A Software Component Model with Spatial and
Temporal Compositions for Grid Infrastructures *

Hinde Lilia Bouziane, Christian Pérez, and Thierry Priol

INRIA/IRISA
Campus de Beaulieu — F-35042 Rennes Cedex — France
{Hi nde. Bouzi ane, Chri stian. Perez, Thierry.Priol}@nria.fr

Abstract. Grids are very complex and volatile infrastructures thditilei par-
allel and distributed characteristics. To harness themnmexity as well as the
increasing intricacy of scientific applications, moderftware engineering prac-
tices are needed. As of today, two major programming modsisichte: software
component models that are mainly based on a spatial corgrosihd service
oriented models with their associated workflow languagesnpting a tempo-
ral composition. This paper tends to unify these two formsafiposition into
a coherent spatio-temporal software component model videiéping their ben-
efits. To attest the validity of the proposed approach, werites how the Grid
Component model, as defined by the CoreGRID Network of Eene#, and the
Askalon-AGWL workflow language have been adapted.

1 Introduction

Grid infrastructures are undoubtedly the most complex aging infrastructures ever
built incorporating both parallel and distributed aspenttheir implementations. Al-
though they can provide an unprecedented level of perfoceatesigning and imple-
menting scientific applications for Grids represent chrajiag tasks for programmers.
But this is not only due to the intricacy of the infrastruasrindeed, numerical simu-
lation applications are also becoming more complex invathe coupling of several
numerical simulation codes to better simulate physicalesys that require a multi-
disciplinary approach. To cope with the infrastructure apglication complexity, it
becomes necessary to design scientific applications witthemmosoftware engineering
practices. Component-based programming or service4@dgorogramming are good
candidates to design these applications using a modulaoagp. With a component-
based approach, an application can be represented as ambassd software com-
ponents connected by a set of ports and described using ditéatre Description
Language (ADL) while a service-oriented approach tendspoasent an application as
an orchestration of several services using a workflow lagguln some sense, compo-
nent programming appears as a spatial composition desgribe connection between
components while service programming promotes a tempoirabosition expressing
the scheduling and the flow of control between services.

* This work was supported by the CoreGRID European Network xafelfence and by the
French National Agency for Research project LEGO (ANR-0&C-11).

In the context of Grids, both approaches have been used bgparate way. In this
paper, we show that both spatial and temporal compositionsegjuired in the same
programming model. Spatial composition is required to egprsome specific commu-
nication patterns that can be found in multi-physics sdierdpplications such as in
coupled simulation where several simulation codes have tawb simultaneously and
have to exchange data at each time step. However, compomelsrdo not capture
when a given component will communicate with another congmbit is connected to;
consequently all application components have to be degloyadvance on resources
and kept until the end of the application. This leads to affigient use of resources
especially in the context of resource sharing which is ontefaims of the Grid con-
cept. Temporal composition, with respect to resource slgais more suitable since the
control flow is explicit. It can be used to deploy servicesyowhen they are needed
allowing thus a better utilization of Grid resources. A pragming model, allowing
the design of applications using a modular approach, must tombine spatial and
temporal composition to fulfill the programmer’s requiremse strong code coupling
and efficient use of resources. This paper studies how to tmntbese two composi-
tion schemes together and then it introduces®, a spatio-component model, based
on the Grid Component Model (@) [1] and the AskALON workflow system [2].

The remainder of this paper is organized as follows. Se@iortroduces and dis-
cusses properties of spatial and temporal composition le@dewell as some related
works. Section 3 analyzes some possible designs that cerbbith compositions into
a unigue model. In Section 4, we describec®l, a spatio-temporal component model
and an example of application is given in Section 5. Sectioar&ludes the paper.

2 Composition in Space and Time: Properties and Discussion

This paper focuses on composition as a mean to describecappiis’ structure. In
general, such a structure reflects a reasoning dimensitre girogrammer. Our interest
is focused on two major but orthogonal dimensions: spacetiarel Reasoning about
space or time appears today as a factor separating two pnogiragy model trends for
building scientific applicationsoftware componemindworkflowmodels. This section
presents their respective properties as well as some witgkspting to combine them.

2.1 Composition in Space

Let us define a spatial composition as a relationship betweerponents if and only if
components being involved in the relationship are conalyective during the time
this relationship is valid. In general, components intethoough adequate and com-
patible ports often according topgovides-useparadigm. In most spatial composition
models, the direction of the interaction is oriented: it isser that invokes an opera-
tion on a provider. However, the interaction frequency is specified: it is not known
whether the user will actually invoke an operation nor thebar of invocations. Thus,
components are concurrently active during the time theiozids valid, i.e. the compo-
nents are connected. Therefore, a spatial compositionestbexpress the architecture
of an application, typically captured by UMEomponentdiagrams [3]. The spatial

composition principle is followed by most existing compahenodels like @A [4],
CcM™ [5], FRACTAL [6], ScA [7] and GcwM [1], which we briefly present hereafter.
The Grid Component Model or Appl

. . T T T
Gcwm [1] is a component model being[— controllers

specified within the EuropearCore- o L
GRID Network of Excellence. It is f Cliont FC pS S
based on RACTAL [6], a hierarchical" *i ent o H| Server
component model, and extends this la bindings/ comtont

ter in order to target Grid applications
GcwMm defines primitive and composite { client port | server port T control ports
components. Composite components
may contain several (sub-)components
that form itscontentas illustrated in Figure 1. Gv defines als@ontrollersto separate
non-functional concerns from the computation ones. Inipaer, controllersare used

to manage sub-componentsc supports several kinds of ports such as RMI or data
streaming. @M provides also an Architecture Description Languag®(Awhich
allows the specification of both components and their coitiposn a same phase.

Fig.1: Example of a @M component.

2.2 Composition in Time

A temporal composition can be defined as a relationship bertvasks if and only if
it expresses an execution order of the tasks. There are @sgsichl formalisms for
describing such a relationship: data flows and control fldata flows focus on the
dependencies coming from data availability: the outputsoohe taskg; are inputs of
a taskT'. The execution of" depends on that of adl. In control flows, the execution
order is given by some control constructs such as sequenees;hes or loops. Tempo-
ral compositions enable expression of the sequence ofractibich typically may be
captured by UMLactivity diagrams [3]. There exist many environments [8] that deal
with temporal compositions such as workflow systems lilksALON [2], TRIANA [9],
KEPLER[10], BPEL4WS[11], etc. For this paper, let us focus orsRALON-AGWL.
ASKALON [12] is a Grid environment dedicated to the development aed@tion
of scientific applications, being developed at the Uniugrsf Innsbruck, Austria. It
proposes thébstract Grid Workflow LanguagGwL) [2]. This language is viewed
by the designer under &ML activity diagram formalism. It offers a hierarchical model
made of atomic and composite activities (sub-workflows) ofposition is done with
respect to both data flow and control flow compositions, astitated in Figure 2. A
data flow is specified by simply connecting input data portittpat data port of depen-
dent activities, while the control flow describes the exagubrder of activities. AwL
supports several control structures like sequences, besnif andswitch, loops €or
andwhile) and parallel structurepérallelFor andparallelForEach), etc.

2.3 Discussion

Spatial composition is well suited to describe componémds tnust co-exist simulta-
neously and may communicate. It is the case for strong cogigliog simulations such
as meteorological simulations. The main limitation of gatompositions is they do

<agw - wor kf | ow>
<inport ATD url =".../activTypes. atd" name="Appl"/>

<activity name="A" type="Appl:typeA'>
<dat al n name="di nA" source="di nAppl Exanpl e"/ >

= A control <dat aQut name="resA" />
/ flow </activity>

<whi | e nane="1oop" >
/‘ <dat al n name="di nL" | oopSour ce="| oopCQut"/>
data <val ue>t r ue</ val ue>
flow pmm Ve . <condi ti on>l oopQut ="t rue’ </ condi ti on>
<l oopBody> <!-- sone activities -->
! ! <dat aQut nanme="|oopQut" />
Nt </ | oopBody>
</ whi | e>
<activity name="B" type="Appl:typeB">
<dat al n name="di nB" source="resA"/> ...

</activity> ...

</ agwW - wor kf | ow>

<<Activity>>

B

Fig. 2. A composition example in AKALON-AGWL.

not explicitly capture the temporal dimension. That maydleaan underutilization of
the resources because of an overestimation of needed oiepoksible to embed an
orchestration into a component driver. However, any maodlii on the application
structure requires to modify the code. Lazy component imigidion also does not fully
solve the problem as it is not known when a component can le¢ysgdstroyed.
Temporal composition is able to capture the temporal dinoenand hence it en-
ables efficient resource management. Nevertheless, its lngtation is the lack of
support to express that two running tasks must communieatéor example strong
code coupling simulations. The solution of externalizihg toop of a code limits the
coupling to coarse grained codes with respect to the ovdrbEaunching a task.

Attempts to Merge Spatial and Temporal Compositions To capture the good prop-
erties of the two models, some solutions have been propbsed! [13] describes the
internal behavior of a component with a workflow formalisrhat helps to compute an
optimizedspatialdeployment plan. However, it does not capture temporatioglahip
betweencomponents. Workflow models like inRTANA or ASKALON enable spatial
compositions. However, they are often hidden in tasks’ enpgntation. As far as we
know, workflow engines are not aware of underlying spatiaipositions. Thus, models
like in [14] propose specialized tasks dedicated to compatitins betweenommuni-
catingprocesses. However, that requires to modify codes to eddmmmunications.
To summarize, the limitations seem to mainly come from tleéetfzat the spatial and
temporal dimensions are handled at distinct levels of th@iegttion structure. Hence,
this paper focuses on a model where the two dimensions carisbat a same level.

3 Toward a Spatio-Temporal Composition Model

3.1 Targeted Properties

Our goal is to define a model that enables the concurrent usetbfspatial and tem-
poral composition paradigms at any level of an applicatioacsure. First, the model

should provide a quite high level of abstraction. In pafacpit should abstract the re-
source infrastructures so that the Grid remains invisilbenfthe programmer point of
view. Second, the composition model should be rich enoughpport a wide range of
composition paradigms like control flow constructs (seaéeronditions, loops, etc.),
method invocation, message passing, etc. Third, supgariamy kinds of composition
paradigms may lead to a complex life-cycle management. &léhe model should of-
fer a simple life-cycle model for combined spatial and tenapoompositions so that the
behavior of a whole application is quite easy to determioeirth, the model should be
hierarchicaland should provide all composition paradigms at any level bierarchy.
Hierarchy appears as an important property to structuréicgtipns and to improve re-
usability. Fifth, as we aim at leveraging existing worksstibuld be possible to specify
the model as an extension of some existing ones.

3.2 Analysis of Design Models for a Spatio-Temporal Composon Model

Defining a spatio-temporal composition model requires sbantiate the concepts en-
countered in Section 2 in a coherent model. This sectionyaaalsome design ap-
proaches keeping in mind the properties presented in $e8tio

There are two kinds of entities that may be embedded into e:ammponents and
tasks. From an architectural point of view, they are veryilsimthey are black boxes
with some communication ports. The main difference is orir tlife-cycle: a task is
implicitly instantiated only at the time of its executionehkte, we fuse them into the
term task-component, which we define as a component suppdh@ concept of task.
Hence, a mechanism is needed to define input and output pudttoabind tasks to
components. The term task-componentis used to distingpaisteen components sup-
porting tasks and classical ones. Itis just a hotation &sdasiponents are components.

As we start from a component model, the concept of ports kikepsual definition.
Spatial composition is thus directly inherited. Howeviee toncept of port has to be ex-
tended with input/output ports for temporal compositiols.it consists in associating
a piece of data to a port, the basic mechanism looks veryaitalevent ports.

A third issue is to define the rules governing task-compotifentycle. Such rules
should state when a component can and/or must be creatediges For example, the
life-cycle of a task-component with only input and outputtpacan be controlled by
its temporal relationship: it can be instantiated whenritaiis are ready and destroyed
when outputs have been retrieved. However, rules become comnplex when a task-
component has temporal and spatial ports.

Basing a spatio-temporal composition model on a data flowehisdjuite straight-
forward. The composition of input and output ports follogiithe same philosophy as
spatial ports, i.e. connections of compatible ports, insg@ossible to slightly extend
assembly languages of component models — lika1@DL — to take them into account
into an assembly with data flow compositions representingpteral compositions.

It seems also possible to integrate a control flow model. @bfibw models are
based on “programmable” constructions while componenerabties are based on
description languages. Hence, an issue is to deal with #steuittions of such a pro-
grammable language. There are two classical approachedfirfhapproach embeds
every element of the language into a component, like mMANA, which provides a

Table 1. Gcm and AcwL concepts reused for defining a spatio-temporal model.

[Required concept]] Provided concepts [Selected strategy |
Task-Component || provided, used operations and tasksextend &M with task concept
Ports spatial: &M ports extend &M with
temporal: input and output data temporal ports
Composition spatial: &M bindings extend AGwL with GcM
temporal: data and control flow:@wL |[components and spatial bindirjgs
Component life-cyclg| states and transitions inferred from composition

model that is easily extensible by adding new componentsieder, as components
embed the control flow, it turns out that the control flow of &pplication is not visible:

it may restrict optimizations like advance reservationexaurces unless using behav-
ioral componentmodels. The second approach distinguishgsage instructions from
user components, like in many workflow languages. It limarsguage extensions but it
enables runtime optimizations as the language is known.

4 StcM: A Spatio-Temporal Model Based on GCm and AGwL

This section presentst&M, a spatio-temporal model based on botoMsand AGwL

as well as the objectives presented in Section 3. In paatictiie proposal is based on
choosing, reusing and potentially merging or extendingfrexification of components,
ports, tasks and the composition model offered lmMaand/or AcwL. Our choices are
essentially motivated by keeping the advantages of eacleim@able 1 sums up our
strategy to reuse Gv and AGwL principal concepts in order to define a spatio-temporal
model. The remainder of this section reviews these pointsare depth.

4.1 Extending GcM Components with Tasks and Temporal Ports

The type of a component being defined by its ports, a new faofiiports is required to
define a task-component. Let us call them input and outpu$ plorcontrast to classical
client/server ports, that provide a method call semantjauif/output ports are attached
to a data type. Hence,;T8M provides typed input and output ports. They are provided
through an extension of thed™ TypeFactoryinterface dedicated to create types. A
createFcTemporalTypeperation creates the definition of an inpisifput = true) or
output sInput = fals@ port namedhameand for which the type is determined bgata
typeargument. As temporal ports are distinguished from classines, a component
type declaration is also extended to include this new kinglaofs.

The next step is to support a task within a task-componerdsi tan be viewed as
a particular operation to be implemented by a user. The diefindf such an operation
depends on several assumptions. For example, multi-taskaoents required to define
a triplet (task, inputs, outputs) for each task, while it negyimplicit for single task-
component. Because of lack of space, the support of only asleger component is
presented here. A task-component is a component which imgies araskController
interface which contains onlyweoi d t ask() operation which is called when the task
needs to be executed. Input data are retrieved through purta (through getter-like
operations) and output data are set through output portsugih setter-like operations).

4.2 Life Cycle Management of Task-Components

Figure 3 presents a proposed state machine
diagram with respect to the life-cycle of task-
components. Compared to a classical task, where
its activation corresponds to its execution, the
active state of a task-component may be longer
than the task running duration. The duration of the
active state depends mainly on both the temporal
composition and the requirement of the presence of
provided functionality by a component. Hence, a
component can be active without any running task
Fig.3: State diagram. like a standard component.

no-existent created

inactive

connections,
input data reception,
configuration

destroyed

task/request
execution

4.3 A Composition Language Based on a Modified awL

The SrcMm composition model is inspired from theGAL language. The objective is
to preserve its algorithmic composition logic but based das&k-component assembly
view. Hence, the approach is essentially based on the eplaat of the activity con-
cept by a task-component one. Figure 4 presents the maireatsraf the grammar of
the Srcm language. Component definition looks like irc@ ADL but with the sup-
port of temporal ports as well as the possibility to connbeint when being defined.
Moreover, the language has dedicated instructiees Port andunset Port) to
connect/disconnect ports.

As in AGwL, control flow composition is expressed as the content of asigs.
Then, it is straightforward to adapt alldawL control flow constructions. Such instruc-
tions can be seen as pre-defined components with a knownéahteghavior. In $cm
ADL, a component instance can be defined in deelarationpart of a composite as-
sembly or a control flow instruction. It results in distinahmaviors: the former aligns
the instance creation and destruction with the composiés,omhile the latter enables
a dynamic creation and destruction.

The semantics of such a language has yet to be defined as fopkxaith respect
to when a componentinstance can be safely destroyed. Weoakéng on the definition
of a semantics able to reflect as much as possible a behaged lom a simple priority
system:if a spatial connection is specified within a control struetdbody then the
temporal dimension is prevailing, otherwise the spatiaheinsion is to be considered
first.

4.4 Proof-of-Concept Implementation

In order to test the feasibility of the model, we have implated a proof-of-concept
interpreter of the $cM language based on the ANTLR language tool. The interpreter
parses the language and generates calls tora €&tended API so as to manage compo-
nents, like component creation/destruction, port corioecas well as task invocation.

It does not yet support all control flow instructions. A futhplementation of the model
requires to define a semantic and to implement/adapt a werleihmgine.

conmponent

port
clientport
serverport
i nport

out port
attribute

nenbr ane

cont ent
primtive
conposi te :
stcmassenbly ::

decl aration
i nstance

confi gport
clientserver ::

i nout

instruction

execut et ask

seq

if

condi tion
t hen

el se

parall el
section

switch =
case 1=
def aul t =
bool ean 1=

<conponent nane=string (extends=string)?>

port* content? menbrane?
</ conponent >
clientport | serverport | inport | outport | attribute
<clientPort name=string type=string (set=string)?/ >
<serverPort name=string type=string/ >
<dataln name=string type=string (set=string)?/ >
<dataQut nane=string type=string >
<attribute nane=string type=string (set=string)?/ >

<control | erDesc desc=string/ >
primtive| conposite

<inpl type=string signature=string >
<body> st cmassenbl y </ body>

decl aration? instruction?

<decl are> conponent* instances configport* </declare>
<i nstance nane=string conponent Ref =stri ng>
content? membr ane?
</instance>
clientserver | inout
<setPort client=string server=string >
<unsetPort client=string (server=string)?/ >
<setPort in=string out=string/ >
<unsetPort in=string (out=string)?/ >

instance | executetask | configport | seq| if | switch| while
for | forEach| dag | parallel | parallel For | parallel ForEach
<exect ask namel nstance=string/ >

<sequence nane=string>port* declaration instruction«/sequence>

<if name=string> port* declaration condition then else?</if>
<condi ti on> expr </condition>

<t hen> stcmassenbl y </t hen>

<el se> stcmassenbl y </ el se>

<paral | el name=string> port* declaration section+</parallel>
<section> stcnmassenbly </ section>

<swi tch name=string> port* declarati on case+ default?</swtch>
<case condi tion=string (break=bool ean)?> stcmassenbly </ case>
<def aul t > stcnmassenbl y </ defaul t>

true | false

/1 Same principle for while, for, forEach, dag, parallel For and parall el For Each
/| expr represents a logical expression as in AGw , with the sane restrictions.

Fig. 4. Overview of the Scm grammar. Keywords are in bold, while strings are in italic.

5 Example of an Application Description

ParallelCtrl %

Fig.5: Application example. gence computation which Compondnts involved in. It

Figure 5 illustrates a simplified 1 €M application
coming from the French ANR LEGO project. This ap-
plication contains two coupled codes represented by the
spatially connected componerdsandb. Componenta
operates on a matrix, initialized according to some ini-
tial conditions defined by Componennhi t . The result
computed by Componeat depends on data provided by
Componenb, data which depend on the iterative conver-

1 <conponent nane ="exApp"> 18 <parallel nanme="ParallelCtrl">
2 <dat al n name="vectln" type="Vect"/> 19 <instance nane="a" conpRef="A"/>
3 <body><conmponent nane="Init"> 20 <instance nane="b" conpRef="B"/>
4 <dataln name="iil" ... set="vectln"/> 21 <section>
5 <dat aQut nanme="iol" ... /> 22 <exect ask nanel nstance="a"/>
6 <dat aQut nanme="i 02" type="double" /> 23 </section>
7 </ conponent > 24 <section>
8 <component name="A"> 25 <whi | e name="LoopCtrl">
9 <datal n name="inA" ... set="init.iol"/>26 <dat al n name="c" type="doubl e"
10 <clientPort name="pA" ... set="B.pB"'/> 27 set="init.io2"
11 </ conponent > 28 | oopSet ="B. out B"/ >
12 <component nane="B"> 29 <condi tion> ¢<0.1 </condition>
13 /1 in: double inB, out: double outB 30 <l oopBody>
14 <serverPort name="pB" type="GCetRes"/> 31 <exect ask nanel nstance="b">
15 </ conponent > 32 <dat al n name="inB" set="c"/>
16 <sequence nanme="seql"> 33 </ conponent >
17 <instance nanme="init" conpRef="Init" 34 </ | oopBody>

/1 lines 18-37 are on the right 35 </ whi | e>
38 </ sequence></ body> 36 </section>
39 </assenbl y> 37 </parallel>

Fig. 6. Main elements of an application description inc3a.

is expected that Componebthas a persistent active state for continuausequest-
ing. Therefore, the integration @fin the loop has to preserve the first created instance
during all iterations. For simplicity, the detailed strud of GcM components (mem-
branes, contents, implementations) are not representadisection.
Figure 6 shows how this application can be expressed witBtioa language. The ex-
pressed execution ordering matched perfectly with theipdaequirements. In par-
ticular, Instancéb of ComponentB is declared in the header of the parallel section.
Hence, it is not destroyed at each iteration of the while loop

While Stcwm offers means to explicitly express the specified behavidhbyassem-
bly, it is not the case when using separatelgnGor AGwL. With Stcw, it is usual to
hide the temporal logic in a driver component. Dependinghengrogrammer exper-
tise, this component can manage the life-cyclenif t , a andb. This management is
required to avoid overconsumption of resources, in paicifi components are com-
posite/parallel. However, that may be complex to be donehleyuser. With A&wL,
there is no mean to express the spatial dependence betnaab, which is usually
hidden in tasks’ code. That may limit reusability. In addlitj the stateless property of
tasks implies thd’s state to be saved/reloaded for each iteration. That e te in-
efficient execution. On the contraryy8wm offers a more powerful assembly model in
term of behavior expressiveness. This is relevant to easgg@ming, improve reusabil-
ity, enable automatic management of an assembly and ogtiresources usage.

6 Conclusion and Future Works

In order to harness the programmability of Grids, two majppr@aches are used to
develop applications: software component models mairdyl dy strongly coupled ap-
plications and workflow models mainly used by loosely cod@eplications. As both
models have benefits and drawbacks with respect to somethalgar patterns, this pa-
per explores the possibility of designing a model that sudpath composition models.
The paper has analyzed some designs for combining bothrof the a result, the paper

describes $cM, a spatio-temporal component model based on two existingeisc-
GcM and ASKALON. Some benefits has been shown through an example.

Future works consist in defining a semantic for threc® language as well as having
a full implementation, either based on a new workflow engimethe adaptation of an
existing one, or on the compilation ofr6M to plain AcwL. Though the latter should
not lead to the best implementation, it may be enough to &i& cm.

References

1. Institute, P.M.: Basic features of the grid component eio@oreGRID Delivrable D.PM.04,
CoreGRID (march 2007)

2. Fahringer, T., Qin, J., Hainzer, S.: Specification of Gkidrkflow Applications with AGWL.:
An Abstract Grid Workflow Language. In: Proceedings of th&HFIEEE International
Symposium on Cluster Computing and Grid 2005 (CCGrid 2008)ume 2., Cardiff, UK
(May 2005) 676-685

. OMG: Unified modeling language. Document formal/2007062 February 2007)

. Bernholdt, D.E., Allan, B.A., Armstrong, R., Bertrand,, Ehiu, K., Dahlgren, T.L.,
Damevski, K., Elwasif, W.R., Epperly, T.G.W., GovindaraM., Katz, D.S., Kohl, J.A.,
Krishnan, M., Kumfert, G., Larson, J.W., Lefantzi, S., Lewi1.J., Malony, A.D., Mclnnes,
L.C., Nieplocha, J., Norris, B., Parker, S.G., Ray, J., Sleets., Windus, T.L., Zhou, S.: A
component architecture for high-performance scientifimpoting. International Journal of
High Performance Computing Applicatio2§(2) (2006) 163—-202
5. OMG: CORBA component model, v4.0. Document formal/20@631 (April 2006)

6. Bruneton, E., Coupaye, T., Stefani, J.: The Fractal CarappModel, version 2.0-3. Tech-
nical report, ObjectWeb consortium, (February 2004)

7. Beisiegel, M., Blohm, H., Booz, D., Edwards, M., Hurley, @Iceanu, S., Miller, A., Kar-
markar, A., Malhotra, A., Marino, J., Nally, M., Newcomer, Patil, S., Pavlik, G., Raepple,
M., Rowley, M., Tam, K., Vorthmann, S., Walker, P., Waterman SCA Service Component
Architecture - Assembly Model Specification, version 1.@cfinical report, Open Service
Oriented Architecture collaboration (OSOA) (March 2007)

8. Yu,J., Buyya, R.: Ataxonomy of workflow management systéngrid computing. Journal
of Grid Computing3(3-4) (september 2005) 171-200

9. Taylor, I., Shields, M., Wang, I., Harrison, A.: Visuali@Workflow in Triana. Journal of
Grid Computing3(3-4) (September 2005) 153-169

10. Altintas, I., Birnbaum, A., Baldridge, K.K., Sudholt, Wiiller, M., Amoreira, C., Yohann: A
framework for the design and reuse of grid workflows. In: FHindl. Workshop on Scientific
Applications of Grid Computing (SAG’04)), Berlin/Heidedly, Springer (2005) 120-133

11. Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Kl&i., Leymann, F,, Liu, K., Roller, D.,
Smith, D., Thatte, S., Trickovic, I., Weerawarana, S.: Bass process execution language
for web services version 1.1. Technical report (May 2003)

12. Thomas, F., Radu, P., Rubing, D., Francesco, N., Stefafyn, Q., Mumtaz, S., Hong-Linh,
T., Alex, V., Marek, W.: ASKALON: A Grid Application Develapent and Computing
Environment. In: Proceedings of the 6th International VBbidp on Grid Computing, Seattle,
USA (November 2005) 122-131

13. Furmento, N., Mayer, A., McGough, S., Newhouse, S.driE| Darlington, J.: ICENI: Op-
timisation of component applications within a grid envineent. Journal of Parallel Com-
puting28(12) (2002) 1753-1772

14. Pllana, S., Fahringer, T.. Uml based modeling of perforoe oriented parallel and dis-
tributed applications. In Yucesan, E., Chen, C.H., SnowdgrCharnes, J., eds.: Proc. of the
2002 Winter Simulation Conference, San Diego, Califorbi8A, IEEE (December 2002)

AW

