
Managed by

Combining Data Sharing with
the Master-Worker Paradigm in the
Common Component Architecture

Gabriel Antoniu, Hinde Lilia Bouziane, Mathieu Jan,
Christian Pérez, Thierry Priol

PARIS research-team
IRISA / INRIA

Rennes - France

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies 2

Outline of the talk
• Introduction

– Context
– Overview of the Common Component Architecture

• Data sharing paradigm
– Objectives
– Our proposition : data port model
– Data sharing on operation invocations

• Support of the master-worker paradigm
– Limits with existing component models
– A proposed model

• Data sharing in a master-worker paradigm
• Conclusions and perspectives

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies 3

Introduction
• Context

– Complex applications
• e-Science

– Different resource kinds
• multi-core processors
• SMP machines
• clusters
• grids

• Challenges
– Simplifying application programming
– Independence from resource kinds
– HPC

u

Component model approach

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies 4

Software component models

• Black box
• Ports

– Method invocations, events/messages/streams
• Several component models

– Common Component Architecture/CCA Forum (CCA)
– CORBA Component Model/OMG (CCM)
– Fractal/ObjectWeb
– Grid.it-ASSIST/UNIPI
– Etc.

Software
component

PROVIDED
PORTS

REQUIRED
PORTS

(client interfaces)

Software
component

(server interfaces)

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies 5

Overview of the CCA (1/2)
• CCA forum

– US laboratories and academic institutions
• Specification based on the Scientific Interface

Definition Language
– Standard interfaces

• Several implementations
– Local frameworks

• Ccaffeine, SCIRun2, etc.
– Distributed frameworks

• Xcat, SCIRun2, Legion-CCA, etc.

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies 6

Overview of the CCA (2/2)
• All is done at runtime
• Examples of specified SIDL

interfaces
– BuilderService

• Component creation
createInstance(…)

• Composition
connect(…)

– Services
• Port declarations

addProvidesPort(…)
registerUsesPort(…)

• Getting a port reference
getPort(…)

fw

A

createInstance(A)

setServices
registerUsesPort(aP)aP

connect(aP, bP)

B

createInstance(B)

setServices
addProvidesPort(bP)

bP

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies 7

Outline of the talk
• Introduction

– Context
– Overview of the Common Component Architecture

• Data sharing paradigm
– Objectives
– Our proposition : data port model
– Data sharing on operation invocations

• Support of the master-worker paradigm
– Limits with existing component models
– A proposed model

• Data sharing in a master-worker paradigm
• Conclusions and perspectives

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies 8

Problem overview

• Multiple concurrent accesses to a piece of data
• Data localization and management

– Intra-process : local shared memory
– Intra-cluster : distributed shared memory (DSM)
– Intra-grid : grid data sharing service (JuxMem, PARIS/INRIA)

Data

B

CA

D

Read / write

Read / write

write

Read

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies 9

Our proposal: data port model

component D {
shares array<float> u;

};

component A {
accesses array<float> v;

};
…

Transparent data localization and management
– Local shared memory, DSM, JuxMem

Data
data sharing management

B

D
A

data_ref

accesses port shares port
Principle: transparent data sharing

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies 10

Data ports in CCA
User View

interface ExtendedServices

: Services

{
void createAccessPort

(in string portName,
in string typeDataName,
in TypeMap

properties);
void createSharesPort

(...);
}
interface AccessPort

: Port

{
opaque get_pointer();
long get_size();
void acquire();
void acquireR();
void release();

}
interface SharesPort

: AccessPort

{
void associate (in opaque ptr, in long size);
void disassociate();

}

Component implementation example

class CompImpl

{
Services srv;
AccessPort

myPort;

void setServices

(Services services){
srv

= services;
srv.createAccessPort

("myPort", "arrayFloat",..);
}

void computeSum(){
myPort

= srv.getPort(“myPort");
myPort.acquireR();
ptr

= myPort.getPointer();
size = myPort.get_size();
for (i = 0; i < size; i++)

sum += ptr[i];
myPort.release

();
}

}

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies 11

Data sharing on operation invocation
• Data sharing in SIDL

– Add “&” notation

• Orthogonal to parameter modes
– In/out/inout determines who is the data “publisher”
– Example

• Mapping of arguments to data ports
– Example

data publisher data access (R/W)
in& caller all/always
out& callee callee: always

caller: after return

caller callee
in& shares port accesses port
out& accesses port shares port

interface compute {
void foo

(in matrix &

m1, out matrix &

m2);
}

calleecaller

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies 12

Example of use

void foo

(AccessPort&

dpm1,
SharesPort&

dpm2) {

ptr

= dpm1.get_pointer();
size = dpm1.get_size();
res

= f77_foo(ptr, size);

dpm2->associate(res, size);
}

calleecaller

interface compute {
void foo

(in matrix &

m1, out matrix &

m2);

}

Matrix* ptr

= allocate_matrix(…)
SharesPort* dp1 =

createSharesPort(“p1”, “matrix”)
dp1->associate(ptr, size);
AccessPort* dp2 =

createAccessPort(“p2”, “matrix”);
to_server-> foo(dp1, dp2);

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies 13

Outline of the talk
• Introduction

– Context
– Overview of the Common Component Architecture

• Data sharing paradigm
– Objectives
– Our proposition : data port model
– Data sharing on operation invocations

• Support of the master-worker paradigm
– Limits with existing component models
– A proposed model

• Data sharing in a master-worker paradigm
• Conclusions and perspectives

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies 14

Problem overview

worker

worker

worker

Master
worker

Workers collection
Requests transport

Scheduling
Fault tolerance

• Simultaneous independent computations (~ForAll loop)
• Dedicated API/environments

– BOINC, XTremWEB,
DIET, NetSolve, Nimrod/G, ...

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies 15

Limits with component models
• Different infrastructures

– Multi-core processors, SMP,
clusters, grids, etc.

• Resources dependant properties
– Number of workers
– Request transport and scheduling

policy

WWworkermaster

master
request
delivery
policy

WWworker
• At the burden of the programmer

– Complex
– No transparence

• Objectives
– Transparency
– Re-use existing MW environments

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies 16

Overview of the proposal
Programmer/designer

view

Collection

binding

master

worker

Exposed
provided port

Resources
infrastructure

Round-Robin

Framework implementation
view

#workers
+

Pattern selection

Set of request transport
mechanism patterns

1. Random
2. Round-Robin
3. NetSolve
4. Diet

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies 17

Master-worker paradigm in CCA
interface CollBuilderService

: BuilderService

{
CollectionID

createInstanceCollection
(in string instanceCollName,
in string className,
in TypeMap

properties);
BindingID

bind
(in CollectionID

collID,
in string collPortName,
in ComponentID

elem,
in string elemPortName);

}
interface CollectionManagement: Port {
bool

addElement(in

CollectionID

collID);
bool

subElement(in

CollectionID

collID);
}
interface PatternInstantiation: Port {…}

master
createInstance(master)

fw

setServices
registerUsesPort(mP)

createInstanceCollection(coll)

setServices

addProvidesPort(cP)
addProvidesPort(m)

mP

connect(mP, cP)

1

2

3

w1

coll
cP

wP
w2Wx

m addElement(coll)

createInstance(Wx)
bind(cP, wP)

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies 18

Outline of the talk
• Introduction

– Context
– Overview of the Common Component Architecture

• Data sharing paradigm
– Objectives
– Our proposition : data port model
– Data sharing on operation invocations

• Support of the master-worker paradigm
– Limits with existing component models
– A proposed model

• Data sharing in a master-worker paradigm
• Conclusions and perspectives

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies 19

Data sharing on operation invocation

interface compute {
void foo

(in matrix &

m1,
out matrix &

m2);
}

• Data sharing on operation invocations
– Operation declarations level

• Master-worker paradigm
– Composition level

• Data-sharing & master-worker paradigm
– Dynamic data ports creation at each operation invocation

(worker side)

master

m1

WWworker1

M2_xM2_2M2_1

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies 20

Conclusions and perspectives

• Data sharing and transparent data access model in CCA
– Data ports model: «shares» and «accesses»

• Improving the support of master-worker paradigm in CCA
– Collections, request delivery policy patterns
– Resources infrastructure independent programming
– Adaptation of workers and requests delivery at the burden of the

framework
• Support of data sharing on operation invocation

– Data sharing in MW paradigm
• Perspectives

– Implementation within a CCA framework
• Data sharing and master-worker paradigm

– Benchmarks
– Shared components in a distributed environment

Managed by

Questions ?

	Combining Data Sharing with�the Master-Worker Paradigm in the �Common Component Architecture
	Outline of the talk
	Introduction
	Software component models
	Overview of the CCA (1/2)
	Overview of the CCA (2/2)
	Outline of the talk
	Problem overview
	Our proposal: data port model
	Data ports in CCA
	Data sharing on operation invocation
	Example of use
	Outline of the talk
	Problem overview
	Limits with component models
	Overview of the proposal
	Master-worker paradigm in CCA
	Outline of the talk
	Data sharing on operation invocation
	Conclusions and perspectives
	Questions ?

