
A Software Component Model with Spatial and
Temporal Compositions for Grid Infrastructures ⋆

Hinde Lilia Bouziane, Christian Pérez, and Thierry Priol

INRIA/IRISA
Campus de Beaulieu — F-35042 Rennes Cedex — France

{Hinde.Bouziane,Christian.Perez,Thierry.Priol}@inria.fr

Abstract. Grids are very complex and volatile infrastructures that exhibit par-
allel and distributed characteristics. To harness their complexity as well as the
increasing intricacy of scientific applications, modern software engineering prac-
tices are needed. As of today, two major programming models dominate: software
component models that are mainly based on a spatial composition and service
oriented models with their associated workflow languages promoting a tempo-
ral composition. This paper tends to unify these two forms ofcomposition into
a coherent spatio-temporal software component model whilekeeping their ben-
efits. To attest the validity of the proposed approach, we describe how the Grid
Component model, as defined by the CoreGRID Network of Excellence, and the
Askalon-AGWL workflow language have been adapted.

1 Introduction

Grid infrastructures are undoubtedly the most complex computing infrastructures ever
built incorporating both parallel and distributed aspectsin their implementations. Al-
though they can provide an unprecedented level of performance, designing and imple-
menting scientific applications for Grids represent challenging tasks for programmers.
But this is not only due to the intricacy of the infrastructures. Indeed, numerical simu-
lation applications are also becoming more complex involving the coupling of several
numerical simulation codes to better simulate physical systems that require a multi-
disciplinary approach. To cope with the infrastructure andapplication complexity, it
becomes necessary to design scientific applications with modern software engineering
practices. Component-based programming or service-oriented programming are good
candidates to design these applications using a modular approach. With a component-
based approach, an application can be represented as an assembly of software com-
ponents connected by a set of ports and described using an Architecture Description
Language (ADL) while a service-oriented approach tends to represent an application as
an orchestration of several services using a workflow language. In some sense, compo-
nent programming appears as a spatial composition describing the connection between
components while service programming promotes a temporal composition expressing
the scheduling and the flow of control between services.

⋆ This work was supported by the CoreGRID European Network of Excellence and by the
French National Agency for Research project LEGO (ANR-05-CIGC-11).

In the context of Grids, both approaches have been used but ina separate way. In this
paper, we show that both spatial and temporal compositions are required in the same
programming model. Spatial composition is required to express some specific commu-
nication patterns that can be found in multi-physics scientific applications such as in
coupled simulation where several simulation codes have to be run simultaneously and
have to exchange data at each time step. However, component models do not capture
when a given component will communicate with another component it is connected to;
consequently all application components have to be deployed in advance on resources
and kept until the end of the application. This leads to an inefficient use of resources
especially in the context of resource sharing which is one ofthe aims of the Grid con-
cept. Temporal composition, with respect to resource sharing, is more suitable since the
control flow is explicit. It can be used to deploy services only when they are needed
allowing thus a better utilization of Grid resources. A programming model, allowing
the design of applications using a modular approach, must thus combine spatial and
temporal composition to fulfill the programmer’s requirements: strong code coupling
and efficient use of resources. This paper studies how to combine these two composi-
tion schemes together and then it introduces STCM, a spatio-component model, based
on the Grid Component Model (GCM) [1] and the ASKALON workflow system [2].

The remainder of this paper is organized as follows. Section2 introduces and dis-
cusses properties of spatial and temporal composition models as well as some related
works. Section 3 analyzes some possible designs that combine both compositions into
a unique model. In Section 4, we describe STCM, a spatio-temporal component model
and an example of application is given in Section 5. Section 6concludes the paper.

2 Composition in Space and Time: Properties and Discussion

This paper focuses on composition as a mean to describe applications’ structure. In
general, such a structure reflects a reasoning dimension of the programmer. Our interest
is focused on two major but orthogonal dimensions: space andtime. Reasoning about
space or time appears today as a factor separating two programming model trends for
building scientific applications:software componentandworkflowmodels. This section
presents their respective properties as well as some works attempting to combine them.

2.1 Composition in Space

Let us define a spatial composition as a relationship betweencomponents if and only if
components being involved in the relationship are concurrently active during the time
this relationship is valid. In general, components interact through adequate and com-
patible ports often according to aprovides-usesparadigm. In most spatial composition
models, the direction of the interaction is oriented: it is auser that invokes an opera-
tion on a provider. However, the interaction frequency is not specified: it is not known
whether the user will actually invoke an operation nor the number of invocations. Thus,
components are concurrently active during the time the relation is valid, i.e. the compo-
nents are connected. Therefore, a spatial composition enables to express the architecture
of an application, typically captured by UMLcomponent diagrams [3]. The spatial

composition principle is followed by most existing component models like CCA [4],
CCM [5], FRACTAL [6], SCA [7] and GCM [1], which we briefly present hereafter.

The Grid Component Model or
GCM [1] is a component model being
specified within the EuropeanCore-
GRID Network of Excellence. It is
based on FRACTAL [6], a hierarchical
component model, and extends this lat-
ter in order to target Grid applications.
GCM definesprimitive and composite
components. Composite components
may contain several (sub-)components Fig. 1: Example of a GCM component.

that form itscontentas illustrated in Figure 1. GCM defines alsocontrollersto separate
non-functional concerns from the computation ones. In particular,controllersare used
to manage sub-components. GCM supports several kinds of ports such as RMI or data
streaming. GCM provides also an Architecture Description Language (ADL) which
allows the specification of both components and their composition in a same phase.

2.2 Composition in Time

A temporal composition can be defined as a relationship between tasks if and only if
it expresses an execution order of the tasks. There are two classical formalisms for
describing such a relationship: data flows and control flows.Data flows focus on the
dependencies coming from data availability: the outputs ofsome tasksti are inputs of
a taskT . The execution ofT depends on that of allti. In control flows, the execution
order is given by some control constructs such as sequences,branches or loops. Tempo-
ral compositions enable expression of the sequence of actions which typically may be
captured by UMLactivity diagrams [3]. There exist many environments [8] that deal
with temporal compositions such as workflow systems like ASKALON [2], TRIANA [9],
KEPLER[10], BPEL4WS [11], etc. For this paper, let us focus on ASKALON-AGWL.

ASKALON [12] is a Grid environment dedicated to the development and execution
of scientific applications, being developed at the University of Innsbruck, Austria. It
proposes theAbstract Grid Workflow Language(AGWL) [2]. This language is viewed
by the designer under anUML activity diagram formalism. It offers a hierarchical model
made of atomic and composite activities (sub-workflows). A composition is done with
respect to both data flow and control flow compositions, as illustrated in Figure 2. A
data flow is specified by simply connecting input data port to output data port of depen-
dent activities, while the control flow describes the execution order of activities. AGWL

supports several control structures like sequences, branches (if andswitch), loops (for
andwhile) and parallel structures (parallelFor andparallelForEach), etc.

2.3 Discussion

Spatial composition is well suited to describe components that must co-exist simulta-
neously and may communicate. It is the case for strong code coupling simulations such
as meteorological simulations. The main limitation of spatial compositions is they do

<agwl-workflow>
<importATD url=".../activTypes.atd" name="Appl"/>
...
<activity name="A" type="Appl:typeA">
<dataIn name="dinA" source="dinApplExample"/>
<dataOut name="resA" />

</activity>
<while name="loop">
<dataIn name="dinL" loopSource="loopOut"/>
<value>true</value>
<condition>loopOut=’true’</condition>
<loopBody> <!-- some activities -->
<dataOut name="loopOut" />

</loopBody>
</while>

<activity name="B" type="Appl:typeB">
<dataIn name="dinB" source="resA"/> ...

</activity> ...
</agwl-workflow>

Fig. 2.A composition example in ASKALON-AGWL.

not explicitly capture the temporal dimension. That may lead to an underutilization of
the resources because of an overestimation of needed ones. It is possible to embed an
orchestration into a component driver. However, any modification on the application
structure requires to modify the code. Lazy component instantiation also does not fully
solve the problem as it is not known when a component can be safely destroyed.

Temporal composition is able to capture the temporal dimension and hence it en-
ables efficient resource management. Nevertheless, its main limitation is the lack of
support to express that two running tasks must communicate,as for example strong
code coupling simulations. The solution of externalizing the loop of a code limits the
coupling to coarse grained codes with respect to the overhead of launching a task.

Attempts to Merge Spatial and Temporal CompositionsTo capture the good prop-
erties of the two models, some solutions have been proposed.ICENI [13] describes the
internal behavior of a component with a workflow formalism. That helps to compute an
optimizedspatialdeployment plan. However, it does not capture temporal relationship
betweencomponents. Workflow models like in TRIANA or ASKALON enable spatial
compositions. However, they are often hidden in tasks’ implementation. As far as we
know, workflow engines are not aware of underlying spatial compositions. Thus, models
like in [14] propose specialized tasks dedicated to communications betweencommuni-
catingprocesses. However, that requires to modify codes to extract communications.

To summarize, the limitations seem to mainly come from the fact that the spatial and
temporal dimensions are handled at distinct levels of the application structure. Hence,
this paper focuses on a model where the two dimensions can co-exist at a same level.

3 Toward a Spatio-Temporal Composition Model

3.1 Targeted Properties

Our goal is to define a model that enables the concurrent use ofboth spatial and tem-
poral composition paradigms at any level of an application structure. First, the model

should provide a quite high level of abstraction. In particular, it should abstract the re-
source infrastructures so that the Grid remains invisible from the programmer point of
view. Second, the composition model should be rich enough tosupport a wide range of
composition paradigms like control flow constructs (sequence, conditions, loops, etc.),
method invocation, message passing, etc. Third, supporting many kinds of composition
paradigms may lead to a complex life-cycle management. Hence, the model should of-
fer a simple life-cycle model for combined spatial and temporal compositions so that the
behavior of a whole application is quite easy to determine. Fourth, the model should be
hierarchicaland should provide all composition paradigms at any level ofa hierarchy.
Hierarchy appears as an important property to structure applications and to improve re-
usability. Fifth, as we aim at leveraging existing works, itshould be possible to specify
the model as an extension of some existing ones.

3.2 Analysis of Design Models for a Spatio-Temporal Composition Model

Defining a spatio-temporal composition model requires to instantiate the concepts en-
countered in Section 2 in a coherent model. This section analyzes some design ap-
proaches keeping in mind the properties presented in Section 3.1.

There are two kinds of entities that may be embedded into a code: components and
tasks. From an architectural point of view, they are very similar: they are black boxes
with some communication ports. The main difference is on their life-cycle: a task is
implicitly instantiated only at the time of its execution. Hence, we fuse them into the
term task-component, which we define as a component supporting the concept of task.
Hence, a mechanism is needed to define input and output ports and to bind tasks to
components. The term task-component is used to distinguishbetween components sup-
porting tasks and classical ones. It is just a notation as task-components are components.

As we start from a component model, the concept of ports keepsits usual definition.
Spatial composition is thus directly inherited. However, the concept of port has to be ex-
tended with input/output ports for temporal compositions.As it consists in associating
a piece of data to a port, the basic mechanism looks very similar to event ports.

A third issue is to define the rules governing task-componentlife-cycle. Such rules
should state when a component can and/or must be created/destroyed. For example, the
life-cycle of a task-component with only input and output ports can be controlled by
its temporal relationship: it can be instantiated when its inputs are ready and destroyed
when outputs have been retrieved. However, rules become more complex when a task-
component has temporal and spatial ports.

Basing a spatio-temporal composition model on a data flow model is quite straight-
forward. The composition of input and output ports following the same philosophy as
spatial ports, i.e. connections of compatible ports, it seems possible to slightly extend
assembly languages of component models – like GCM ADL – to take them into account
into an assembly with data flow compositions representing temporal compositions.

It seems also possible to integrate a control flow model. Control flow models are
based on “programmable” constructions while component assemblies are based on
description languages. Hence, an issue is to deal with the instructions of such a pro-
grammable language. There are two classical approaches. The first approach embeds
every element of the language into a component, like in TRIANA , which provides a

Table 1.GCM and AGWL concepts reused for defining a spatio-temporal model.

Required concept Provided concepts Selected strategy

Task-Component provided, used operations and tasksextend GCM with task concept
Ports spatial: GCM ports extend GCM with

temporal: input and output data temporal ports
Composition spatial: GCM bindings extend AGWL with GCM

temporal: data and control flow: AGWL components and spatial bindings
Component life-cycle states and transitions inferred from composition

model that is easily extensible by adding new components. However, as components
embed the control flow, it turns out that the control flow of theapplication is not visible:
it may restrict optimizations like advance reservation of resources unless using behav-
ioral component models. The second approach distinguisheslanguage instructions from
user components, like in many workflow languages. It limits language extensions but it
enables runtime optimizations as the language is known.

4 STCM : A Spatio-Temporal Model Based on GCM and AGWL

This section presents STCM, a spatio-temporal model based on both GCM and AGWL

as well as the objectives presented in Section 3. In particular, the proposal is based on
choosing, reusing and potentially merging or extending thespecification of components,
ports, tasks and the composition model offered by GCM and/or AGWL. Our choices are
essentially motivated by keeping the advantages of each model. Table 1 sums up our
strategy to reuse GCM and AGWL principal concepts in order to define a spatio-temporal
model. The remainder of this section reviews these points inmore depth.

4.1 Extending GCM Components with Tasks and Temporal Ports

The type of a component being defined by its ports, a new familyof ports is required to
define a task-component. Let us call them input and output ports. In contrast to classical
client/server ports, that provide a method call semantic, input/output ports are attached
to a data type. Hence, STCM provides typed input and output ports. They are provided
through an extension of the GCM TypeFactoryinterface dedicated to create types. A
createFcTemporalTypeoperation creates the definition of an input (isInput = true) or
output (isInput = false) port namednameand for which the type is determined by adata
typeargument. As temporal ports are distinguished from classical ones, a component
type declaration is also extended to include this new kind ofports.

The next step is to support a task within a task-component. A task can be viewed as
a particular operation to be implemented by a user. The definition of such an operation
depends on several assumptions. For example, multi-task components required to define
a triplet (task, inputs, outputs) for each task, while it maybe implicit for single task-
component. Because of lack of space, the support of only one task per component is
presented here. A task-component is a component which implements aTaskController
interface which contains only avoid task() operation which is called when the task
needs to be executed. Input data are retrieved through inputports (through getter-like
operations) and output data are set through output ports (through setter-like operations).

4.2 Life Cycle Management of Task-Components

Fig. 3: State diagram.

Figure 3 presents a proposed state machine
diagram with respect to the life-cycle of task-
components. Compared to a classical task, where
its activation corresponds to its execution, the
active state of a task-component may be longer
than the task running duration. The duration of the
active state depends mainly on both the temporal
composition and the requirement of the presence of
provided functionality by a component. Hence, a
component can be active without any running task
like a standard component.

4.3 A Composition Language Based on a Modified AGWL

The STCM composition model is inspired from the AGWL language. The objective is
to preserve its algorithmic composition logic but based on atask-component assembly
view. Hence, the approach is essentially based on the replacement of the activity con-
cept by a task-component one. Figure 4 presents the main elements of the grammar of
the STCM language. Component definition looks like in GCM ADL but with the sup-
port of temporal ports as well as the possibility to connect them when being defined.
Moreover, the language has dedicated instructions (setPort andunsetPort) to
connect/disconnect ports.

As in AGWL, control flow composition is expressed as the content of composites.
Then, it is straightforward to adapt all AGWL control flow constructions. Such instruc-
tions can be seen as pre-defined components with a known internal behavior. In STCM

ADL, a component instance can be defined in thedeclarationpart of a composite as-
sembly or a control flow instruction. It results in distinct behaviors: the former aligns
the instance creation and destruction with the composite ones, while the latter enables
a dynamic creation and destruction.

The semantics of such a language has yet to be defined as for example with respect
to when a component instance can be safely destroyed. We are working on the definition
of a semantics able to reflect as much as possible a behavior based on a simple priority
system:if a spatial connection is specified within a control structure body then the
temporal dimension is prevailing, otherwise the spatial dimension is to be considered
first.

4.4 Proof-of-Concept Implementation

In order to test the feasibility of the model, we have implemented a proof-of-concept
interpreter of the STCM language based on the ANTLR language tool. The interpreter
parses the language and generates calls to a GCM extended API so as to manage compo-
nents, like component creation/destruction, port connection, as well as task invocation.
It does not yet support all control flow instructions. A full implementation of the model
requires to define a semantic and to implement/adapt a workflow engine.

component ::= <component name=string (extends=string)?>
port* content? membrane?

</component>
port ::= clientport | serverport | inport | outport | attribute
clientport ::= <clientPort name=string type=string (set=string)?/>
serverport ::= <serverPort name=string type=string/>
inport ::= <dataIn name=string type=string (set=string)?/>
outport ::= <dataOut name=string type=string/>
attribute ::= <attribute name=string type=string (set=string)?/>

membrane ::= <controllerDesc desc=string/>
content ::= primitive | composite
primitive ::= <impl type=string signature=string/>
composite ::= <body> stcmassembly </body>
stcmassembly ::= declaration? instruction?

declaration ::= <declare> component* instance* configport* </declare>
instance ::= <instance name=string componentRef=string>

content? membrane?
</instance>

configport ::= clientserver | inout
clientserver ::= <setPort client=string server=string/>

| <unsetPort client=string (server=string)?/>
inout ::= <setPort in=string out=string/>

| <unsetPort in=string (out=string)?/>

instruction ::= instance | executetask | configport | seq | if | switch | while
| for | forEach | dag | parallel | parallelFor | parallelForEach

executetask ::= <exectask nameInstance=string/>

seq ::= <sequence name=string>port* declaration instruction+</sequence>

if ::= <if name=string> port* declaration condition then else?</if>
condition ::= <condition> expr </condition>
then ::= <then> stcmassembly </then>
else ::= <else> stcmassembly </else>

parallel ::= <parallel name=string> port* declaration section+ </parallel>
section ::= <section> stcmassembly </section>

switch ::= <switch name=string> port* declaration case+ default?</switch>
case ::= <case condition=string (break=boolean)?> stcmassembly </case>
default ::= <default> stcmassembly </default>
boolean ::= true | false

// Same principle for while, for, forEach, dag, parallelFor and parallelForEach.
// expr represents a logical expression as in AGWL , with the same restrictions.

Fig. 4. Overview of the STCM grammar. Keywords are in bold, while strings are in italic.

5 Example of an Application Description

Fig. 5: Application example.

Figure 5 illustrates a simplified STCM application
coming from the French ANR LEGO project. This ap-
plication contains two coupled codes represented by the
spatially connected componentsa andb. Componenta
operates on a matrix, initialized according to some ini-
tial conditions defined by Componentinit. The result
computed by Componenta depends on data provided by
Componentb, data which depend on the iterative conver-
gence computation which Componentb is involved in. It

1 <component name ="exApp">
2 <dataIn name="vectIn" type="Vect"/>
3 <body><component name="Init">
4 <dataIn name="ii1" ... set="vectIn"/>
5 <dataOut name="io1" ... />
6 <dataOut name="io2" type="double" />
7 </component>
8 <component name="A">
9 <dataIn name="inA" ... set="init.io1"/>
10 <clientPort name="pA" ... set="B.pB"/>
11 </component>
12 <component name="B">
13 // in: double inB, out: double outB
14 <serverPort name="pB" type="GetRes"/>
15 </component>
16 <sequence name="seq1">
17 <instance name="init" compRef="Init"

// lines 18-37 are on the right
38 </sequence></body>
39 </assembly>

18 <parallel name="ParallelCtrl">
19 <instance name="a" compRef="A"/>
20 <instance name="b" compRef="B"/>
21 <section>
22 <exectask nameInstance="a"/>
23 </section>
24 <section>
25 <while name="LoopCtrl">
26 <dataIn name="c" type="double"
27 set="init.io2"
28 loopSet="B.outB"/>
29 <condition> c<0.1 </condition>
30 <loopBody>
31 <exectask nameInstance="b">
32 <dataIn name="inB" set="c"/>
33 </component>
34 </loopBody>
35 </while>
36 </section>
37 </parallel>

Fig. 6.Main elements of an application description in STCM.

is expected that Componentb has a persistent active state for continuousa request-
ing. Therefore, the integration ofb in the loop has to preserve the first created instance
during all iterations. For simplicity, the detailed structure of GCM components (mem-
branes, contents, implementations) are not represented inthis section.
Figure 6 shows how this application can be expressed with theSTCM language. The ex-
pressed execution ordering matched perfectly with the specified requirements. In par-
ticular, Instanceb of ComponentB is declared in the header of the parallel section.
Hence, it is not destroyed at each iteration of the while loop.

While STCM offers means to explicitly express the specified behavior bythe assem-
bly, it is not the case when using separately GCM or AGWL. With STCM, it is usual to
hide the temporal logic in a driver component. Depending on the programmer exper-
tise, this component can manage the life-cycle ofinit, a andb. This management is
required to avoid overconsumption of resources, in particular if components are com-
posite/parallel. However, that may be complex to be done by the user. With AGWL,
there is no mean to express the spatial dependence betweena andb, which is usually
hidden in tasks’ code. That may limit reusability. In addition, the stateless property of
tasks implies theb’s state to be saved/reloaded for each iteration. That may lead to in-
efficient execution. On the contrary, STCM offers a more powerful assembly model in
term of behavior expressiveness. This is relevant to ease programing, improve reusabil-
ity, enable automatic management of an assembly and optimize resources usage.

6 Conclusion and Future Works

In order to harness the programmability of Grids, two major approaches are used to
develop applications: software component models mainly used by strongly coupled ap-
plications and workflow models mainly used by loosely coupled applications. As both
models have benefits and drawbacks with respect to some algorithmic patterns, this pa-
per explores the possibility of designing a model that support both composition models.
The paper has analyzed some designs for combining both of them. As a result, the paper

describes STCM, a spatio-temporal component model based on two existing models –
GCM and ASKALON. Some benefits has been shown through an example.

Future works consist in defining a semantic for the STCM language as well as having
a full implementation, either based on a new workflow engine,on the adaptation of an
existing one, or on the compilation of STCM to plain AGWL. Though the latter should
not lead to the best implementation, it may be enough to validate STCM.

References

1. Institute, P.M.: Basic features of the grid component model. CoreGRID Delivrable D.PM.04,
CoreGRID (march 2007)

2. Fahringer, T., Qin, J., Hainzer, S.: Specification of GridWorkflow Applications with AGWL:
An Abstract Grid Workflow Language. In: Proceedings of the Fifth IEEE International
Symposium on Cluster Computing and Grid 2005 (CCGrid 2005).Volume 2., Cardiff, UK
(May 2005) 676–685

3. OMG: Unified modeling language. Document formal/2007-02-05 (February 2007)
4. Bernholdt, D.E., Allan, B.A., Armstrong, R., Bertrand, F., Chiu, K., Dahlgren, T.L.,

Damevski, K., Elwasif, W.R., Epperly, T.G.W., Govindaraju, M., Katz, D.S., Kohl, J.A.,
Krishnan, M., Kumfert, G., Larson, J.W., Lefantzi, S., Lewis, M.J., Malony, A.D., McInnes,
L.C., Nieplocha, J., Norris, B., Parker, S.G., Ray, J., Shende, S., Windus, T.L., Zhou, S.: A
component architecture for high-performance scientific computing. International Journal of
High Performance Computing Applications20(2) (2006) 163–202

5. OMG: CORBA component model, v4.0. Document formal/2006-04-01 (April 2006)
6. Bruneton, E., Coupaye, T., Stefani, J.: The Fractal Component Model, version 2.0-3. Tech-

nical report, ObjectWeb consortium, (February 2004)
7. Beisiegel, M., Blohm, H., Booz, D., Edwards, M., Hurley, O., Ielceanu, S., Miller, A., Kar-

markar, A., Malhotra, A., Marino, J., Nally, M., Newcomer, E., Patil, S., Pavlik, G., Raepple,
M., Rowley, M., Tam, K., Vorthmann, S., Walker, P., Waterman, L.: SCA Service Component
Architecture - Assembly Model Specification, version 1.0. Technical report, Open Service
Oriented Architecture collaboration (OSOA) (March 2007)

8. Yu, J., Buyya, R.: A taxonomy of workflow management systems for grid computing. Journal
of Grid Computing3(3-4) (september 2005) 171–200

9. Taylor, I., Shields, M., Wang, I., Harrison, A.: Visual Grid Workflow in Triana. Journal of
Grid Computing3(3-4) (September 2005) 153–169

10. Altintas, I., Birnbaum, A., Baldridge, K.K., Sudholt, W., Miller, M., Amoreira, C., Yohann: A
framework for the design and reuse of grid workflows. In: First Intl. Workshop on Scientific
Applications of Grid Computing (SAG’04)), Berlin/Heidelberg, Springer (2005) 120–133

11. Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J., Leymann, F., Liu, K., Roller, D.,
Smith, D., Thatte, S., Trickovic, I., Weerawarana, S.: Business process execution language
for web services version 1.1. Technical report (May 2003)

12. Thomas, F., Radu, P., Rubing, D., Francesco, N., Stefan,P., Jun, Q., Mumtaz, S., Hong-Linh,
T., Alex, V., Marek, W.: ASKALON: A Grid Application Development and Computing
Environment. In: Proceedings of the 6th International Workshop on Grid Computing, Seattle,
USA (November 2005) 122–131

13. Furmento, N., Mayer, A., McGough, S., Newhouse, S., Field, T., Darlington, J.: ICENI: Op-
timisation of component applications within a grid environment. Journal of Parallel Com-
puting28(12) (2002) 1753–1772

14. Pllana, S., Fahringer, T.: Uml based modeling of performance oriented parallel and dis-
tributed applications. In Yucesan, E., Chen, C.H., Snowdon, J., Charnes, J., eds.: Proc. of the
2002 Winter Simulation Conference, San Diego, California,USA, IEEE (December 2002)

