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Abstract—We refine the model underlying our prior work on scheduling bag-of-tasks (“embarrassingly parallel”) workloads via cycle-

stealing in networks of workstations [5], [17], obtaining a model wherein the scheduling guidelines of [17] produce optimal schedules

for every such cycle-stealing opportunity. We thereby render prescriptive the descriptive model of those sources. Although computing

optimal schedules usually requires the use of general function-optimizing methods, we show how to compute optimal schedules

efficiently for the broad class of opportunities whose durations come from a concave probability distribution. Even when no such

efficient computation of an optimal schedule is available, our refined model often suggests a natural notion of approximately optimal

schedule, which may be efficiently computable. We illustrate such efficient approximability via the important class of cycle-stealing

opportunities whose durations come from a heavy-tailed distribution. Such opportunities do not admit any optimal schedule—nor even

a natural notion of approximately optimal schedule—within the model of [5], [17]. Within our refined model, though, we derive

computationally simple schedules for heavy-tailed opportunities, which can be “tuned” to accomplish an expected amount of work that

is arbitrarily close to optimal.

Index Terms—Cycle-stealing, bag-of-tasks workloads, heavy-tailed distributions, networks of workstations (NOWs), optimal

scheduling, scheduling parallel computations.
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1 INTRODUCTION

NUMEROUS sources eloquently argue the technological
and economic inevitability of an increasingly common

modality of parallel computing: the use of a network of
workstations (NOW) as a parallel computer; cf. [1], [16].
Sources too numerous to list describe systems that facilitate
the mechanics of NOW-based computing, often via the
technique of cycle-stealing—the use by one workstation of
idle computing cycles of another—which is our interest
here. To this point, however, rather few sources have
studied the problem of scheduling individual computations
on NOWs, and even fewer have presented rigorously
analyzed algorithms that schedule broad classes of indivi-
dual computations well. In the current paper, we refine the
model introduced in [5] and developed in [17], in a way
that allows one to devise schedules that maximize the
expected amount of work accomplished from a bag-of-
tasks (“embarrassingly parallel”) workload, for every
cycle-stealing opportunity, given knowledge of the instan-
taneous probability that the opportunity will be terminated
by the owner of the “borrowed” workstation. We thereby
render prescriptive the descriptive model of [5], [17]. We
expose a number of situations wherein one can derive
(nearly) optimal schedules efficiently.

1.1 Background

The model of [5], [17] views cycle-stealing in NOWs as an

adversarial process in which the owner of workstation A

contracts to take control of workstation B whenever its

owner is absent, with the commitment of relinquishing

control of B immediately when its owner returns.1 In this

context, “relinquishing control immediately” implies killing

any active job(s)—thereby losing all results since the last

checkpoint.

Note 1. Such a draconian cycle-stealing “contract” is inevitable,
for instance, when “workstation” B is a laptop that can be
unplugged from the network. Such “contracts” are reported to
be quite popular even when not inevitable, because of the
degraded service that B’s owner experiences when A’s jobs
remain active, even with lowered priority.

This contract presents a challenging dilemma for the
owner of workstation A when scheduling a cycle-stealing
“opportunity” (the period of time when A’s owner has
access to B). On the one hand, the typically large overhead
required to set up an interworkstation communication
recommends that A communicate with B very infrequently,
sending large quantities of work each time—in order to
minimize the cumulative communication setup time. On
the other hand, the harsh interrupt provision of the contract
recommends that A communicate with B very frequently,
sending small quantities of work each time—in order to
keep the amount of (vulnerable) remote work small at all
times.

Clearly, cycle-stealing within the described adversarial
model can accomplish productive work only if the
metaphorical “malicious adversary” is somehow restrained
from just interrupting every period when B is doing work
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for A, thereby killing all work done by B. The restraint
studied in the Known-Risk model of [5], [17] and the current
paper resides in two assumptions: 1) that we know the
instantaneous probability that workstation B has not been
reclaimed and 2) that the life function P that exposes this
probabilistic information—PðtÞ is the probability that B has
not been reclaimed by its owner by time t; cf. Section 2.1—is
“smooth.” It is shown in [17] (cf. Theorem 2.1) that, for bag-
of-tasks (“embarrassingly parallel”) workloads, this simple
model exposes constraints that any optimal schedule must
satisfy—a schedule’s optimality being measured in terms of
its expected production of work—and that the guidelines
that emerge from these constraints yield optimal sche-
dules for large classes of—but not all—cycle-stealing
opportunities.

The current paper is motivated by the inability of the
Known-Risk model to deal satisfactorily with all possible
cycle-stealing opportunities. Specifically, there exist oppor-
tunities that provably do not admit any optimal schedule
within the model [17]. Thus, the scheduling guidelines of
the latter source, while necessary for optimal scheduling,
are not sufficient. This shortcoming is not of just academic
interest, since the important class of opportunities whose
durations come from a heavy-tailed distribution2—wherein
the probability that B has not been reclaimed roughly
halves as the length of the opportunity doubles—do not
admit optimal schedules within the model. Even worse,
these opportunities have infinite mean durations, which
obscures even a plausible definition of “approximately
optimal” schedule for such an opportunity.

1.2 Our Main Results

In the present paper, we refine the Known-Risk model,
obtaining a model within which the scheduling guidelines
of [17] yield an optimal schedule for every cycle-stealing
opportunity (Theorem 3.1) with a bag-of-tasks workload.
Our refinement, developed in Section 3, resides in the
notion of a bounded-lifespan analogue (BLA) of a cycle-
stealing life function P—a finite-duration life function
that captures the essential risk-exposing structure of P.
While the process of computing optimal schedules for
(BLAs of) arbitrary life functions usually requires the use
of (often inefficient) general function-optimizing techni-
ques (such as, e.g., simulated annealing), we show in
Section 4.1 that our scheduling guidelines yield efficiently
computable optimal schedules for every cycle-stealing
opportunity whose duration is governed by a concave life
function (Theorem 4.1). Even when dealing with an
opportunity whose life function is not concave, our
scheduling guidelines for BLAs often suggest a natural
notion of approximately optimal schedule, which may be
efficiently computable. We illustrate this latter situation in
Section 4.2, where we craft computationally simple
schedules for (bounded-lifespan) heavy-tailed opportu-
nities, which can be “tuned” to be arbitrarily close to
optimal (Theorem 4.2). Finally, in Section 5, we use
simulations to evaluate all of our schedules for heavy-
tailed opportunities, both against one another and against

the ideal work production for such opportunities. These
simulation-based comparisons reinforce our mathematical
analyses by illustrating that our schedules are almost
ideally productive, as long as the tasks comprising our
workload are sufficiently coarse-grained (or, compute-
intensive) to balance the large overhead for interworksta-
tion communications.

1.3 Related Work

The literature contains relatively few rigorously analyzed
scheduling algorithms for parallel computing in NOWs.
Among those we know of, only [3], [5], [17], [18] and the
current study deal with an adversarial model of cycle-
stealing. One finds in [3] a randomized cycle-stealing
strategy which, with high probability, accomplishes within
a logarithmic factor of optimal work production. In [5], [17],
[18], and the current paper, cycle-stealing is viewed as a
game against a malicious adversary who seeks to interrupt
the borrowed workstation in order to kill all work in
progress and thereby minimize the amount of work
produced during a cycle-stealing opportunity. As noted
earlier, the Known-Risk model of [5], [17] provides the
starting point for our study; [18] develops the Guaranteed-
Output model of [5], providing guidelines which optimize,
to within low-order additive terms, the guaranteed amount
of work produced during a cycle-stealing opportunity—-
given knowledge of the duration of the opportunity, plus an
upper bound on the number of potential interruptions by
the adversary.

A number of sources view parallel computing in a NOW
as a cooperative venture, wherein overloaded workstations
share their load with idle ones (work-sharing) [2], [19] or idle
workstations borrow load from busy ones (work-stealing) [6],
[7], [8]. The study in [2] develops an “auction”-based model
wherein one determines that subset of workstations
which—according to the source’s cost model—promises
the best performance on one’s workload. One can view [19]
as a follow-up to [2], wherein one determines both how
much work to allocate to the individual workstations in the
selected subset and a schedule for sending this work, in a
way that optimizes the amount of work that can be
accomplished within the period of the subset’s availability.
One finds in [4], [9] two approaches to a model for
scheduling collective communication in a (hierarchical, in
the case of [9]) heterogeneous NOW, similar to the
communication-oriented portion of the model studied in
[19]. A variety of communication schedules are studied via
simulations in [4]; an approximation to an optimal algo-
rithm for broadcast and reduction is derived in [9]. The
CILK system of [6], [7], [8] implements a multithreading
protocol for “work-stealing” in NOWs, wherein idle work-
stations borrow load asymptotically optimally, with respect
to both speed of computation and space overhead. Finally,
one finds in [10] a protocol for allocating resources “fairly”
among the members of a “computational cooperative;”
although the main focus is on far-flung assemblages of
NOWs, the results are relevant to individual NOWs also.

We do not enumerate here the many studies of
computation on NOWs, which focus either on systems that
enable one workstation to steal cycles from another or on
specific algorithmic applications. However, we point to [14]
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as an exemplar of the former type of study and to [20] as an
exemplar of the latter.

2 FORMAL BACKGROUND

2.1 The Known-Risk Cycle-Stealing Model

The owner of workstation A wants to utilize workstation B
(via cycle-stealing) to assist in the computation of a large
(“infinite”) supply of mutually independent (“embarrass-
ingly parallel”) tasks, which are identical in size and
computational complexity. We assume that each pair of
communications in which A sends work to B and B returns
the results of that work to A incurs a fixed setup-cost c.3 We
keep c independent of the marginal per-task cost of
communicating between A and B by incorporating the
latter cost into the time for computing a task. Our
scheduling model assumes that we know exactly how long
each task takes on workstation B—which is consistent with
our model’s view that B is dedicated to our work during the
cycle-stealing opportunity. In accord with this assumption,
our model measures time in work-units (rather than wall-
clock time), where one unit of work is the time it takes for:

. workstation A to transmit a single task to work-
station B (this is the marginal transmission time for
this task: the (fixed) setup time for each commu-
nication—during which many tasks will typically be
transmitted—is accounted for by the parameter c);

. workstation B to execute that task;

. workstation B to return its results for that task to
workstation A.

We view a cycle-stealing opportunity as a sequence of
episodes during which workstation A has access to work-
station B, punctuated by interrupts caused by the return of
B’s owner. When scheduling an opportunity, we decrease
our vulnerability to interrupts, with their attendant loss of
work in progress on B, by partitioning each episode into
periods, each beginning with A sending work to B and
ending either with an interrupt or with B returning the
results of that work. Since our discretionary power thus
resides solely in deciding how much work to send in each

period, we view an (episode-)schedule simply as a sequence of

positive period-lengths: S ¼ t0; t1; . . . . A length-t period in

an episode accomplishes t� c¼def maxð0; t� cÞ units of work

if it is not interrupted and 0 units of work if it is interrupted.

Thus, the episode scheduled by S accomplishes
Pk�1

i¼1 ðti � cÞ
units of work when it is interrupted during period k.

As noted earlier, we assume that we know the risk of B’s
being reclaimed, via a decreasing life function,

PðtÞ ¼def PrðB is 00alive00 at time tÞ;

which: 1) satisfies Pð0Þ ¼ 1 (to indicate B’s availability at
the start of the episode); 2) when an upper bound L on the
episode’s lifespan (¼def its maximum possible duration)
exists, satisfies PðLÞ ¼ 0 (to indicate that the interrupt will

have occurred by time L). Our earlier assertion that life
functions must be “smooth” is embodied in the formal
requirement that P be twice differentiable. An important
statistic of an episode with life function P is its mean
lifespan:4

Mean-LifespanðPÞ ¼def �
Z U

0

tP0ðtÞdt ¼
Z U

0

PðtÞdt: ð2:1Þ

Note 2. The simplification of the integral in (2.1) results from
integration by parts, in the light of the Known-Risk model’s
just-described constraints on life functions.

The upper limit U of the integral is the episode’s lifespan L
if it is finite, and is 1 otherwise. Our challenge is to
maximize the expected work production from an episode
governed by P, i.e., to find a schedule S whose expected
work production,

Exp-WorkðS;PÞ ¼def
X
i
0

ðti � cÞPðTiÞ; ð2:2Þ

is maximum, over all schedules for P. In summation (2.2),
each Ti is the partial sum

Ti ¼def t0 þ t2 þ � � � þ ti;

the upper limit of the summation is the episode’s lifespan L
if it is finite, and is 1 otherwise.

We close this description of the Known-Risk model with
a lemma which can be helpful when one tries to compute
(almost) optimal schedules. The lemma allows one to use
ordinary (�), rather than positive (�) subtraction in all but
the last term of (2.2) as one seeks good schedules. Say that a
schedule S is productive if each of its periods—save the last
if S has finitely many periods—has length > c.

Lemma 2.1 ([5], [17]). One can effectively replace any schedule S
for life function P by a productive schedule bS such that

Exp-Workð bS;PÞ 
 Exp-WorkðS;PÞ.
Proof Hint. One can never decrease the expected work

production of a schedule if one combines a “short”
nonterminal period with its successor. tu

Lemma 2.1 allows us to rewrite (2.2) for any finite
schedule S ¼ t0; t1; . . . ; tm�1 in the following form (whose
“missing” last term reflects the fact that PðLÞ ¼ 0).

Exp-WorkðS;PÞ ¼
Xm�2

i¼0

ðti � cÞPðTiÞ: ð2:3Þ

Henceforth, we restrict attention to productive schedules unless
otherwise indicated.

2.2 The Scheduling Guidelines of [17]

In [17], we extended the case studies from [5] by deriving a

set of guidelines for (almost optimally) scheduling large

classes of cycle-stealing opportunities within the Known-

Risk model. These guidelines partially expose the structure
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of any optimal schedule for a “smooth” life function P—

whenever P admits an optimal schedule. The guidelines

are, thus, necessary for the optimality of a schedule.
Say that a life function P is concave (respectively, convex)

if its derivative P0

. never vanishes at a point x where PðxÞ > 0;

. is everywhere nonincreasing (respectively, every-
where nondecreasing): for all positive real �
and � > �, we have P0ð�Þ 
 P0ð�Þ (respectively,
P0ð�Þ � P0ð�Þ).

Theorem 2.1 ([17]). If the productive schedule S ¼ t0; t1; . . . is

optimal for the differentiable life function P, then:

1. For each period-index k 
 0, save the last if S is finite,
period-length tk is given implicitly by

PðTkÞ ¼ max 0; �
X
j
k

ðtj � cÞP0ðTjÞ
 !

: ð2:4Þ

Adjacent pairs of these equations combine to yield the

following computationally friendlier system.
2. For each period-index k 
 1, save the last if S is finite,

period-length tk is given implicitly by

PðTkÞ ¼ maxð0; PðTk�1Þ þ ðtk�1 � cÞP0ðTk�1ÞÞ: ð2:5Þ

3. When P is convex (respectively, concave), the initial
period-length t0 is bounded above and below as follows,
with the parameter ’ ¼ 1 (respectively, ’ ¼ 1=2).ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2

4
� cPðt0Þ

P0ðt0Þ

s
þ c

2
� t0 � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

4
� cPðt0Þ
P0ð’t0Þ

s
þ c:

ð2:6Þ

Proof Hint. The chain of reasoning leading to systems (2.4,

2.5) begins with the observation that the expected work

production of an optimal schedule S is no smaller than

that of any of S’s “shifts.” The hk;��i-shift, Shk;��i, of S
and the hk;þ�i-shift, Shk;þ�i, of S are schedules which

have the same number of periods5 as S and the same

period-lengths, save for period k. Specifically,

Shk;��i ¼def t0; t1; . . . ; tk�1; tk � �; tkþ1; . . . ;

Shk;þ�i ¼def t0; t1; . . . ; tk�1; tk þ �; tkþ1; . . . :

The chain of reasoning leading to (2.6) begins with the
observation that the expected work production of an
optimal schedule S cannot be increased by telescoping
adjacent periods of S into a single period. tu

Note 3.

1. As is pointed out in [17], the guidelines inherent in the
system (2.5) can be applied in an online fashion,
computing tkþ1 only after period k ends. This means

that one can correct errors in life functions that are
known only approximately, and/or one can use
conditional rather than absolute probabilities to craft
one’s schedules.

2. It is shown in [17] that the guidelines yield, via general
principles, optimal schedules for the life functions that
were optimized via ad hoc analyses in [5].

While the guidelines of Theorem 2.1 are shown in [17] to
be quite useful in crafting near-optimal schedules for many
life functions, it is also shown there that some cycle-stealing
opportunities do not admit any optimal schedule within the
Known-Risk model. The important (cf. footnote 2) oppor-
tunities whose durations are governed by the heavy-tailed
life function

PðhtÞðtÞ ¼def 1

tþ 1

fall within this intransigent class.

Proposition 2.1 ([17]). The heavy-tailed life function PðhtÞ does
not admit an optimal schedule.

Proof Hint. One can always increase expected work

production by replacing a given schedule S ¼ t0; t1; . . .

for PðhtÞ by the schedule Sð2Þ ¼def2t0; 2t1; . . . . tu
PðhtÞ’s intransigence, as exposed in Proposition 2.1, is

exacerbated by its resistance to approximation: Since
Mean-LifespanðPðhtÞÞ is infinite, there is no apparent natural
notion of “approximately optimal” expected work produc-
tion to strive for when crafting a schedule for PðhtÞ.

3 BOUNDED-LIFESPAN ANALOGUES oF

LIFE FUNCTIONS

We now refine the Known-Risk model by replacing each life

function with its family of BLAs, as described in Section 1.2.

After defining BLAs formally and determining their impact

on the Known-Risk model (Section 3.1) and on our

scheduling guidelines (Section 3.2), we show that BLAs

achieve the desired goal: Every BLA of every life function

admits a computable optimal schedule whose period-

lengths are given by our guidelines (Section 3.3). We turn

to the issue of the ease of computing optimal schedules in

Section 4.

3.1 Lifespan-LL Analogues of Life Functions

Say that the lifespan L > 0 is relevant for the life function P
if PðtÞ > 0 for all t < L. For each function P and each
relevant L, the lifespan-L analogue of P, denoted PðLÞ, is the
life function

PðLÞðtÞ ¼def PðtÞ � PðLÞ
1� PðLÞ : ð3:1Þ

Easily, each BLA PðLÞ is a valid life function (cf. the

definitions in Section 2.1) with maximum lifespan L. More-

over, BLAs extend the Known-Risk model gracefully, in the

sense that PðLÞðtÞ � PðtÞ whenever P intrinsically has

maximumlifespanL (as,e.g.,dotheuniform-risk life functions,

PLðtÞ ¼def 1� t=L, which form one of the case studies in [5]).
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Note 4. Each BLA PðLÞ is intended to preserve the “essential
structure” of its parent life function P, including mathema-
tical properties such as differentiability and, when appropriate,
concavity or (as with PðhtÞ) convexity.

To illustrate the transformation from a life function to
its BLA:

. For L̂ � L, the lifespan-L̂ BLA of the uniform-risk life

function PLðtÞ is PðL̂Þ
L ðtÞ ¼ 1� t=L̂.

. The lifespan-L BLA of the infinite mean-lifespan
heavy-tailed life function PðhtÞðtÞ is

PðLÞ
ðhtÞðtÞ ¼ 1

L

L� t

tþ 1

	 

: ð3:2Þ

3.2 The Impact of BLAs on the Scheduling
Guidelines of [17]

Theorem 2.1’s guidelines for a life function P translate
easily to guidelines for P’s lifespan-L analogue PðLÞ.

Proposition 3.1.

1. The difference in (2.4) for P and PðLÞ resides only in
the effect of the term ð�PðLÞÞ from the numerator of
(3.1). Thus, the system becomes

PðTkÞ � PðLÞ ¼ max 0; �
X
j
k

ðtj � cÞP0ðTjÞ
 !

:

ð3:3Þ

2. The recurrence of (2.5) for the noninitial period-
lengths of life function PðLÞ is identical to the
analogous recurrence for P.

3. The difference in the bounds (2.6) on t0 for P and PðLÞ

when P is concave or convex, resides only in the effect
of the term ð�PðLÞÞ from the numerator of (3.1).

Proof Sketch. The factor ð1� PðLÞÞ from the denominator
of (3.1) cancels out in all three cases. In Part 3, this is
because

PðLÞðt0Þ
ðPðLÞÞ0ð’t0Þ

¼ Pðt0Þ � PðLÞ
P0ð’t0Þ

:

In Part 2, the term ð�PðLÞÞ from the numerator of
(3.1) also cancels out when instantiated in (2.5). tu

We now illustrate Proposition 3.1 by instantiating the
guidelines of Theorem 2.1 for both PðhtÞ and PðLÞ

ðhtÞ. This is
not an empty exercise, even though PðhtÞ does not admit any
optimal schedule (Proposition 2.1). First, we shall see in
Theorem 3.1 that these guidelines do specify an optimal
schedule for PðLÞ

ðhtÞ. Second, the “guidelines” for PðhtÞ supply
the inspiration for the computationally simple, provably
good schedules for PðLÞ

ðhtÞ that we present in Section 4.2.

Proposition 3.2. Assume that the heavy-tailed life function

PðhtÞ admitted an optimal schedule S ¼ t0; t1; . . . and that

the heavy-tailed BLA PðLÞ
ðhtÞ admitted an optimal schedule

SðLÞ ¼ t
ðLÞ
0 ; t

ðLÞ
1 ; . . . ; t

ðLÞ
m�1. Then:

1. Letting eti (respectively, eTi) ambiguously denote ti and

t
ðLÞ
i (respectively, Ti and T

ðLÞ
i ) for i 
 0, the sequence

of period-lengths for both S and SðLÞ would satisfy the

recurrence

etkþ1 ¼ ðetk � cÞ
eTk þ 1eTk�1 þ cþ 1

: ð3:4Þ

2. The initial period-length t0 for S would be bounded as
follows:

cþ
ffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ c

p
� t0 � 3cþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9c2 þ 4c

p
:

3. The initial period-length t
ðLÞ
0 for SðLÞ would be

bounded as follows:

cL

Lþ 2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cL

Lþ 2

	 
2

þ cL

Lþ 2

s
� t

ðLÞ
0 � ð3L� 1Þc

Lþ 5

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3L� 1Þc
Lþ 5

	 
2

þ 4cL

Lþ 5

s
:

3.3 Opportunities Governed by BLAs
Admit Optimal Schedules

We show now that BLAs do, indeed, serve the purpose that
motivated their invention. To wit, the guidelines of
Theorem 2.1 provide optimal schedules for the BLAs of
every life function P. Modulo the complexity of actually
computing these optimal schedules, we have thus
succeeded in solving the scheduling problem for the
Known-Risk model.

Theorem 3.1. Every BLA PðLÞ admits an optimal productive

schedule whose period-lengths are determined by (3.3).

Proof. We first establish nonconstructively that every BLA
admits an optimal finite schedule. We then invoke
Lemma 2.1 to infer that every BLA admits a productive
optimal schedule. We finally invoke Theorem 2.1 and
Proposition 3.1 to infer that the period-lengths of a
productive optimal schedule are specified by system (3.3).

The existence of optimal schedules. We build on two
lemmas. The first lemma establishes an upper bound on
the amount of expected work that one can produce
during a finite-lifespan episode.

Lemma 3.1. For any schedule S for life function P,

Exp-WorkðS;PÞ � Mean-LifespanðPÞ:

Proof of Lemma. By (2.2), the expected work production of
S ¼ t0; t1; . . . can be viewed as an underestimate,
obtained by abutting rectangles of widths ti � c and
heights PðTiÞ (for i ¼ 0; 1; . . . ), of the area under the
curve PðtÞ. By (2.1), the latter area is the mean-lifespan of
the associated episode. tu

Next, we invoke the weak-inequality version of
Lemma 2.1 (which is the version that appears in [5]) to
infer that, if a lifespan-L BLA PðLÞ admits an optimal
schedule, then it admits one of the form
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S ¼ t0; t1; . . . ; tm�1;

where tm�1 
 0 (by definition), and each other ti 
 c. One
consequence of these constraints on the period-lengths
of S is that we lose no generality if we restrict our
search for optimal schedules for PðLÞ to schedules that
have � dL=ce periods.

Embarking on this search, let us define, for each
m 2 f2; 3; . . . ; dL=ceg, the m-variable formal6 work-func-
tion for PðLÞ:

WðLÞ
m ð�0; �1; . . . ; �m�1Þ ¼def

Xm�2

i¼0

ð�i � cÞPðLÞð�0 þ �1 þ � � � þ �iÞ:

ð3:5Þ

By (2.3), the expected work production of any
m-period schedule S ¼ t0; t1; . . . ; tm�1 for PðLÞ is given by

Exp-WorkðS;PÞ ¼ WðLÞ
m ðt0; t1; . . . ; tm�1Þ:

As just noted, therefore, we need consider only these
dL=ce � 1 work-functions as we search for a work-
optimizing schedule for PðLÞ. By Lemma 3.1, each
work-function WðLÞ

m is a bounded, continuous (indeed,
differentiable) function. Therefore, on the compact set of
real m-tuples h�0; �1; . . . ; �m�1i defined by the three
constraints:

�m�1 
 0

each other �i 
 c

�0 þ �1 þ � � � þ �m�1 ¼ L;

ð3:6Þ

WðLÞ
m must achieve a maximum value. It follows that any

p-tuple

S? ¼def t?0; t?1; . . . ; t?p�1;

which simultaneously

. satisfies constraints (3.6);

. achieves the largest WðLÞ
m -value over all relevant

numbers of periods m

is an optimal schedule for PðLÞ. Since the last sentence
may be hard to read due to its many quantifiers
expressed in natural language, we state formally that
our intention is that:

WðLÞ
p ðt?0; t?1; . . . ; t?p�1Þ ¼

maxm2f2;3;...;dL=cegfWðLÞ
m ðt0; t1; . . . ; tm�1Þ j

constraints ð3:6Þ holdg:

The Existence of Productive Optimal Schedules. We
can now invoke the strong-inequality version of
Lemma 2.1 to infer the existence of a productive
schedule cS? whose expected work production matches
S?’s. (Of course, cS? may have fewer than p periods.)

Computing a productive optimal schedule. Finally, we
invoke Theorem 2.1 to complete the proof. tu

Theorem 3.1 provides us with good news, yet does not
provide a completely satisfying solution to our scheduling
problem. Exemplifying the good news, we can now
optimally schedule finite-duration heavy-tailed opportu-
nities.

Corollary 3.1. The schedule SðLÞ of Proposition 3.2 is optimal for

the heavy-tailed BLA PðLÞ
ðhtÞ.

Moderating the Theorem’s good news is the potential
computational difficulty of finding the optimal schedules it
guarantees. We remarked in [17] on the computational
unfriendliness of system (2.4). This observation led us there
to propose the less comprehensive, but (in our experience)
quite friendly system (2.5) to specify the noninitial period-
lengths of optimal schedules, augmented, in the case of
concave and convex life functions, by the bounds (2.6) on
the initial period-lengths of optimal schedules. The non-
comprehensive nature of (2.5, 2.6) means that, even with
Theorem 3.1’s guarantee that optimal schedules always
exist for BLAs, one may have to employ general (and
usually inefficient) function-maximizing techniques (such
as, e.g., simulated annealing) to the work-functions (3.5) in
order to find those schedules. In the next section, we show
that such inefficiency can sometimes be avoided, at least in
special cases.

4 BLAs THAT EFFICIENTLY ADMIT “GOOD”
SCHEDULES

This section is devoted to the question of the computa-
tional efficiency of deriving (almost) optimal schedules
for bounded-lifespan cycle-stealing opportunities. In
Section 4.1, we show that the guidelines of Theorem 2.1
efficiently yield exactly optimal schedules for concave life
functions. In Section 4.2, we exhibit a parameterized family
of simply computed schedules for the important family of
heavy-tailed BLAs, which can be tuned to be as close as
desired to optimal in expected work production.

4.1 Efficient Optimal Schedules for Concave Life
Functions

When the life function P that governs a cycle-stealing
opportunity is concave, we can improve on Theorem 3.1 by
guaranteeing a rather efficient computation of an optimal
productive schedule for P, using the computationally
friendly guidelines of (2.5), supplemented by the bounds
of (2.6).

The reader may have noted that, in contrast with our
careful distinction between a life function and its BLAs
since the beginning of Section 3, we have been careless in
the last two paragraphs about making this distinction. We
begin our development in this section by justifying this
carelessness, via a lemma which verifies the (not-surpris-
ing) fact that every cycle-stealing opportunity which is
governed by a concave life function has a bounded
lifespan. This fact follows from a bound on how fast the
period-lengths of the opportunity’s optimal schedule must
decrease. This rate of decrease shows also that optimal
schedules for lifespan-L concave life functions have only
(roughly)

ffiffiffiffiffiffiffiffiffiffiffi
2L=c

p
periods, in contrast to our bound of dL=ce

for general lifespan-L life functions.
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6. We term the function WðLÞ
m “formal” because it presents the m period-

lengths as mutually independent variables. We know by Lemma 2.1 and
Theorem 2.1 that the period-lengths for optimal schedules are not mutually
independent.



Lemma 4.1. If S ¼ t0; t1; . . . is an optimal productive schedule

for a concave life function P, then:

1. for each nonterminal period-index i, ti � ti�1 � c;
2. the life function P has a bounded lifespan LP ;

3. schedule S has fewer thanffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2LP
c

þ 1

4

r
þ 1

2

& ’
periods:

Note 5.

1. The reader can easily adapt the proof of Lemma 4.1 to
prove that, when P is convex, then each nonterminal
ti 
 ti�1 � c.

2. In contrast to concave life functions, general life

functions need not have finite schedules, nor need their

optimal schedules have decreasing period-lengths: the

unique optimal schedule for the life function PðtÞ¼def2�t

is infinite and has all period-lengths equal [5].
3. The quantitative claims of Lemma 4.1 cannot be

improved in general: the unique optimal schedule
S ¼ t0; t1; . . . ; tm�1 for the lifespan-L uniform-risk
life function has

m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2LP
c

þ 1

4

r
þ 1

2

$ %
periods, and, for each nonterminal period-index i, ti ¼
ti�1 � c [5].

4. Lemma 4.1’s assertion that the period-lengths of

optimal schedules for concave life functions are strictly

decreasing strengthens an analogous result in [5],

which is proved there only with weak inequalities and
only for the uniform-risk life function.

Proof.

1. We exploit the optimality of S only to infer that it is
at least as productive as any of its �-perturbations,

S½i;�� ¼def t0; t1; . . . ; ti�1; ti þ �; tiþ1 � �; tiþ2; . . . :

In other words, for every nonterminal period-

index i and every real � > 0, the following

difference is nonnegative:

Exp-WorkðS;PÞ � Exp-WorkðS½i;þ��;PÞ
¼ ðti � cÞ PðTiÞ � PðTi þ �Þ½ � þ � PðTiþ1Þ � PðTi þ �Þ½ �:

This nonnegativity implies that

�½PðTiþ1Þ � PðTi þ �Þ� 
 ðti � cÞ½PðTi þ �Þ � PðTiÞ�;

so that:

tiþ1 � �

ti � c

	 

PðTiþ1Þ � PðTi þ �Þ

tiþ1 � �

 PðTi þ �Þ � PðTiÞ

�
:

ð4:1Þ

Next, the Mean Value Theorem of the differ-

ential calculus asserts that, for every � > 0, there

exist real numbers � 2 ðTi; Ti þ �Þ and � 2 ðTi þ
�; Tiþ1Þ such that

P0ð�Þ ¼ PðTi þ �Þ � PðTiÞ
�

and

P0ð�Þ ¼ PðTiþ1Þ � PðTi þ �Þ
tiþ1 � �

:

ð4:2Þ

Finally, the concavity of P implies that

P0ð�Þ 
 P0ð�Þ; ð4:3Þ

because � < �. Since P0 is negative, (4.3) can

coexist with (4.1) and (4.2) only if tiþ1 � � < ti � c.

Since this last inequality holds for each i and for

arbitrarily small �, we conclude that each

tiþ1 � ti � c:

2. The bound on P’s lifespan follows by conjoining
the fact that S’s period-lengths decrease at the
rate of at least c per period (by part 1) with the
fact that all of S’s periods, save the last, have
length > c (Lemma 2.1).

3. Part 1 implies that schedule S has some finite
numberm � t0=cperiods. If we look at parts 1 and 2
“from the vantage point of tm�1,” we find that

LP ¼ t0 þ t1 þ � � � þ tm�2 þ tm�1


 mtm�1 þ
m

2

� �
c >

m

2

� �
c:

Part 3 now follows from “solving” the preceding

bound on m in terms of LP and c. tu
We are now ready for the main theorem of the section.

Theorem 4.1. Every concave life function admits an efficiently

computed optimal productive schedule whose period-lengths

are determined by system (2.4).

Proof. We address the theorem’s two assertions in turn.

The Existence of an Optimal Schedule. All that

Theorem 3.1 needed in order to establish the existence

of guideline-based optimal schedules for BLAs of general

life functions were upper bounds on the work produc-

tion of BLAs and on the numbers of periods of their

optimal productive schedules. Since Lemma 4.1 affords

us analogous bounds for any concave life function, we

can invoke the proof of Theorem 3.1 to infer that every

concave life function admits an optimal productive

schedule whose period-lengths are determined by (2.4).

Efficiently Computing Optimal Schedules. Let P be

an arbitrary concave life function, and let S? ¼
t?0; t

?
1; . . . ; t

?
m�1 be an optimal productive schedule for

P. Let us revisit the definition (3.5) of the formal

work-function WðLPÞ
m , which we henceforth abbreviate

as just Wm (since the lifespan LP is a property of P
here). By direct calculation, one verifies that schedule

S? satisfies (2.4) if, and only if, every first partial

derivative
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@

@�j
Wmð�0; �1; . . . ; �m�1Þ ¼ Pð�0 þ �1 þ � � � þ �jÞ

þ
X
k
j

ð�k � cÞP0ð�0 þ �1 þ � � � þ �kÞ

of Wm vanishes at the point ~t? ¼def ht?0; t?1; . . . ; t?m�1i. Since S?

has maximum expected work production over all

schedules for P, we expect all of the second partial

derivatives of Wm to be negative at point ~t?. If we look at

these derivatives, though, we find an even stronger

consequence of P’s concavity: all of Wm’s second partial

derivatives are negative throughout the region of interest.

To wit:

. For k < i:

@2

@�i@�k
Wmð�0; �1; . . . ; �m�1Þ

¼ P0ð�0 þ �1 þ � � � þ �iÞ

þ
Xm�2

j¼i

ðtj � cÞP00ð�0 þ �1 þ � � � þ �jÞ:

. For k > i:

@2

@�i@�k
Wmð�0; �1; . . . ; �m�1Þ

¼ P0ð�0 þ �1 þ � � � þ �kÞ

þ
Xm�2

j¼k

ðtj � cÞP00ð�0 þ �1 þ � � � þ �jÞ:

. For k ¼ i:

@2

@�2i
Wmð�0; �1; . . . ; �m�1Þ

¼ P00ð�0 þ �1 þ � � � þ �iÞ þ P0ð�0 þ �1 þ � � � þ �iÞ

þ
Xm�2

j¼i

ðtj � cÞP00ð�0 þ �1 þ � � � þ �jÞ:

The important thing to notice is that each second

partial derivative is a sum of terms, each containing

precisely one instance of precisely one of P0 and P00. The

negativity of Wm’s second partial derivatives therefore

follows from the fact that for a concave life function P,

both P0 and P00 are negative throughout the opportu-

nity’s lifespan. Since Wm’s first derivatives vanish at

point ~t?, and since its second derivatives are always

negative, we infer that ~t? is the unique maximum of Wm.

We now exploit this uniqueness to compute the point ~t?,

hence the desired optimal schedule S?.

1. We invoke the interperiod dependencies for
optimal schedules specified by (2.5) to convert
Wmð�0; �1; . . . ; �m�1Þ into a (formally, rather com-
plex) function Wm of the single variable �0.

2. We note from the preceding discussion of the
derivatives of Wm, coupled with the guarantees of
Theorem 2.1, that the derivative of Wm vanishes
at a unique value of �0 within the interval
specified by the bounds (2.6).

3. We determine the unique root of Wm within the
specified interval to any desired accuracy, using
the technique of recursive doubling followed by
binary search. This specifies the initial period-
length t?0 of schedule S?.

4. We invoke (2.5) again to determine all subsequent
period-lengths of schedule S?.

Of course, we cannot quantify our assertion of
the “efficiency” of this procedure, as such quantifi-
cation depends on the functional form of P and the
desired accuracy in determining the period-lengths
of schedule S?. tu

4.2 Efficient Near-Optimal Schedules for
Heavy-Tailed BLAs

This section is dedicated to indicating that, even in the

absence of an efficient algorithm for computing an optimal

schedule, one can sometimes infer from the guidelines of

Theorem 2.1 and the bound of Lemma 3.1 an efficient way

to approximate the expected work production of an optimal

schedule. Happily, we are able to illustrate this for the

important, intransigent heavy-tailed life function.

If the schedule SðLÞ of Proposition 3.2 were, in fact,

optimal for PðLÞ
ðhtÞ, then by (3.4), the sequence of ratios of

SðLÞ’s successive period-lengths would deviate very slightly

(but in a computationally complicated way) from being

constant. This suggests that a schedule whose period-

lengths grow geometrically, with an appropriate constant

interperiod ratio ) > 1, would have quite good expected

work production—and would be computationally very

simple. We now craft a family of such schedules, para-

meterized by the ratio ), that verify this conjecture. (Implicit

in our using a single interperiod ratio is the fact that the

lifespan L for each BLA affects only a schedule’s number of

periods.) We shall see that, by choosing values of )

progressively closer to 1, one obtains schedules which

produce progressively greater amounts of expected work.

4.2.1 An Upper Bound on Possible Work Production

Complicating our desire for an analytical comparison of the

work productions of our parameterized schedules with the

expected work production of the optimal schedule SðLÞ of

Proposition 3.2 is the fact that we have no explicit

expression for the latter quantity. We overcome this

difficulty by instantiating Lemma 3.1 for PðLÞ
ðhtÞ, to obtain a

strict upper bound on the maximum possible expected

work production of any schedule for the life function. Since

the upper bound we thus obtain is unattainable by any

actual schedule, we henceforth term it the ideal work

production.
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Proposition 4.1. For any schedule S for the heavy-tailed BLA

PðLÞ
ðhtÞ,

7

Exp-Work S;PðLÞ
ðhtÞ

� �
<

Z L

0

PðLÞ
ðhtÞðtÞdt

¼ 1þ 1

L

	 

lnðLþ 1Þ � 1:

ð4:4Þ

4.2.2 A Parameterized Family

of Schedules SðLÞ
ðhtÞ½)�

n o
for PðLÞ

ðhtÞ

The advertised family of schedules is defined as follows:

For any lifespan L and interperiod ratio ) > 1, the schedule

SðLÞ
ðhtÞ½)� has mL periods, where

mL¼
def

log)
)� 1

c
Lþ )

	 
� �
:

SðLÞ
ðhtÞ½)�’s period-lengths, t0; t1; . . . ; tmL�1, are specified as

follows:

. for each k 2 f0; 1; 2; . . . ;mL � 2g, tk¼
def

)kþ1c;
. tmL�1¼

def
L�

PmL�2
k¼0 tk ¼ L� c

)�1 )mL � )ð Þ.
Before turning to our analytical assessment of the

schedules in the family SðLÞ
ðhtÞ½)�

n o
, we should note that

one can often improve the schedules’ quality trivially. To

wit, for simplicity, we have not taken steps to ensure that

tmL�1 � c. If tmL�1, as defined, exceeds c, then one can easily

increase Exp-Work SðLÞ
ðhtÞ½)�;P

ðLÞ
ðhtÞ

� �
by splitting the schedu-

le’s last period. Even without this improvement, though,

schedule SðLÞ
ðhtÞ½)� has good expected work production, in the

sense of the following theorem.

Theorem 4.2. For any fixed " > 0, there exists a fixed ) > 1 such

that, for sufficiently large L, Exp-Work SðLÞ
ðhtÞ½)�;P

ðLÞ
ðhtÞ

� �
is

within a factor ð1þ "Þ of ideal.

Proof. Invoking (2.2, 3.2), we find by direct calculation and

standard estimates that, for any fixed constant c:

Exp-Work SðLÞ
ðhtÞ½)�;P

ðLÞ
ðhtÞ

� �
¼ Lþ 1

L

XmL�2

k¼0

ð)kþ1 � 1Þ�

ð)� 1Þc
)kþ2c� )cþ )� 1

� c

Lþ 1

	 

¼ Lþ 1

L

XmL�2

k¼0

)� 1

)
�Oð)�kÞ � )kþ1c� c

Lþ 1

	 


 )� 1

)
� Lþ 1

L
� log) L� log) c�Oð1Þ:

ð4:5Þ

When we write the final inequality in the chain (4.5) in

the more perspicuous form

Exp-Work SðLÞ
ðhtÞ½)�;P

ðLÞ
ðhtÞ

� �

 )� 1

) ln)
1þ 1

L

	 

lnL� log) c�Oð1Þ;

ð4:6Þ

it becomes clear that we can make

Exp-Work SðLÞ
ðhtÞ½)�;P

ðLÞ
ðhtÞ

� �
arbitrarily close to an additive constant away from the
upper bound in (4.1) by choosing ) appropriately close
to 1 and letting L grow without bound. tu

5 A SIMULATION-BASED ANALYSIS oF

SðLÞ
ðhtÞ AND SðLÞ

ðhtÞ½)�
n o

This section is devoted to comparing the schedules SðLÞ
ðhtÞ and

SðLÞ
ðhtÞ½)�

n o
via simulations, both against one another and

against the ideal work production exposed by the upper

bound in (4.4). We have a dual goal here. First, we wish to

determine how the quality of these schedules depends on

the specifics of the NOW architecture (determined by the

communication overhead c), the granularities of tasks in the

workload, and the lifespan of the cycle-stealing opportunity.

Second, we wish to determine the magnitude of the

“eventually” promised in Theorem 4.2: How quickly do

the schedules SðLÞ
ðhtÞ½)� approach the productivity of the

optimal schedule SðLÞ
ðhtÞ? We base our comparisons on

simulations; for each lifespan L, we use: the upper bound

in (4.4) as the ideal work production, the optimal schedule of

Proposition 3.2 to compute SðLÞ
ðhtÞ’s (optimal) work produc-

tion, and the recipe of Section 4.2.2 to compute the work

production of the schedules SðLÞ
ðhtÞ½)�.

5.1 The Experimental Setup

We select wall-clock times for the communication overhead
c and for the execution times of tasks via interpretive

extrapolation from a variety of published sources and
consultation with practitioners. We consider two values for

the wall-clock time of the communication overhead c:
500,sec and 500msec. These values, which are consistent

with a variety of current NOW architectures, reflect both the

(in)efficiency of the NOW’s network and the heaviness of
the associated communication protocol. In either case, the

size of c demands that tasks be rather “coarse-grained” (or,
“compute-intensive”), in order for cycle-stealing to afford

one performance advantages even approaching that of a
(tightly coupled) multiprocessor. We explore the effect of

task-granularity on cycle-stealing performance by consider-

ing three levels of compute-intensiveness that are “reason-
able” for bag-of-tasks workloads: “somewhat coarse” tasks

that take 1 second to complete,8 “coarse” tasks that take
20 seconds to complete, and “very coarse” tasks that take
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7. ln x denotes the natural (base-e) logarithm of x.
8. See the beginning of Section 2.1 for a description of what it takes to

“complete” a task.



1 minute to complete. We let the lifespan L range over a

spectrum of “reasonable” lifespans for cycle-stealing oppor-

tunities, from 3 minutes (a telephone call) to 10 hours (an

overnight opportunity)—except for one experiment in

which we assess how quickly the schedules SðLÞ
ðhtÞ½)�

approach their advertised asymptotic behavior. Since the

mathematical study of earlier sections measures c and L in

work-units rather than wall-clock time (cf. Section 2.1), we

use the (common) wall-clock time of the tasks being sent to

the “borrowed” workstation to convert units, thereby

giving us access to the analytical bounds and recipes

needed for our simulations. Table 1 illustrates the

conversion.

5.2 Comparing SðLÞ
ðhtÞ against the Ideal

Our simulation-based evaluation of the optimal schedule

SðLÞ
ðhtÞ aims at determining how closely the schedule’s

expected work production approaches the ideal of

(4.4)—and how quickly it approaches that value. The results

of this experiment are encapsulated in Table 2, whose

approximate entries are rounded to two decimal places. The

table reflects the strong impact of c’s value on SðLÞ
ðhtÞ’s relative

productivity—which is not surprising given that the ideal

work production is computed ignoring communication

overhead (which means that no actual schedule can

produce this amount of work!). The table also indicates

that all of the considered task granularities are sufficiently

coarse to amortize communication overhead quickly in

NOWs that admit the smaller value of c, but that task

granularity is a much bigger concern in NOWs that require

the larger value of c. This latter point is particularly

evident when one compares SðLÞ
ðhtÞ’s relative productivity

with 20 second tasks and with 1 second tasks for the larger

value of c. Both of the messages of this experiment are

emphasized and refined by the results of the “reasonable”

lifespan experiment of the next section.

5.3 Comparing SðLÞ
ðhtÞ½)�

n o
against the Ideal

and the Optimal

Our simulation-based evaluation of the (asymptotically)

good schedules SðLÞ
ðhtÞ½)�

n o
resides in two complementary

experiments. Our first experiment investigates how the

expected work production of these schedules compares

with ideal work production during our three “reasonable”

lifespans. By including SðLÞ
ðhtÞ’s (optimal) expected work

production as a baseline throughout this experiment, we

also garner information about how closely the SðLÞ
ðhtÞ½)�

n o
approximate optimal performance during “reasonable” life-

spans. Our second experiment investigates this approxima-

tion in a different way. We determine how quickly the

expected work production of the best of the schedules

SðLÞ
ðhtÞ½)�

n o
approaches SðLÞ

ðhtÞ’s expected work production.

The fact of the approach is guaranteed by Theorem 4.2, but

this guarantee is asymptotic: “as L grows without bound.”

One gets some intuition for all of the comparisons of this

section by considering how the performance of the
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TABLE 1
Converting c and L from Wall-Clock Times to Work-Unit (WU) Values

TABLE 2
SðLÞ
ðhtÞ’s Expected Work Production as a Fraction of the Ideal



SðLÞ
ðhtÞ½)�

n o
depends (asymptotically) on the value of ).

When ) ¼ 1:015, the leading term, ð)� 1Þ=ð) ln)Þ, in the

bound (4.6) approaches 0:993; when ) ¼ 1:01, the term is

roughly 0:995. Thus, in either of these cases,

Exp-Work SðLÞ
ðhtÞ½)�;P

ðLÞ
ðhtÞ

� �
grows asymptotically (with L) to within 1 percent of ideal
work production.

The “Reasonable”-Lifespan Experiment. Table 3 illustrates

the performance of the schedules SðLÞ
ðhtÞ½)�

n o
for our two

values of the communication overhead c, three levels of task

coarseness, and four “reasonable” lifespans. For each

overhead-granularity-lifespan triple, we determine the

value of ) that makes SðLÞ
ðhtÞ½)� perform best—measured by

the ratio of

Exp-Work SðLÞ
ðhtÞ½)�;P

ðLÞ
ðhtÞ

� �
to ideal work production—and we present both the ratio
and the value of ). As before, the table entries must be
viewed in the light of the unachievability of ideal work
production by any actual schedule. We try to balance this
unfairness by providing also a more realistic baseline in the
table: we indicate how well the optimal schedule SðLÞ

ðhtÞ
performs under the same groundrules. The patterns one
perceives in the table yield no surprises.

. For all overhead-granularity pairs, all schedules
benefit from longer lifespans.

. For all overhead-lifespan pairs, all schedules benefit
from coarser task granularity.

. The schedules SðLÞ
ðhtÞ½)� do not cope with communica-

tion overhead as well as SðLÞ
ðhtÞ does. The latter’s

advantage increases with the size of the overhead.

The good news from this experiment is that, for each tested

combination of parameters, an appropriately chosen SðLÞ
ðhtÞ½)�

performs quite well relative to SðLÞ
ðhtÞ, approaching or

exceeding 90 percent of the latter schedule’s work produc-

tion. Somewhat tempering this good news is the fact that,

for best performance, different combinations of parameters

demand different values of ) (although discernible patterns

can facilitate the search for the best )).

The Race-against-Optimality Experiment. Table 4 illus-

trates, for each of our communication overheads and each

of our task granularities, how quickly the best of the

schedules SðLÞ
ðhtÞ½)�

n o
comes close to SðLÞ

ðhtÞ’s expected work

production. To be precise, the table indicates the smallest9 L

for which there exists an ) such that

Exp-Work SðLÞ
ðhtÞ½)�;P

ðLÞ
ðhtÞ

� �
Exp-Work SðLÞ

ðhtÞ;P
ðLÞ
ðhtÞ

� � 
 z;

where z is the percentage we are identifying with “close-

ness,” and it presents such an ). For our smaller value of c,

we can insist that z ¼ :99 (so that “comes close” means “to

within 1 percent”). For our larger value of c, this

condition leads to unrealistically large lifespans, so we

settle for z ¼ :95 (i.e., “to within 5 percent”); the one

exception is with our finest grain tasks, where any value of

z exceeding :9 leads to unrealistically large lifespans. Note

that when lifespans start getting large in the table, we also

indicate how close the schedules SðLÞ
ðhtÞ½)�

n o
come to SðLÞ

ðhtÞ’s

expected work production within a short lifespan.
The messages of this experiment are consistent with

those of the “reasonable lifespan” experiment: both coarser
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TABLE 3
SðLÞ
ðhtÞ’s and SðLÞ

ðhtÞ½)�’s Proximity to Ideal Work Production During “Reasonable” Lifespans

9. We did not consider lifespans below three minutes.



tasks and longer lifespans help one amortize the effect of the

significant communication overheads that one encounters in

NOWs; larger communication overheads are harder to

amortize.

6 CONCLUSIONS

We have achieved three major goals in this study:

1. We refined the Known-Risk cycle-stealing model of
[5], [17], ending up with a model within which every
cycle-stealing opportunity admits an optimal sche-
dule; moreover—importantly—we have shown how
to compute such a schedule.

2. We responded to the fact that optimal schedules for
some cycle-stealing opportunities are computation-
ally quite complex—and that, in particular, the
important class of cycle-stealing opportunities
whose durations come from a heavy-tailed distribu-
tion suffer from such complexity. We derived a
parameterized family of easily computed schedules
for heavy-tailed opportunities, which approach
optimality asymptotically in the duration of the
opportunity.

3. We performed a simulation-based study of heavy-

tailed schedules, with the overall goal of garnering

information that will help a potential cycle-stealer

choose wisely those parameters of a cycle-stealing

opportunity that one can control: the granularities of

the tasks and the value of the parameter ) of the

approximate schedules. We garnered this informa-

tion via two experiments: 1) We determined how the

quality of our schedules—both the optimal schedule

SðLÞ
ðhtÞ and the approximate, good ones SðLÞ

ðhtÞ½)�
n o

—

depends on the variables that characterize the cycle-

stealing opportunity: the communication overhead

of the host NOW, the granularities of the tasks that
make up our bag-of-tasks workload, and the lifespan
of the opportunity. 2) We determined the magnitude
of the “eventually” promise that is inherent in
asymptotic analyses: how quickly do all of our
schedules approach ideal workload, and how
quickly do our approximate schedules approach
the productivity of the optimal schedule? We
discovered that the optimal schedule produces an
amount of work that is very close to ideal (within 10
percent) for all combinations of task granularities
and lifespans that are reasonable in the light of the
communication overhead that must be amortized.
We discovered that we could make an only slightly
weaker statement for appropriately chosen approx-
imate schedules, although with a more restrictive
definition of what is reasonable.

Several tempting challenges remain in this research area.
How does one deal with task sizes that are known only
approximately? How sensitive is an optimal schedule to the
precise form of the life function P? Finally, how closely
can one approximate an optimal schedule if one knows
only one or two moments of the probability distribution
of interrupts? The latter two questions are important since
one would typically determine the “smooth” expression
for P by fitting a curve to sampled data.
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support of a Fulbright Senior Scholar Grant and a grant
from Centre Nationale de la Recherche Scientifique. It is a
pleasure to thank: Lenny Heath and Ramesh Sitaraman for

190 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 13, NO. 2, FEBRUARY 2002

TABLE 4
The Lifespan Needed for SðLÞ

ðhtÞ½)� to Approach Optimal Work Production

We did not consider lifespans below three minutes.



helpful conversations about the mathematical development;
Franck Cappello, Steve Dropsho, and Matt Thoennes for
helpful conversations about parameter values in the
simulations. A portion of this paper was presented at the
12th ACM Symposium on Parallel Algorithms and Archi-
tectures, Bar Harbor, Maine (2000).

REFERENCES

[1] T.E. Anderson, D.E. Culler, D.A. Patterson, and the NOW Team,
“A Case for NOW (Networks of Workstations),” IEEE Micro,
vol. 15, pp. 54-64, 1995.

[2] M.J. Atallah, C.L. Black, D.C. Marinescu, H.J. Siegel, and
T.L. Casavant, “Models and Algorithms for Coscheduling
Compute-Intensive Tasks on a Network of Workstations,”
J. Parallel Distributed Computing, vol. 16, pp. 319-327, 1992.

[3] B. Awerbuch, Y. Azar, A. Fiat, and F.T. Leighton, “Making
Commitments in the Face of Uncertainty: How to Pick a Winner
Almost Every Time,” Proc. 28th ACM Symp. Theory of Computing,
pp. 519-530, 1996.

[4] M. Banikazemi and D.K. Panda, “Efficient Collective Commu-
nication on Heterogeneous Networks of Workstations,” technical
report, Ohio State Univ., 2000.

[5] S.N. Bhatt, F.R.K. Chung, F.T. Leighton, and A.L. Rosenberg, “On
Optimal Strategies for Cycle-Stealing in Networks of Work-
stations,” IEEE Trans. Computers, vol. 46, pp. 545-557, 1997.

[6] R. Blumofe and C.E. Leiserson, “Space-Efficient Scheduling of
Multithreaded Computations,” Proc. 25th ACM Symp. Theory of
Computing, pp. 362-371, 1993.

[7] R. Blumofe and C.E. Leiserson, “Scheduling Multithreaded
Computations by Work Stealing,” Proc. 35th IEEE Symp. Founda-
tions of Computer Science, pp. 356-368, 1994.

[8] R. Blumofe and D.S. Park, “Scheduling Large-Scale Parallel
Computations on Networks of Workstations,” Proc. Third Int’l
Symp. High-Performance Distributed Computing, pp. 96-105, 1994.

[9] F. Cappello, P. Fraigniaud, B. Mans, and A.L. Rosenberg,
“HiHCoHP—Toward a Realistic Communication Model for
Hierarchical Hyperclusters of Heterogeneous Processors,” Proc.
Int’l Parallel and Distributed Processing Symp. (IPDPS ’01), 2001.

[10] W. Cirne and K. Marzullo, “The Computational Co-Op: Gathering
Clusters into a Metacomputer,” Proc. 13th Int’l Parallel Processing
Symp., pp. 160-166, 1999.

[11] D. Culler, R.M. Karp, D. Patterson, A. Sahay, K.E. Schauser,
E. Santos, R. Subramonian, T. von Eicken, “LogP: Towards a
Realistic Model of Parallel Computation,” Comm. ACM, vol. 39,
pp. 78-85, 1996.

[12] M. Harchol-Balter and A. Downey, “Exploiting Process Lifetime
Distributions for Dynamic Load Balancing,” Conf. Measurement
and Modeling of Computer Systems (SIGMETRICS ’96), pp. 13-24,
1996.

[13] W.E. Leland and T.J. Ott, “Load-Balancing Heuristics and Process
Behavior,” Proc. Performance and ACM SIGMETRICS, vol. 14,
pp. 54-69, 1986.

[14] M. Litzkow, M. Livny, and M.W. Mutka, “Condor—A Hunter of
Idle Workstations,” Proc. Eighth Int’l Conf. Distributed Computing
Systems, pp. 104-111, 1988.

[15] C.H. Papadimitriou and M. Yannakakis, “Towards an Architec-
ture-Independent Analysis of Parallel Algorithms, ” SIAM
J. Computering, vol. 19, pp. 322-328, 1990.

[16] G.F. Pfister, In Search of Clusters. Prentice-Hall, 1995.
[17] A.L. Rosenberg, “Guidelines for Data-Parallel Cycle-Stealing in

Networks of Workstations, I: On Maximizing Expected Output,”
J. Parallel and Distributed Computing, vol. 59, pp. 31-53, 1999.

[18] A.L. Rosenberg, “Guidelines for Data-Parallel Cycle-Stealing in
Networks of Workstations, II: On Maximizing Guaranteed Out-
put,” Int’l J. Foundations of Computer Science, vol. 11, pp. 183-204,
2000.

[19] A.L. Rosenberg, “Sharing Partitionable Workloads in Heteroge-
neous NOWs: Greedier Is not Better,” Proc. IEEE Int’l Conf. Cluster
Computing, pp. 124-131, 2001.

[20] S.W. White and D.C. Torney, “Use of a Workstation Cluster for the
Physical Mapping of Chromosomes,” SIAM NEWS, pp. 14-17,
Mar. 1993.

Arnold L. Rosenberg received the AB in
mathematics from Harvard College in 1962 and
the AM and PhD in applied mathematics from
Harvard University, in 1963 and 1966, respec-
tively. He is a Distinguished University Professor
of Computer Science at the University of
Massachusetts (UMass) at Amherst, where he
codirects the Theoretical Aspects of Parallel and
Distributed Systems (TAPADS) Laboratory.
Prior to joining UMass, he was a professor of

computer science at Duke University from 1981 to 1986 and a research
staff member at the IBM Watson Research Center from 1965 to 1981.
He has held visiting positions at Yale University and the University of
Toronto; he was a Lady Davis Visiting Professor at the Technion (Israel
Institute of Technology) in 1994 and a Fulbright Research Scholar at the
University of Paris-South in 2000. His research focuses on theoretical
aspects of parallel computing systems and communication networks,
with emphasis on developing algorithmic techniques for designing better
networks and architectures and using them more efficiently. He is the
author of more than 135 technical papers on these and other topics in
theoretical computer science and discrete mathematics. He is the
coauthor of the new book, Graph Separators, with Applications, Kluwer
Academic/Plenum Publishers. He is a fellow of the ACM, a fellow of the
IEEE, a Golden Core member of the IEEE Computer Society, and a
member of SIAM. He is the current conference chair of the ACM
Symposium on Parallel Algorithms and Architectures and serves on
several journal editorial boards. Information on his publications and
other activities can be found at http://www.cs.umass.edu/~rsnbrg/.

. For more information on this or any computing topic, please visit
our Digital Library at http://computer.org/publications/dlib.

ROSENBERG: OPTIMAL SCHEDULES FOR CYCLE-STEALING IN A NETWORK OF WORKSTATIONS WITH A BAG-OF-TASKS WORKLOAD 191


