easig-m
eled with the available skeletons. We discuss preliminasylts as
well as the benefits deriving fromm8m (Spatio-Temporal sKele-
ton Model) adoption in a couple of real applications.

Keywords

Software Component, Skeleton, Workflow, Abstraction, Grid

1. INTRODUCTION

Grids as well as recent large scale parallel machines peopbsige
amount of computational power and storage. Therefore pib&si-
ble to envision scientific code coupling applications théwes prob-
lems related to bigger or different, not yet solved physjdanom-
ena. A major issue still to be solved is the design of a prognarg

model suitable to ease application development and to eitigi
exploit resources.

Let us consider some of the important properties that havgeto
provided by such a programming model. A first property is to
face the complexity of software management, and in pagicia
enable code reuse. Second, it should support strong cgualin
gorithms that are often present in high performance apipics.
Third, as resources are more and more shared, the progragmmin
model should enable an efficient usage of resources, incparti
lar through the support of loosely coupled application elata.
Fourth, it should abstract resources to achieve two impbgaals:
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let the programmers to only deal with functional concernson n
functional concerns must be hidden — and applications shbel
portable to a wide range of architectures — provide abstnasthat
can be adapted to resources.

There are many programming models that attempt to easegrmgr
ming large complex scientific applications and to hide theplex-

ity of underlying execution resources especially Grid asfruc-
tures. This paper focuses on those based on assembly/citiompos
principle, as programming by assembly is gaining increpsio-
ceptance to deal with complex scientific applications. Irtipalar,

it deals with three well-known model families: software quon
nent models, workflow languages and skeleton based progragnm
models. Each family attempts to tackle with the presenteggmr

ties to deal with the complexity of applications and/or @ses.
Depending on a given model, the properties are less or mare ha
dled. For example, modern software engineering practicaste

the usage of software component models [29] to deal with code
reuse. In particular components enable to easily build aficp

tion made of piece of codes written in different languageshilgv
component models appear adequate for strong coupling compo
sition, workflow models seems more tailored for loosely dedp
compositions. In addition, algorithmic skeletons are odered
better suited to provide a simple abstraction that can benaait
ically optimized to the resource of the system [17]. Henbeyg

is no model that efficiently handles all these propertiesouth all
these properties are relevant, they should be all and wedlidered

by a single programming model. As far as we know, there is not
such a model. Nonetheless, there are some previous worlkslaim
at bringing closer these families. For examplerc® (Spatio-
Temporal Component Model) [14] is a model combining compo-
nent models and workflows. Similar efforts have been caried

for skeletons and component models [3, 20].

This paper explores the feasibility of a programming modehe
bining the three families — components, workflows and skelet
Rather than proposing a programming model from scratchud-s
ies how to combine 8cM— which already unifies components and
workflows — with skeletons. The outcome should be a program-
ming model supporting all the presented properties.

The remainder of this paper is organized as follows. Sestdn
and 3 recap main features and technical background of coempon
and-workflow and skeleton-and-component methodologies, r
spectively; Scm and behavioural skeletonsre presented as



paradigmatic examples of the two methodologies, which are-c Component
pared in Section 4. Section 5 introducesk® (Spatio-Temporal

sKeleton Model), where the two methodologies are stacked in  RMI/provides”
a two-tier architecture aiming at raising the level of aastion stream/input *
of both component-based and workflow-based parallelidiged event/sink
programming approaches. The benefits of the approach arsho -
by reasoning about the design of two real-world applicatifirio- + » -
metric identification and climatology applications). Sext7 con- input :
cludes the paper and presents future works.

* RMI/uses

* stream/output

*
event/source

ES

*

2. STCM: MERGING COMPONENT MOD- Component-task

ELS AND WORKFLOW LANGUAGES

In [14], we proposed a Spatio-Temporal Component Model output ® =
(Stcm). This model combines two technologies: software com- Task
ponent models and workflow models. Its aim is to allow a de=ign
to express the behaviour of an application by assembly. Bévs

haviour considers both the temporal logic of the applicatax- ;
ecution, based on reusing workflow concept, and the spagial d With task concepts.
pendencies that may exist between components, based ongeus

component assembly concept.

Figure 1: A component-task as a combination of a component

2.3 STCM
Before giving an overview of cMm [14], let us introduce software Component models offer well-founded concepts for codeaansl
component models and workflow languages. The introducton i applications complexity management. However, while thatiap
done according to a generic view of existing technologies tan property of component models make them more appropriate-to d

the main properties that motivate the combination of the ape velop strong coupled applications, the temporal propeftyark-
proaches in 8cM. flow models eases the programming of the temporal logic of an
application that can be moreover captured from the assembly
2.1 Software Component Models enable efficient resources management. In order to groupdhe
Independently of existing technologies, like£[11], Ccm [26], vantages of the two programming approachescid proposes a

GcM [18] or Sca [9], a software component appears as a black compinatipn of component models and Workfloyv languages. For
box unit of a reusable, composable and deployable code. Thethat it defines the concept obmponent-taska spatio-temporal as-
composition is done through the connection of well-defineds sembly model and life cycle management. Let us give an oservi
that allow a component to interact with other componentse Th ©f these concepts.

interaction between two components often followpravide-use

paradigm. According to existing component models, thigsggm

is mainly based on one of the following communication models CoOmponent-taskas shown in Figure 1, a component-task is

operation/method calls, message passing, document pa¥seb a component that supports the concept of task. Thus, iniaddit
Services), events or streams. Most of the existing assembbj to classical ports, namespatial ports in S'CMm, a component-task
els for components exploit bindings based on spatial miatiips. can define input and output ports, nantechporalports. Tempo-

That means that the bound components are concurrentlyeactiv ral ports and task behave like in workflow models. The diifee
for the entire period they are bound; the frequency of therint  is that the life-cycle of a component-task may be longer tien
action between components is usually not known. As resalt, a one of a task in a workflow, which usually corresponds to its ex

application assembly corresponds to its architecture etgion. ecution. In addition, a task inT®m can communicate with other
These kind of architectures are captured by UML componemt di  component-tasks through client spatial ports. More detaiout
grams [27]. the specification of task and temporal ports concepts caouredf

in [14]. This specification is presented through an extensiba
Gcwm (Grid Component Model) component.

2.2 Workflow Languages

Many environments exist [33] that offer workflow based peogr
ming models to develop and execute scientific applicatides-
amples are Askalon [22], Triana [30], Kepler [6] and BPEL.[7]
In general, building an application according to a workflowans
describing the order of actions, often nanmtegks which should

be executed and their data dependencies. For that, comtroafid
data flow models are proposed. A control flow model allows the d
scription of the execution order of tasks by using contraistoicts
such as sequences, branches or loops. A data flow model focuse
on data dependencies between tasks. To define data depiesdenc
a task specifies its inputs and outputs ports. Thus, desgrifmn-
nections of output ports of some tagkgo input ones of a task’
defines data dependencies betweeandT'. Therefore, workflow

models deal with temporal compositions. These kinds of asip  'Other workflow languages can be chosen. The principle of modi
tions are also captured by UML activity diagrams [27]. fying them to define a spatio-temporal assembly model islaimi

Spatio-temporal assembly mode&he assembly model
proposed for $cM™ is inspired from theAbstract Grid Workflow
Languagd22] (AcwL)!. AcwL offers a hierarchical model made
of atomic and composite tasks. A composition is done withees
to both data flow and control flow compositions. The controiflo
supports several control constructs like sequences, besnf and
switch), loops for andwhile) and parallel constructgpérallelFor
andparallelForEach, etc. The assembly model off§m is mainly
based on replacing anGwL task by a component-task, including
the addition of spatial composition.
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Figure 3: Life cycle of a component-task.

1 conponent Exanple {

g barallel parQrl { The state machine is recalled in Figure 3. From this diagriam,

2 dataln Doubl e inPar <= a.outA: can be observed that the activation duration of a compotaesit-

5 /1 declarations instance can be longer than a task execution duration. Asso,

g conponent B { gi’ilt ZLFPE?;M(; i 3:36 5 component-task can be active without any running task. his

8 }: P pe required when a component-task provides functionality dmcty

9 conponent C { dataln Double inC other component-tasks depend in the assembly. For instamce

10 serverPort Compute pC the assembly shown in Figure 2, compon€rdgan be activated by

E i};nst ance B b: the arrival of an input data onnC port or when an operation is

13 i nstance C c: invoked onpC. Then, the activation duration & doesn’t depend

14 connect b.inB to parCrl.inPar; only on the execution duration @ s task but depends also on the

1> comnect ¢ ngct goc?;g’t rl.inpar; activation duration of componeg&which use<C.

17

18  // instructions The semantic associated to anc assembly is determined with

19 section: exectask EE; respect to simple composition rules to be taken into accoten

21 } // end parall el ’ building an application. The main rules are the following:

22 ...

23}

e If a component-tasi uses (composition in space) a func-

Figure 2: Simplified example of an assembly recalling the pri- tionality provided by another component-ta&kthenB must
ciple of Stcwm. be concurrently active wit and remains active as long as

Alis active.

e If a component-task instanéeor if another component-task
B that usesA is no more reachable by a control flow, than

. . - . L becomes useless and can be destroyed
Figure 2 gives an example of a composition using a simplified

Stcwm assembly language (the original syntax iXiML format for e A component-task instance must be activated at the lat-
which a grammar is presented in [14]). The textual part shibes est when the control flow reaches the execution of its task
assembly inside thpar al | el control structure. The proposed and input data are received or when it is used by another
language allows to declare component-task ty@Bdifes 6 to 8, component-task instance.

andC, lines9 to 11) and component-task instancés line 12, and

c, line 13), describe a data flow (lineg§ 14 and15), describe the e The execution of a task is assumed to produce not more than
order of execution of taskd(andc in parallel, lines19, 20) and one output data on a same output port

spatial dependencies (liné). Means are then offered to a designer

to build by assembly an algorithmic logic, including temglcaind ]
spatial dependencies at the same level of a compositiont i§ha  Besides the proposed assembly constructs, these rulespereted

relevant not only to simplify the design but also to increasde to help a designer to easily express a suited behaviour. @imey
reuse and be able to envisage solutions for efficient usageeat- also to ease automatic management of an application steustth
tion resources. efficient resources usage.

3. SKELETON BASED PROGRAMMING

Life cycle of a component-taso manage the life cycle  Structured parallel programming models based on the algoit
of component-tasks during an application executior; % defines skeleton concept are around since the '90s since skeletorepb
a dedicated model. The management relies on the abilitymf ca introduction by Cole [16]. Later on, several research geodevel-
turing the algorithmic logic directly from the assembly agmsure oped programming environments, systems and librariesdbase
for example safe destruction of component-task instarfeasthat, the skeleton concept [8, 21, 25, 10, 23, 31]. Skeleton based p
Stcwm defines a state machine diagram corresponding to the life cy- gramming models allow programmers to express parallelisimgu
cle of a single component-task and an assembly semantifi¢otre  a set of predefined patterns, the skeletons, that model corpare
as much as possible a deterministic application behaviour. allelism exploitation patterns. Typical skeletons ar&eitstream



or data parallel. Classical stream parallel skeletons guelipes
(modeling computations performed in stages) and farms émb
rassingly parallel computations). They exploit parafiglibetween
computations of different input tasks of the input streamrtmuce

a stream of results. Typical data parallel skeletons are (inaie-
pendent forall), reduce (summing up of a collection of dataan
associative and commutative operator) and stencil (foveh de-
pendencies). They all exploit parallelism in the compotatf a
single input task.

The skeletons are parametric and programmers can thereidisre
tomize them by defining the kind of primitive computation dise
by the skeleton (e.g. a pipeline stage or a farm/map worlsr),
parallelism degree or any other kind of skeleton specifi¢uies
(e.g. whether or not a farm should guarantee input/outpdérer
ing). Most likely, skeleton programming environments aystems
allow programmers to nest skeletons (e.g. a pipeline stagebe
expressed as a farm/map skeleton) and therefore skelesed ba-
plications happen to b&tructuredas a skeleton nestingus some
sequential code used as a parameter for the leaf skeletons.

Once applications have been structured via proper skefegsting,
the implementation of the skeleton framework takes cardl dfi@a
aspects relative to parallelism exploitation. Parall¢iMittes setup,
mapping and scheduling, communication and synchronizduam-
dling and performance tuning are all aspects that are detitat
the skeleton implementation level rather that in the progrer
application code. Being the skeletons known and efficietiepzs
of parallelism exploitation, this results in very efficiertd scalable
application implementation, independently of the modelsem for
the implementation, that traditionally is either templatsed [28]
or macro data flow [19]. Overall the whole process results in a
complete and worttseparation of concernbetween application
programmers and system programmers. The former are in eharg
of recognizing parallelism exploitation patterns in theléagation
at hand and of modeling them with suitable skeletons (ores&gl
nesting). The latter are in charge of solving, once and fomdden
the skeleton framework is designed and implemented, tHeqms
related to the efficient implementation of the differentgikelism
exploitation patterns and to their efficient compositiorhisTsep-
aration of concerns has a notable list of positive side &ffeg

it consistently contributes in supporting rapid applioatidevel-
opment and tuning, ii) applications programmers are notireq
specific knowledge on parallelism exploitation techniquispro-
grams can be seamlessly ported to different architectumaded
that system programmers have already studied, designedrand
plemented proper skeleton implementation for the new tajgst
to mention a few.

Algorithmic skeletons can be quite easily associated towsoé
components. A skeleton is a building block for parallel &g
tions exactly the same way a component is a building blockafor
generic application. As a consequence, skeleton techyndiag
recently been used in the component based programmingrgzena
[2, 23]. In this case, (composite) components are provideithe
user that model common parallelism exploitation pattemd @c-
cept other components as parameters modeling the skelaten i
computations (e.g. the pipeline stages or the farm workers)

The last step we want to mention here in the algorithmic $&ale
concept evolution has been the introduction of autonomicage-
ment aspects in skeletons. Skeleton implementation wasdrge
of handling all the non-functional aspect of parallelisrpleitation

since the very beginning. However, the advent of signifigamaw
architectures, such as grids, with highly dynamic and umip&
features imposed some more evolved approach to non-funattio
aspect handling. Therefore, autonomic management of tekele
features has been introduced [4, 3] that dynamically addgieton
execution to the varying features of the target architectuonsid-
ered. Using this “last” version of the skeletons (narbetavioural
skeletons to explicitly mention they have managers taking care
of dynamic behaviour of the skeleton implementation) usans
develop (grid) applications that seamlessly avithout any kind
of user/application programmer interventioeact to node faults,
additional node loads, network inefficiencies and keep (ibest
effort” way) the application running according to a userafied
QoS contract.

4. STCM vs.SKELETONS: DISCUSSION

Despite the ability of $cM to abstract the behaviour of an appli-
cation through its assembly, the level of abstraction resé&w.
This is the case in particular for parallel programming.Histcon-
text, two issues must be taken into account. This sectioodotes
and discusses these issues and motivate the work presarttesd i
paper.

The first issue is related to the design of parallel programgmi
paradigms using 8cMm. The relations that can be expressed be-
tween component-tasks inT6M remain simple. In the spa-
tial dimension, only relations of typé-to-1 or 1-to-N can be
expressed between assemblies of component-tasks.
the temporal dimension, only simple tasks and data paisatiel
can be expressed through control constructs filee al | el or
par al | el For Each (independent forAll). Even if a combination
of the two can reach more complex behaviour, offered cootstru
are not sufficient to simply express a usage of complex mrall
paradigms. This lead the designer to construct complexiappl
tions in arbitrary way and to consider parallelism issuegmvjpro-
gramming, thus increasing the likely of (inadvertentlyjraaduce
bottlenecks and/or execution resources dependencies design.
As an attempt to overcome such a limitation, a first objectife
the present work is to propose means to take benefits frone-skel
ton principle to construct complex parallel applicationsisimple
way.

The second issue is related to efficient execution of an ddgem
This issue relies essentially on scheduling policies aztbjpy an
execution framework. A simple policy can consider the execu
of an application step-by-step mainly directed by the terapde-
pendences between component-tasks. However, a more rfficie
scheduling should consider a global behaviour of part orle/ap-
plication assembly, in particular to exploit maximum peetém.
For that, means are required to recognize parallelism fdrora
an assembly. Therefore, the second contribution of thigipajms
to consider the extension oftf8m with respect to resolving the
first issue and analyze the possibility of exploiting paiiin be-
haviour from a component-task assembly. In this contextproe
pose to study the projection of an abstract assembly to tekele
based forms. We can then take benefits from already existelgs
ton management mechanisms to efficiently execute an afiptica

5. TOWARDS STKM: A COMBINATION
OF STCM WITH SKELETON BASED
PROGRAMMING

While in



In this paper we propose a combination afc$1 and skeleton prin-
ciples in the Skm model. The objective is twofold. The first goal
is to increase the abstraction level ofSv regarding the program-
ming of parallel applications. In particular, we aim to affe a de-
signer a programming approach based on skeleton constiittis
is to promote simplicity of programming, the constructidncor-
rect programs and code reuse. The second goal is to offersfiean
efficient execution of an application. For that, we propasaria-
lyze the possibility to exploit parallelism behaviour fran assem-
bly and follow a management approach based on a projectithreof
assembly to a composition of nested skeleton constructss, The
management of parallelism can be turned to skeleton maregem
for which a lot of efforts are already done to deal with lowde
parallelism concerns and efficient execution.

This section presents our proposal in three parts. The fagt p
presents the proposed extension afc® regarding the support
of skeleton constructs (Section 5.1). The second partrmaslihe
consequence of definingtT&v on top of S’cm on Srcw itself
(Section 5.2). The last part presents the principle of meggthe
execution of an 8kM application (Section 5.3).

5.1 Skeleton Constructs on top of STCM

Our approach to enable a designer to express the usage efiakel
based parallel paradigms is to extendc# with dedicated con-
structs. These constructs are particular composite cogren
(templates) for which the internal structure is well defiredord-
ing to a parametric schema. They can define ports and be ceapos
with other skeleton constructs and/or components. Theeziégrof

a skeleton (stages for the pipeline and workers for the fanat
replication) can be skeletons or components (primitivearnpos-
ite). These elements can also be composed with other com{sone
(internal or external to the skeleton construct). The dijecis

to promote composition at different levels, which shoulgiove
composability and code reuse, while preserving the praigsat
skeletons. The extension off&M consists in extending its assem-
bly language [14]. An overview of this extension for the pipe
and functional replication skeletons is shown in Figure 4.

A skeleton in SkM defines at least its inputs/outputs
(i nput Skel and out put Skel in the grammar) and their
functional elements. The input and output ports are not akied

of ports. They are of stream type (as in classical skeletageis
and are used to identify which component ports have the rble o
receiving and producing data proper to the skeleton contiputa

conponent ::= stcmConp | skel eton
skel et on 1= <skel eton nane=string>
i nput Skel ? out put Skel ? port *
attribute skel Const?
</ skel et on>
i nput Skel ::= <inputSkel nane=string type=string
(set=string)?/ >
out put Skel ::= <output Skel nanme=string type=string >
skel Const ::= pipe | funcRepl | sequential ...
pi pe 1= <pi pe nane=string>
i nPi pe
</ pi pe>
i nPi pe ;1= conmponent* instances stage+
configport =
stage 1. = <stage name=string>
skel et on
</ st age>

/'l Functional skel et on

f uncRepl 1=

replication behavioural

<funcRepl nane=string>
i nFuncRepl

</ funcRepl >

conponent* instances worker

configportx em tCollect? sharedConp?

i nFuncRepl ::=

Il
Il
Il
/1
Il

em tcol | ect specifies the policy of
handl i ng skel eton inputs and outputs
exanpl e (broadcast, reduce)
sharedConp speci fi es a conponent
encapsul ating a shared state between workers
wor ker 1= <worker name=string (cadinality=int)?>
skel et on
</ wor ker >
emtCollect::= <emtCollect emt=string
col l ect=string >

sharedConp ::= <sharedConpl nstance ref=string >
sequential ::= stcntonponent

configport ::= clientserv | inout

clientserv ::= <setPort client=string server=string/ >
i nout = <setPort in=string out=string/ >

Figure 4: Overview of the STkm grammar related to the skele-
ton composition part. Only pipe and farm constructs are con-
sidered. In bold, the grammar keywords. In italic, the STkm
language keywords.

when only part of an application is parallel. Moreover, alst@n

Therefore, a component can be reused by a simple wrapping an its included components can define classseaiM ports and

mechanism (Figure 5). It is relevant to note that the wrapped
component behaves like in a classical skeleton: a computéi
started on the reception of an input data; the computatiodymes

an output data on the output port. Otherwise, the behavibur o
the skeleton is not preserved. In this regard, skeletontéinpod
outputs can be bound to classical stream ports or temportd,po
in which case the computed function is a task. The latter case
a good example because it responds to suited behaviour. iShat
true thanks to the lasti®m semantic rule defined in Section 2.3.
For simplicity, in this paper, we assume that componerkstas
define only one input and/or output port (if the task has data
dependencies).

Figure 6 sketches an example of &nkm assembly. It illustrates
the possibility of composing components with a skeletorstoict
and skeleton nesting. Compared with a classical usage &d-ske
tons, itis easy iIBTKM to assemble sequential with parallel codes,

be composed with other components. This promotes expgessin
code dependencies by assembly rather than implementingithe
the skeleton computation codes; that ease programmingrand i
prove code reuse. In addition, more complex behaviour cagxbe
pressed by a skeleton, like the possibility of accessingesshstate
between computation codes in a functional replicationethel S
component in Figure 6).

5.2 STCM modification requirements

STKMaims also to enable exploiting parallelism in several situa
tions, in particular, in both spatial and temporal dimensiof an
assembly. Even if the parallelism built by a skeleton carcdtn-
fers a spatial assembly, which can be of course implicatedém-
poral dimension (like shown in Figure 6), that may be not sigfit

to ease expressing some behaviours. A typical situatioo ext
press through an assembly that ordered tasks in part of affaark



D>
outputSkel
long

Figure 5: Wrapping a component to be a skeleton element. On
the left, skeleton inputs and outputs are bound to stream pds.
On the right, they are bound to temporal ports. The type of
ports are data types which must be compatible.

v parallel

Figure 6: Example of a composition using $KM .

should be executed in a pipeline way. The left part of Figutei3-
trates such a situation for a sequence. Syntactically, thegsed
extension allows such a composition. However, the pogsyitaf

a pipelined execution depends on the ability of receivindtipie

input data on the input stream of the pipe construct. As werass

in STCMthat not more than one output data on a temporal port may
be produced for a single item and as the model preserves the se
mantic of control constructs, a mechanism is needed to letabl
support such a situation. A mechanism is also needed toetiabl
collection of the results on a stream after a pipelined execu

A solution is to relax the assumption specifiedSMCMto allow
a task to produce multiple output data for a single input daut
symmetrically, allow a task to collect multiple input dabgroduce
one output data. For that, two issues are to be resolved.

First, it is necessary to enable a component-task to expies®-
lated task’s behaviour when it is defined or composed. Otiserw
it may be difficult to determine the behaviour of an assemi
propose to resolve this issue with a simple cardinality gpte to
be associated to temporal ports. The right part of Figureodivsh
the principle of the solution. An input port with cardinglit (re-
spectivelyn) needs one data (multiple data) to execute a task. In
the case of multiple data, the number of received data isméated
by the end of the execution of the task that produces the data.
output port with cardinalityl (respectivelyn) indicates that one
data (multiple data) will be produced by one execution ofsk.ta

The second issue is related to the need of a mechanism tbasall
atask implementation to be able to send (respectivelyvegeiul-
tiple data on output (resp. input) temporal ports. To predoml-
tiple data, our solution consists in offering a callback ragien to
component-task implementation allowing a task to sigrakvail-
ability of output data to be sent. This operation can be dathel-
tiple times. The end of the execution of the task correspomdise
end of producing output data for a single input data. Thegipie
of this solution is already proposed in preliminary spagoporal
composition model that we presented in [13]. Because armalrdi

sequence { A,

pipe )

Figure 7: STcM maodification to support skeleton constructs in
temporal dimension: temporal ports cardinality principle .

pipe {B, C, D}, E}

1
forAll {
> setOutput...
pipe 9" )

wait n data

before launch
1

task (E)

ity n for an output port affects the implementation of a component
task, the cardinality has to be specified in the definitiorhefport.

On the input side, we assume that it is at the responsibifithe
framework implementation to wait all incoming data befoxeaut-

ing a task. In this case, the task behaves like in the case/ofdha
single data received on the port. Therefore, itis sufficierspecify

a cardinalityn for an input port at the assembly level to obtain the
suited behaviour. This, a component-task with an input pbcar-
dinality n appears in an assembly as a reduction or synchronization
point within an assembly.

The outlined changes inT&M raise the issue about their conse-
guence on the life cycle of component-tasks and so on thergema
of an Srkm assembly. The principle of a task is still dependent
on the availability of one data. Even if it can produces npuldti
data, the end of its execution is still well determined. Imiad
tion, in STkMm, the life cycle management is still directed by spatial
and temporal dependencies between components, inclukiéher s
ton constructs, for which the principle is the same as rti@.
The only modification affects the last semantic rule defime8ec-
tion 2.3 and which becomesThe execution of a task can produce
multiple output data on a same output port. The end of theltexec
tion determines the end of producing all the output dat&ihally,
STKM preserves the global principle ofrf8m.

5.3 A suited approach for efficient execution

management
Until now, we dealt with the abstract viewpoint 8TKMoffered to
a designer. The goal of proposing such an abstraction isSmitet
to simplifying programming and improving the expressivenef
an assembly or improve code reuse, but also aims to make-it pos
sible to adapt an application to a given dynamic executioniecd
while ensuring a given user-defined Quality of Service (QuB)-
tract. We showed in previous work that skeletons [3, 31, 4, 17
have the ability to cope with the autonomic steering of aation
execution to ensure dynamically defined levels QoS, andttban
be done while preserving their high-level nature ensuriogpro-
prieties such as: the separation of concern between furadtand
management code (thus code reuse), the automatic gemeddtio
binary code (thus rapid prototyping and code portabiligts. In
this regard, the approach has proved to be effective witheeso
a number of domains, such as performance [4], security [&], a



fault tolerance [14.

Hence, an issue is to propose an approach to manage the execu-

tion of an STKMapplication. In general, the effectiveness of an
execution depends on the expressiveness power of an agsamabl
the ability of an execution framework t@cognizethe behaviour

of an application, to take into account execution resou(nam-
ber of processors, size of memories, network architectavajl-
ability and dynamicity of resources, etc.) and to make adegju
decisions to adapt the application to the resources. Sgaityfibe-
havioural skeletons attack this problem (a.k.a. idiom recognition
problem) by providing pre-defined parametric patterns leiinig a
well-defined behaviour, and thus, supporting pre-definedage-
ment strategies [3]. Thus, behavioural skeletons abst@mtipo-
nent self-management in component-based design as design p
terns abstract class design in classic OO development.

In the context of $KM, such decisions are expected to consider in
addition to temporal and spatial dependencies, made byramS
engine, the skeleton constructs. With respect to skelainstoucts,
the main role of an kM framework is expected to project or trans-

form an Srkm assembly to a concrete one (the assembly at execu-

tion). The projection consists in replacing a skeleton dpson in
the abstract assembly by an adequate implementation. &owotir
aim is to reuse already proposed component based impletiogrizta
(such as behavioural skeletons in the GCM [3, 24]) and take-be
fits from their self adaptive management of computatioretents
and their ability to deal with optimization issues, like leqising
stages of pipes or introducing farms for efficiency. Follog/such
an approach, an assembly after a skeleton construct reptaxes
expected to be ani®M assembly.

Since SkMm skeleton deployment and activation is driven by tem-
poral dependencies, they are dynamically deployed, are shrey
are parametric patterns, they can be dynamically configatels-
ployment time (e.g. according to available platforms). sTkind

of flexibility covers an additional case with respect to aaimic
management (that is fully dynamic), compile-time configioma
(static) and application launch-time malleability (labrime) be-
cause each specific skeleton can be configured at the tinredtlig
needed. This time may happen to be in a point of time well after
the application launch, especially in very long runninglagaions.
This, in turn, may reflect in very different execution envinoents

in the two points in time. We envision, as immediate reshk, it-
erative mapping of the same skeleton (within a temporal) oopo
different reservations of grid sites along time. Observat,tffior
some kind of applications, flexibility may be as effectivefalyy
dynamic adaptivity but, in general, it incurs quite lowenpthtion
overheads [4, 3].

In addition to the management of skeleton constructs, waees-
tigating the possibility of managing some parallelism ferthat
are not explicitly expressed by the usage of skeleton cactstbut
which can be mapped to a skeleton composition without medify
ing the expected behaviour. An example is to deal with the-ind
pendentf or Al | control constructsgar al | el For Each). The
parallelism expressed by this construct can be mapped taa fu
tional replication skeleton in which the workers are theyotithe
loop. Other parallelism forms can be also built im31 purely
based on the usage of temporal port cardinality principler. éx-
ample, if we assume that the pipeline construct shown inrgigu

%those domains are all considered “in insulation” in theseke/o
the multi-domain management is currently under invesibgat

Figure 8: Functional replication behavioural skeleton conpo-
nent.

is not used and the cardinality on the ports are kept, an @itpli
pipeline behaviour is built. The ability of a framework toptare
such a behaviour, which can be directly done thanks to the car
dinality information, offers the possibility to envisagepgpelined
execution managed by a dedicated skeleton construct. &pis+
sents a possible mean to exploit parallelism with existiffigient
mechanisms. Such a mean is still in a study status. Solut@®ns
recognize parallelism forms from an assembly and the pibisgib

to map them on a skeleton constructs are required.

6. STKM EXPLOITED

In the Sections above, we have introducertk&. In this Section
we outline the key points and advantages afk® by showing
how two typical and significant use case applications cambe i
plemented exploiting &m methodology.

6.1 Fingerprint recognition in STKM

The first application we consider here is a refined version use
case application considered in the framework of the GridGOM
EU STREP project [24]. In that context a fingerprint recoigmit
application was considered that has to be able to match affirige
against a database possibly hosting a large number of fingerp
The goal is to be able to get a real time answer telling whether
not the fingerprint is in the DB and, in positive case, the fipgat
owner identity [32]. In our extended version, we also coesithe
part of the application that collects fingerprints from rpatsons
(e.g. at the airport arrival gates) and submits them to thgefiorint
recognition software for processing.

Fingerprint matching against a DB can be nicely modeledgisin
skeletons. Thisis a plain data parallel skeleton wherdlpaveork-

ers have been given a portion of the database and any singég-fin
print is broadcast to all the workers. Referring to fli@ctional
replication behavioural skeleton as defined in [3], whose structure
is drawn in Fig. 8, this corresponds to have identical wod@n-
ponentsW specialized by submitting them different portions of
the DB, a broadcast port and a or-reducé€’ port (C' gathers an-
swers from all the workers and basically ORs the booleanegalu
received).

Functional replication behavioural skeleton is one of tkeletons
considered in $kM, and therefore this application can be easily
expressed using1&m (Figure 9). Figure 10 illustrates thepa-
tial aspects of the application. The left part handles gatewjetel
ing requests to th€'heck component. This component transforms
requests issued on its provide port into items on the inpeast
for skeleton processing requests (the composite compameght
part of the Figure) and conveniently returns the valuesivedeon

its input stream port connected to the output of the recagnidom-
ponent as results of the provide port invocation. The uppetr @f



/'l port types are assuned to be defined
conponent FPApplication {

conponent Gat eAdm n{
uses CheckRequest uGA;
...Gate and MGR conponents. ..
s

funcRepl FPMat cher{
i nput Skel FPrint slnFPM
out put Skel string sCutFP;
attri bute bool ean batch;

conponent Split {
provi des Get DB pDB;
provi des Set Nor W pW

wor ker sequential cnpSkel {
i nput Skel FPrint slnCWVP;
out put Skel bool ean sQut CVP;
conponent cnp {
provi des Set DB pDB;
stream n FPrint slnCWVP;
streamOut bool ean sQut CVP;
b
I

instance Split sp;

connect strm nCMPSkel to cnp. strm nCVP;
connect cnp. strmOut CMP to strnlut CMPSkel ;
connect cnp. pDB to sp. pDB;
emt-collec:: (broadcast,
shar edSt at eConp sp;

O -reduce);
b

conponent Check {
provi des CheckRequest pC;
streamOut FPrint sQutGC;
stream n bool ean sl nC;

}

i nstance Gat eAdm n gat eAd;
i nt sance FPMVat cher fpm

i nstance Check chk;

connect chk.sQutC to fpm sl nFP;
connect fpmsQutFP to chk. sl nC
connect gateAdm n. uGA to chk. pC,

sequence Appl Mai n{
exectask(fpm;
exect ask(chk);
exect ask( gat eAd) ;

H
}

Figure 9: Simplified STkm assembly for the Fingerprint recog-
nition application example.

the Figure outlines the internal structure of the workergheffunc-
tional replication skeleton instance and of the Gate coraptm
The former is a wrapping of the single fingerprint matcheg. (of
the pre-existing componewinp that provides a port used to sup-
ply it the fingerprint DB, and two stream ports for accepting fi
gerprints to match and for delivering the correspondingneats)
that eventually implements a provide port accepting “DBead”
requests from the manager and a use port to access the DBnorti
inthe Split component. The latter is a standard loop initializing the
gate, scanning a fingerprint, submitting it to the matchiystem
and publishing the result of the match.

From the temporal viewpoint, the application componentp-ha

DB |
SOUtCMP!

Figure 10: Spatial composition of the Fingerprint recogniion
application. The gray part is hidden to the designer.

GateAdmin manager. TheT®&M description of the sequence is
shown in the last part of Figure 9. It is worth pointing outttba-
ploiting skeletons, we can easily modify the Fingerprintbher to
process a huge amount of fingerprintsbiatch mode In this case
we can simply instantiate the functional replication statdn such

a way theE port sends each input item to a different, “free” worker,
C just gathers answers and delivers them to output and woallers
receive (or access) a copy of the whole fingerprint databEsen,
exploiting Srcm derived workflow management, we can write an
STKM program that depending on some input parameter from the
system user activates either the “batch” or the “real timatching
composite component.

6.2 Climatology application in STKM

The second application we consider in this Section is a ¢biogy
application. It is basically a parameter sweeping appbtoat For
each parameter set, a number of iterations modeling clieate
lution in the next 200 years is computed. Its structure idired

in Figure 11 (a). The first componef® is basically a component
implementing aorAll construct. It iterates on the input parame-
ter set sequence delivering a new parameter set to compgtent
This, in turn, iterates computation performed By to S5 for a
number of times, in a sequential loop. Each iteration builds
approximate climate state at the next time quantum. Evéntua
componentSs delivers the final result to componeft for post-
processing. Compones has a sensibly higher (10 times higher)
execution time than the other components used in the afiplica
This is a high level schema of a real application considerigdinv
the French ANRLEGOproject [15].

Climatology experts having available all the componentatine

to the building blocks of the climatology application wilighably
come out with an application structure such as the one ofr€igu
11 (a). A component will provide the subsequent (in the teralpo
dimension) components with as much input items as the number
of the parameter item in the input parameter set. By simpty re
ognizing that the loop around componersi$ to S5 is executed
on a stream of input items, produced by compongitand prop-

pen to be hosted in a sequence that first launches the Finger-erly exploiting Srkm, the application can be more or less “auto-

Print matcher component, then the Check one and eventunly t

matically” transformed into the one represented in Figi)l (n
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Figure 11: Example of a composition from which it is possible
to recognize a pipeline.

this case, temporal composition of componesitsto S5 has been
transformed into a spatial composition corresponding tdoap'

of pipeline” skeleton composition, possibly exploitingappings
such as those shown in Fig. 5. In turn, the new spatial cortgosi
deriving from the compilation of a loop of pipeline skeletwem be
optimized much more than the original “temporal only” sclzeof
Fig. 11. For instance, exploiting the estimated completimes of
pipeline stages, stagétl to S3 can be deployed within the same
computational resource, preserving the service time ofdbp of
pipeline computation and, in the meanwhile, increasingéfiie
ciency of the overall application. The net effect of usingvée
resources can be estimated in passing from an efficiencyndrou
20% to one above 80% (this looks huge, but actually, using one
separate resource for each component in the applicationiie q
an inefficient initial implementation). Alternatively,erapplication
can be restructured as in Fig. 11 (c). In this case, the stddeas
been parallelized by transforming the loop of pipeline imad of
pipeline of farm, decreasing the service time of the ovegigiéline
and therefore increasing again the efficiency of the whofsicg-
tion. In this case efficiency can be obtained which is venselo
to 100%, due to the fact we can easily add 10 workers to the farm
and therefore keep the service time of the “hug@ef’ stage close
to the service time of the other pipeline stages, and thusafly
balancing the whole pipeline (application).

It is worth pointing out two things here. First, the resultmae
have been derived simply using well known performance nwdel
of pipeline and farm skeletons in conjunction with rouglirestes

of the time needed to compute component services and to commu
nicate parameters among components. Previous experiances
experimental results achieved in the algorithmic skeldtame-
works completely validate this kind of reasoning. Secorhenof

the transformations/optimizations discussed above duave been
implemented in the temporal only application specificatitve one

of Fig. 11 (a)).

6.3 STKM vs. standard approaches

We want to analyze in more detail the advantagesméns against
plain components, workflows and the originat@Sv; then, we
qualitatively discussed the use case applications abowepai-
ticular, we consider the following properties of the pragraing
model:

Expressiveness of an assemblthe expressive power provided to
the programmer to assembly applications out of their build-
ing blocks

Required designer expertiseto implement efficient applications

Efficiency of the resulting assembly/application.

Tables 1 and 2 outline our judgment about the propertiesjastd

in case of the fingerprint recognition applications (Tabl@dd of
the climatology application (Table 2). Just to understaow fve
compiled the Tables, let us detail how the “values” in coluitie-
signer expertise” of Table 1 has been determined. In casérthe
gerprint recognition application was to be implementechwitira-
ditional component model, high programmer expertise islireqd

if dynamic management of component composites are to beimpl
mented such as those implemented by behavioural skelefsns a
plication managers. Even if workflows were used, programmer
expertise required is high, as workflows do not support Btiv
complex parallelism exploitation patterns such as the arsgmt

in the fingerprint application. Usingi®M or skeleton systems, the
programmer can use limited forms of parallelism (forAll im&w,

as an example) or limited (or null) temporal composition ifvo
flow) support in skeletons, and therefore an average esgeisi
required to handle aspects not primitively supported byethé-
ronment (parallelism exploitation patterns imr&v and temporal
composition in skeletons).1&M provides suitable mechanisms to
handle all the modeling aspects of the fingerprint recognigéippli-
cation: temporal composition to handle skeleton and notetie
component setup and skeletons to handle complex paratterpa
possibly in autonomic way via the behavioural skeletonrirdé
manager.

Both Tables evidence howt&M presents several advantages over
the component, workflow and skeletons programming models.

7. CONCLUSIONS AND FUTURE WORKS
We outlined SkM, a programming model combining the advan-
tages of components, workflows and algorithmic skeletona- P
grammers can exploit workflow features of v to model appli-
cations in such a way the temporal relations between thiéérdnt
parts are precisely exposed, and they can also use sketetans
plement those parts of the applications that exploit peliath ac-
cording to well-known parallelism exploitation patteri$e envi-
ronment exploits component technology, to allow programsme
implement applications by component assembly. In case df-wo
flows, components are interconnected using new “tempoxatsp
whereas skeletons are plain composite components whose inn
components are interconnected by way of “stream” ports hail t
external interfaces also are based on stream ports.

We illustrated the feasibility of the M approach providing an
extension of $cm (a model already supporting components and
workflows) that includes common algorithmic skeleton. Udsin
STKM, we modeled a couple of significant applications that happen
to be use cases in distinct European projects. TrievS(abstract)
version of the two applications allowed to outline the bereff the
approach as well as the added value with respectrtovSand the
other component only, workflow only and skeleton only progra
ming environments. In particular, we've shown how complegla
cations, can have parts that can be simply implemented i¢ixglo
skeletons (that is, instantiating one of the skeleton caitp@om-
ponents provided by M) and inserted seamlessly in complex



Expressiveness Level of designer Efficiency
of an assembly expertise
Component average: moderate high (static)
models synchronisation and dynamic (high for dynamic expert level (dynamic)
management hidden in implementatigon management)
Workflows average: average:
not captured construct high stateless
(data transfer/reload)
StCcM average: moderate proportional
enable to recognize (high for dynamic to expertize
some constructs management) level
Skeletons average: moderate
skeletons cooperation (high when using high
not natural non existing skeletons
[ skm ] good | low | high |

Table 1: Analysis of a the properties offered by different pogramming models to design the application represented inigure 10.

Expressiveness Level of designer Efficiency
of an assembly expertise
Component proportional to
models hidden high expertize level
Workflows average: high:
adequate for temporal dependencies low relies on global schedulep
but often appears as a sequencg
STCM average: low
adequate for temporal dependencies but designer has high
but appears as a sequence to use right ports
Skeletons high:
good low requires meta-data
(execution durations)
STKM good low high:

(for smart designer), requires meta-data

(execution durations)

Table 2: Designing a pipeline construct using different prgramming models. The analyzed example is shown in Figure 1pért (a)).

workflows, and how, by exploiting skeletons in workflows, Bpp
cation implementation can be optimized.

While this paper focuses on theoretical background ™€, fu-
ture work considers its implementation and evaluation. riiple-
ment a component model such asx, several approaches can be
followed. We are currently investigating an implementatan top

of ScA (Service Component Architecture). The objective is to take
benefit from the possibility to reuse an already existing et@ehd,

for the particular case of &, from the advantages of the underly-
ing Service Oriented Architecture. The principle is to mapad-
stract representation of an application to aza&rchitecture man-
aged by an 8kMm engine. We also plan to have experiments vali-
dating the whole 8km approach even before the whole program-
ming environment is implemented. In particular, we alreadgle-
mented parts of the prototype applications considered ionSand
manually implementing skeleton composite components éh su
way the combined usage of workflows and skeleton (in a compo-
nent framework) can be evaluated and efficiency can be a&sbass
well. Preliminary experimental results achieved with thésand
programmed” experiments run on top of the SCA/Tuscany open
source component/service programming environment detraias
that the expected benefits related to the introduction désies in
Stcwm are actually there [1].
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