
Programming Environments forHigh-Performane Grid Computing:the Albatross ProjetThilo Kielmann a;� Henri E. Bal a, Jason Maassen a,Rob van Nieuwpoort a, Lionel Eyraud b, Rutger Hofman a,Kees Verstoep aaDivision of Mathematis and Computer Siene, Vrije Universiteit, Amsterdam,The Netherlandsb �Eole Normale Sup�erieure de Lyon, FraneAbstratThe aim of the Albatross projet is to study appliations and programming environ-ments for omputational Grids. We fous on high performane appliations, runningin parallel on multiple lusters or MPPs that are onneted by wide-area networks(WANs). We briey present three Grid programming environments developed inthe ontext of the Albatross projet: the MagPIe library for olletive ommuni-ation with MPI, the Repliated Method Invoation mehanism for Java (RepMI),and the Java-based Satin system for running divide-and-onquer programs on Gridplatforms.A major hallenge in investigating the performane of suh appliations is theatual WAN behavior. Typial wide-area links are just part of the Internet and thusshared among many appliations, making runtime measurements irreproduible andthus sienti�ally hardly valuable. To overome this problem, we developed a WANemulator as part of Panda, our general-purpose ommuniation substrate. The WANemulator allows us to run parallel appliations on a single (large) parallel mahinewith only the wide-area links being emulated. The Panda emulator is highly aurateand on�gurable at runtime. We present a ase study in whih Satin runs arossvarious emulated WAN senarios.Key words: Grid omputing, wide-area network emulation, Albatross, MagPIe,Panda, RepMI, Satin� Corresponding author.Email addresses: kielmann�s.vu.nl (Thilo Kielmann), bal�s.vu.nl (HenriE. Bal), jason�s.vu.nl (Jason Maassen), rob�s.vu.nl (Rob van Nieuwpoort),Preprint submitted to Elsevier Siene 1 Otober 2001

1 IntrodutionThe development of omputational Grids opens up possibilities for ompletelynew types of appliations, ranging from aess to remote data and instrumentsto distributed superomputing on geographially distributed resoures. Expe-riene with several distributed superomputing appliations shows that thistehnique an e�etively solve hallenging problems that annot be done withmore tradional approahes. Examples inlude RSA-155 [1℄, SETI�home [2℄,and Entropia [3℄. Unfortunately, these ase studies are limited to parallel ap-pliations that are extremely oarse-grained.In our researh, alled the Albatross projet, we study whether this approahan be made more general by running medium-grained high-performane ap-pliations on a Grid. The key problem of ourse is the low ommuniationperformane of the wide-area networks (WANs) in a Grid, whih typially areorders of magnitude slower than loal interonnets. We believe, however, thatin pratie many parallel Grid appliations will run on olletions of lusters,NOWs, or superomputers, rather than on individual workstations on the In-ternet. A olletion of, say, lusters an be seen as a hierarhial system withfast loal ommuniation (over the LAN) and slow wide-area ommuniation(over the WAN). We therefore study how parallel appliations an be op-timized to run eÆiently on hierahial systems. To do useful performaneexperiments, we also have built a geographially distributed luster system,alled DAS, whih onsists of four Myrinet-based lusters loated at di�erentuniversities in The Netherlands.In the �rst phase of the Albatross projet, we have suesfully optimized manymedium-grained appliations to run eÆiently on a DAS-like system, show-ing that there is far more opportunity for distributed superomputing thanmay be expeted. Next, we have developed several programming environmentsthat ease the development parallel Grid appliations. Eah environment takesthe hierarhial struture of the Grid into aount and optimizes ertain as-pets: MagPIe (an MPI library) optimizes olletive ommuniation, RepMI(a Java extension) supports objet repliation on Grids, and Satin is a Java-entri divide-and-onquer system that optimizes load balaning. In the paper,we summarize these three programming environments briey. Finally, we de-sribe new researh that aims at a methologial performane evaluation ofparallel appliations and programming systems on a Grid. The key idea is thedevelopment of a testbed that emulates a Grid on a single large luster andsupports various user-de�ned performane senarios for the wide-area links ofthe emulated Grid. We give a detailed performane evaluation of several loadleyraud�ens-lyon.fr (Lionel Eyraud), rutger�s.vu.nl (Rutger Hofman),versto�s.vu.nl (Kees Verstoep). 2

balaning algorithms in Satin using this testbed.The outline of the paper is as follows. In Setion 2 we desribe the DASsystem and the three programming environments MagPIe, RepMI, and Satin.In Setion 3 we desribe the Panda wide-area emulator. In Setion 4 we presentthe ase study for the Satin load balaning algorithms. Finally, Setion 5disusses related work and Setion 6 onludes.2 The Albatross Grid Programming EnvironmentsThe Albatross projet started by investigating the behavior of medium-grainedparallel appliations, running on multiple luster omputers that are onnetedby wide-area links [4{6℄. Our experimentation platform is the DistributedASCI Superomputer (DAS), as shown in Fig. 1. It onsists of Myrinet-basedluster omputers loated at four Duth universities that partiipate in theASCI researh shool. 1 Eah DAS ompute node is a 200MHz Pentium-Pro,running RedHat Linux. By the end of 2001, a follow-up system, alled DAS-2, will be operational. DAS-2 will onsist of �ve Myrinet-based lusters withdual Pentium-III nodes, enabling us to investigate the behavior of parallelappliations on multiple lusters of SMPs.
LeidenDelft

SURF
net

128

24 24

24

VU Amsterdam UvA Amsterdam

Fig. 1. The wide-area DAS systemThe �ndings from [4{6℄ indiate that parallel appliations that have beenwritten for homogeneous systems (like a single luster omputer) do not runeÆiently on multi-luster systems with hierahial network interonnets.1 The ASCI researh shool is unrelated to, and ame into existene before, theAelerated Strategi Computing Initiative.3

However, most appliations an be rewritten in order to tolerate the highlateny and the low bandwidth of the WAN links. High WAN lateny an betolerated by overlapping omputation with asynhronous ommuniation. LowWAN bandwidth an be tolerated by reduing ommuniation overhead, bothby avoiding redundant ommuniation between lusters and by ombiningseveral short messages into longer ones that an be proessed more eÆiently.However, suh appliations an not run eÆiently on multi-luster systemsthat either inherently require high inter-luster bandwidth or that rely onfrequent synhronization between proesses. In the latter ase, the high WANlateny auses the performane problems.Our manual modi�ations to the appliation soure ode were e�etive butalso inreased ode omplexity. In an ideal ase, the multi-luster aspets ofommuniation should be separated from the appliation-spei� parts of thesoure ode. For this purpose, we developed the Grid programming environ-ments presented in the following subsetions.2.1 MagPIeThe olletive ommuniation operations as de�ned by the MPI standard [7℄desribe an important set of ommuniation patterns ouring between groupsof proesses. Frequently used examples are the broadast, barrier, and redueoperations. Our MagPIe library [8,9℄ implements MPI's olletive operationswith optimizations for wide area systems (Grids). Existing parallel MPI appli-ations an be run on Grid platforms using MagPIe by relinking the programswith our library. No hange in appliation ode is neessary. MagPIe is inde-pendent of the underlying MPI platform. MagPIe has a simple API throughwhih the underlying Grid omputing platform (Panda, in our ase) providesthe information about the number of lusters in use, and whih proess isloated in whih luster.MagPIe's basi idea is to adapt MPI's olletive algorithms to the hierarhialshape of Grid-based systems. Our hierarhial olletive algorithms speed upolletive ompletion time by reduing the utilization of the slow wide-arealinks to the neessary minimum. For this purpose, MagPIe ensures that eahsender-reeiver path ontains at most one wide-area link and that eah dataitem is sent at most one to eah reeiving luster. We have shown in [8,9℄ thatMagPIe signi�antly redues the ompletion times of individual olletive op-erations as well as that of parallel appliations, ompared to Grid-unaware ol-letive algorithms. Atual performane improvements depend on the numberof lusters and on WAN lateny/bandwidth. With long messages, wide-areabandwidth needs to be utilized arefully. MagPIe ahieves this by splittinglong messages into small segments whih an be sent in parallel over multiple4

wide-area links.2.2 RepMIOur work in [4℄ investigated the use of Java RMI for running parallel applia-tions on Grid platforms. We found that manually optimized Java appliationsan indeed run eÆiently on a Grid platform, at the prie of using RMI ina style resembling \message passing." Sharing objets using RMI, however,leads to prohibitive performane penalties.An important observation is that many shared objets have a very high ratioof read to write operations. Using objet repliation an help solving the per-formane problems for suh objets. For this purpose, we have delevoped theRepliated Method Invoation mehanism (RepMI) [10℄. RepMI is a ompiler-based approah for objet repliation in Java that is designed to resemble aRemote Method Invoation. Our model does not allow arbitrarily omplexobjet graphs to be repliated, but deliberately imposes restritions to ob-tain a lear programming model and high performane. Briey, our modelallows the programmer to de�ne losed groups of objets, alled louds, thatare repliated as a whole. A loud has a single entry point, alled the rootobjet, on whih its methods are invoked. The ompiler and runtime systemtogether determine whih methods will only read (but not modify) the objetloud; suh read-only methods are exeuted loally, without any ommunia-tion. Methods that modify any data in the loud are broadast and appliedto all replias. RepMI implements a MagPIe-like broadast operation for Gridenvironments. The semantis of suh repliated method invoations are similarto those of RMI. We have implemented RepMI in the Manta high-performaneJava system [11℄.2.3 SatinSatin's programming model is an extension of the single-threaded Java model.To ahieve parallel exeution, Satin programs do not have to use Java's threadsor Remote Method Invoations (RMI). Instead, they use the muh simplerdivide-and-onquer primitives. Satin does allow the ombination of its divide-and-onquer primitives with Java threads and RMIs. Additionally, Satin pro-vides shared objets via RepMI.We augmented the Java language with three keywords, muh as in the Cilk [12℄system: spawn, syn, and satin. The satin modi�er is plaed in front of amethod delaration. It indiates that the method may be spawned. The spawnkeyword is plaed in front of a method invoation to indiate possibly paral-5

lel exeution. We all this a spawned method invoation. Coneptually, a newthread is started for running the method upon invoation. Satin's implemen-tation, however, eliminates thread reation altogether. A spawned method in-voation is put into a loal work queue. From the queue, the method might betransferred to a di�erent CPU where it may run onurrently with the methodthat exeuted the spawn. The syn operation waits until all spawned allsin the urrent method invoation are �nished; the return values of spawnedmethod invoations are unde�ned until a syn is reahed. A detailed desrip-tion of Satin's implementation an be found in [14℄.Spawned method invoations are distributed aross the proessors of a par-allel Satin program by work stealing from the work queues mentioned above.In [15℄, we presented a new work stealing algorithm, Cluster-aware RandomStealing (CRS), spei�ally designed for luster-based, wide-area (Grid om-puting) systems. In Setion 4, we will present a ase study with Satin runningaross a variety of emulated wide-area network senarios. We run four parallelappliations, for eah omparing the following three work stealing algorithms.A detailed desription of Satin's wide-area work stealing an be found in [15℄.Random Stealing (RS) RS attempts to steal a job from a randomly se-leted peer when a proessor �nds its own work queue empty, repeatingsteal attempts until it sueeds [12,13℄. This approah minimizes ommuni-ation overhead at the expense of idle time. No ommuniation is performeduntil a node beomes idle, but then it has to wait for a new job to arrive. Ona single-luster system, RS is the best performing load-balaning algorithm.On wide-area systems, however, this is not the ase. With C lusters, onaverage (C � 1)=C � 100% of all steal requests will go to nodes in remotelusters, ausing signi�ant wide-area ommuniation overheads.Cluster-Hierarhial Stealing (CHS) CHS has been proposed for loadbalaning divide-and-onquer appliations in wide-area systems [16,17℄. CHSminimizes wide-area ommuniation. The idea is to arrange proessors in atree topology, and to send steal messages along the edges of the tree. Whena node is idle, it �rst asks its hild nodes for work. If the hildren are alsoidle, steal messages will reursively desend the tree. Only when the entiresubtree is idle, messages will be sent upwards in the tree (e.g., aross WANlinks), asking parent nodes for work. CHS has the drawbak that all nodesof a luster have to beome idle before wide-area steal attempts are started.During the round-trip time of the steal message, the entire luster remainsidle.Cluster-aware Random Stealing (CRS) In CRS, eah node an diretlysteal jobs from nodes in remote lusters, but at most one job at a time.Whenever a node beomes idle, it �rst attempts to steal from a node in aremote luster. This wide-area steal request is sent asynhronously: Insteadof waiting for the result, the thief simply sets a ag and performs additional,synhronous steal requests to randomly seleted nodes within its own lus-6

ter, until it �nds a new job. As long as the ag is set, only loal stealingwill be performed. The handler routine for the wide-area reply simply resetsthe ag and, if the request was suessful, puts the new job into the workqueue. CRS ombines the advantages of RS inside a luster with a verylimited amount of asynhronous wide-area ommuniation. In Setion 4 wewill show that CRS performs almost as good as with a single, large luster,even in extreme wide-area network settings.3 The Panda Wide-area Network EmulatorOn the Distributed ASCI Superomputer (DAS) system, parallel program-ming environments run on top of our Panda ommuniation library [18℄. ForMPI-style message passing, we ported the MPICH library [19℄ to run on topof Panda. Both RepMI and Satin use our Manta high-performane Java sys-tem [11℄, whih also ommuniates via Panda.Panda provides an eÆient portability layer for parallel appliations and run-time systems. Its lower, system-level modules provide threads and ommunia-tion primitives. Panda's interfae modules provide higher-level ommuniationlike message passing, remote proedure all (RPC), and group ommuniation.Panda adapts itself to the underlying ommuniation system; e.g. it imple-ments reliable ommuniation if the underlying network does not guaranteepaket delivery. The nodes within a DAS luster ommuniate via Myrinet [20℄,to whih Panda has aess via the LFC ommuniation substrate [21℄.
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������

��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������

Gateway

Gateway

Emulator

Gateway

Emulator

Gateway

Panda

LFC

M
ag

P
Ie

 /
M

P
I

Manta
Java /

R
ep

M
I

S
at

in

Panda

LFC

M
ag

P
Ie

 /
M

P
I

Manta
Java /

R
ep

M
I

S
at

in

Panda

LFC

M
ag

P
Ie

 /
M

P
I

Manta
Java /

R
ep

M
I

S
at

in

Panda

LFC

M
ag

P
Ie

 /
M

P
I

Manta
Java /

R
ep

M
I

S
at

inPanda

TCPLFC

Panda

TCP LFC

WAN

LFC

Panda

LFC

Panda
Myrinet Myrinet

.

Fig. 2. Loal and wide-area ommuniation with Panda and the WAN emulatorPanda also allows to run parallel appliations aross multiple DAS lusters. Forthis purpose, one dediated node in eah luster ats as a gateway. Wheneveran appliation node wants to send a message to a node in a di�erent luster,it sends the message to its loal gateway node, whih in turn forwards it tothe gateway node of the remote luster, where the message gets forwarded tothe reeiver node. Between luster gateways, Panda ommuniates using the7

standard TCP protool. This ommuniation path is shown in Fig. 2, usingthe upper, shaded path between the two lusters (on the left and on the rightsides). The Panda gateway nodes run binaries of the atual appliation pro-gram. During program startup, a Panda gateway enters the ode for messageforwarding rather than the appliation's main() funtion.A major hallenge in investigating the performane of parallel Grid applia-tions is the atual WAN behavior. Typial wide-area (Internet) links are sharedamong many appliations, making runtime measurements irreproduible andthus sienti�ally hardly valuable. To overome this problem, we developed aWAN emulator for Panda. The WAN emulator allows us to run parallel appli-ations on a single (large) luster with only the wide-area links being emulated.For this purpose, Panda provides an emulator version of its gateway funtion-ality. Here, ommuniation between gateway nodes physially ours inside asingle luster, in our ase using Myrinet. This ommuniation path is shownin Fig. 2, using the lower path between the two lusters.The atual emulation of WAN behavior ours in the reeiving luster gate-ways whih delay inoming messages before forwarding them to the respetivereeivers. On arrival of a message from a remote luster, the gateway om-putes the emulated arrival time, taking into aount the emulated latenyand bandwidth from sending to reeiving luster, and the message length.The message is then put into a queue and gets delivered as soon as the delayexpires. With this setup, the WAN emulation is ompletely transparent tothe appliation proesses, allowing realisti and simultaneously reproduiblewide-area experimentation.
0

5

10

15

20

25

1 4 16 64 256 1024 4096 16384 65536

La
te

nc
y

(m
se

c)

Message size (bytes)

Latency for the VU - Delft link

Real measurements
Emulated

0

100

200

300

400

500

600

700

800

900

1 32 1024 32768 1048576 33554432

B
an

dw
id

th
 (

K
by

te
s/

se
c)

Message size (bytes)

Bandwidth for the VU - Delft link

Real measurements
Emulated

Fig. 3. Measured vs. emulated lateny and bandwidth between 2 DAS lusters (inboth diretions)We also investigated the preision of our emulator. Therefore, we measuredbandwidth and lateny between the DAS lusters using ping-pong tests withmessages of varying sizes. We then fed the measured parameters into theemulator and re-ran our tests. Fig. 3 ompares real and emulated lateny andbandwidth between the DAS lusters at VU (Amsterdam) and Delft Universityof Tehnology (in both diretions). In the graphs, the respetive pairs of lines8

are hardly distinguishable, giving evidene for the lose math between thereal system and its emulation. The measurements for the other wide-areaDAS links show similar behavior.Whenever a message arrives at a gateway node, its delay time is omputed.For making the emulation dynamially on�gurable, the delay omputationis enapsulated in an upall routine, that is alled upon message arrival. Thegateways an be on�gured at any time of an appliation run by ativatingone of the following kinds of upall routine. Furthermore, our emulator allowsadditional, user-de�ned upalls to be used.The onstant upall emulates a WAN in whih eah link has onstant la-teny and bandwidth. However, eah sender-reeiver pair of gateways mayhave di�erent link speeds.The sript upall is a variation of the onstant upall. Here, the gatewaysinterpret a on�guration sript in order to hange the setting of the linkparameters throughout the appliation run. Fig. 4 shows a sample sriptused for the ase study presented in Setion 4.The TCP upall is another variation of the onstant upall. Here, the gate-ways aept ommands from a remote proess on a given TCP port. We havedeveloped a Java-based GUI proess that allows a human user to dynami-ally hange the emulated links while an appliation is running.The measure upall lets eah gateway read lateny and bandwidth valuesfrom prereorded �les ontaining time series, e.g. from measurements of realwide-area links. One of the senarios in Setion 4 uses the measure upall toemulate the behavior of the real DAS system, as measured by the NetworkWeather Servie (NWS) [22℄.The emulation upalls an be ativated in two di�erent ways. First, Pandaan interpret ommand line options to selet and parameterize an upall. Thisway, the emulation is ompletely transparent to the appliation program. Moreexible, although not transparent to the appliation, is Panda's emulation APIthat allows a running appliation program to diretly inuene the gatewaybehavior. The emulation API allows, for example, the ativation of a user-de�ned upall or the ontrolled experimentation from inside the appliationitself.4 A Case Study: Evaluation of Satin using various WAN SenariosWe will now present a ase study in whih we evaluate Satin's work stealing al-gorithms by running four di�erent appliations aross four emulated lusters.We use the following nine di�erent WAN senarios of inreasing omplexity,demonstrating the exibility of Panda's WAN emulator. Fig. 5 illustrates se-9

narios 1{8 in detail.(1) The WAN is fully onneted. The lateny of all links is 100ms; but thebandwidth di�ers between the links.(2) The WAN is fully onneted. The bandwidth of all links is 100KB/s; butthe lateny di�ers between the links.(3) The WAN is fully onneted. Both lateny and bandwidth di�er betweenthe links.(4) Like senario 3, but the link between lusters 1 and 4 drops every thirdseond from 100KB/s and 100ms to 1KB/s and 300ms, emulating beingbusy due to unrelated, bursty network traÆ. Fig. 4 shows the emulatorsript used for this senario.(5) Like senario 3, but every seond all links hange bandwidth and latenyto random values between 10% and 100% of their nominal bandwidth,and between 1 and 10 times their nominal lateny.(6) All links have 100ms lateny and 100KB/s bandwidth. Unlike the previ-ous senarios, two WAN links are missing, ausing ongestion among thedi�erent lusters.(7) Like senario 3, but two WAN links are missing.(8) Like senario 5, but two WAN links are missing.(9) Bandwidth and lateny are taken from pre-reorded NWS measurementsof the real DAS system.read senario3sleep 2000foreverset_sym one 1 4 1000 0.3sleep 1000set_sym one 1 4 1000000 0.001sleep 2000Fig. 4. The emulator sript for senario 4We used the following Satin appliations, taken from the set presented in [15℄.Adaptive Integration numerially integrates a funtion over a given inter-val by reursive interval division. This appliation is mostly sensitive tolateny beause the job desriptions and results an be sent in very shortmessages.N Queens solves the problem of plaing n queens on a n � n hess board.This appliation sends medium-size messages and has a very irregular tasktree.Ray Traer is a simple ray traing program. It divides a sreen down to jobsof single pixels. The individually alulated pixel olors are omposed intolarger image segments. This appliation sends long result mesages, makingit sensitive to the available bandwidth.Traveling Salesperson solves the famous problem of �nding the shortest10

1

1

4

2

3
1000 KB/s, 100 ms

200 KB/s, 100 ms

30
0

K
B

/s
, 1

00
 m

s 500 K
B

/s, 100 m
s

80
0 K

B/s

10
0 m

s

100 KB/s

100 m
s

2

1

4

2

3

100 KB/s, 30 ms

10
0

K
B

/s
, 8

0
m

s 100 K
B

/s, 50 m
s

10
0 K

B/s

8 m
s

100 KB/s

100 m
s

100 KB/s, 1 ms

3

1

4

2

3

200 KB/s, 30 ms

30
0

K
B

/s
, 8

0
m

s 500 K
B

/s, 50 m
s

80
0 K

B/s

8 m
s

100 KB/s

100 m
s

1000 KB/s, 1 ms

100 KB/s, 100 ms

1 KB/s, 300 ms

4

1

4

2

3

200 KB/s, 30 ms

30
0

K
B

/s
, 8

0
m

s 500 K
B

/s, 50 m
s

80
0 K

B/s

8 m
s

1000 KB/s, 1 ms

10%

100%

5

1

4

2

3

200 KB/s, 30 ms

30
0

K
B

/s
, 8

0
m

s 500 K
B

/s, 50 m
s

80
0 K

B/s

8 m
s

100 KB/s

100 m
s

1000 KB/s, 1 ms

6

1

4

2

3

100 KB/s, 100 ms

10
0 K

B/s

10
0 m

s

100 KB/s

100 m
s

100 KB/s, 100 ms

7

1

4

2

3

200 KB/s, 30 ms

80
0 K

B/s

8 m
s

100 KB/s

100 m
s

1000 KB/s, 1 ms

10%

100%

8

1

4

2

3

200 KB/s, 30 ms

80
0 K

B/s

8 m
s

100 KB/s

100 m
s

1000 KB/s, 1 msFig. 5. Emulated WAN senarios 1{8path between n ities. By passing the distane table as a parameter, medium-sized messages are exhanged.Fig. 6 shows the speedups ahieved by the four appliations on four lusters of16 nodes eah, with the WAN links between them being emulated aording tothe nine senarios desribed above. For omparison, we also show the speedupsfor a single, large luster of 64 nodes. The three work stealing algorithmsdesribed in Setion 2 are ompared with eah other. RS sends by far the most11

0

20

40

60
sp

ee
du

p

RS CHS CRS

Adaptive Integration

0

20

40

60

sp
ee

du
p

RS CHS CRS

N Queens

0

20

40

60

sp
ee

du
p

RS CHS CRS

Ray Tracer

0

20

40

60
sp

ee
du

p

RS CHS CRS

Traveling Salesperson

single cluster Scenario 1

Scenario 2

Scenario 3

Scenario 4

Scenario 5

Scenario 6

Scenario 7

Scenario 8

Scenario 9Fig. 6. Speedups of 4 Satin appliations with 3 load balaning algorithms and 9di�erent, emulated WAN senariosmessages aross the WAN links. The speedups it ahieves are signi�antlysmaller, ompared to a single, large luster. This is espeially the ase insenarios in whih high WAN lateny auses long idle times or in whih lowbandwidth auses network ongestion. CHS is always the worst-performingalgorithm, even within a single luster, due to omplete lusters being idleduring a work-stealing message roundtrip time.12

CRS always is the best performing algorithm. Due to its limited and asyn-hronous wide-area ommuniation, it an tolerate even very irregular WANsenarios, resulting in speedups lose to a single, large luster. However, thereare a few exeptions to the very high speedups ahieved by CRS whih ourwhenever the WAN bandwidth beomes too low for the appliation's require-ments. This happens with senarios 4, 8, and 9. But even in those ases, CRSstill is Satin's best performing work-stealing algorithm.5 Related WorkMany Grid omputing projets fous on building software infrastrutures thatenable appliation exeution in Grid evironments [23{25℄. Our Panda libraryan provide the ommuniation-related runtime system for parallel applia-tions that are running on top of suh Grid infrastrutures.Network simulators like NSE [26℄ or DaSSF [27℄ fous on paket delivery andnetwork protools, rather than the network behavior as it is observed by an ap-pliation. LAPSE [28℄ simulates parallel appliations on on�gurations withmore than the available number of CPUs; the network behavior simulatesthe Intel Paragon mahines. The MiroGrid software [29℄ virtualizes the Gridresoures like memory, CPU, and networks. For the simulation, all relevantsystem alls are trapped and mediated through the MiroGrid sheduler andthe NSE network simulator. This approah goes further than Panda's networkemulation, but also impats the sequential exeution of the appliation bina-ries. Panda's wide-area emulator, however, allows to run unmodi�ed binariesof a parallel appliation, onneting them via physial LANs and emulatedWANs. This network emulation provides a unique environment for experi-mentation with parallel appliations on Grid platforms, whih has led to thedevelopment of our Grid programming environments.Some projets provide Grid-enabled implementations of the message passinginterfae, MPI. MPI Connet [30℄ fouses on interoperability between hetero-geneous platforms. The works in [31,32℄ provide Grid-optimized implementa-tions for some of MPI's olletive operations. Our MagPIe library, however,provides the most omplete and advaned set of olletive operations for Gridplatforms.Systems like the SuperWeb [33℄, Gateway [34℄, and Bayanihan [35℄ provideJava-entri environments for Grid omputing platforms. However, eÆientGrid-aware ommuniation mehanisms for parallel appliations are not anissue for these systems. Atlas [16℄ and Javelin 2.0 [36℄ are other Java-baseddivide-and-onquer systems for Grid omputing. Their main fous is on het-erogeneity and fault tolerane. Satin's main objetive is appliation speed.13

Both MPJ [37℄ and CCJ [38℄ provide MPI-style message passing and olletiveommuniation for Java. Although their set of ommuniation mehanisms isriher than RMI and RepMI, they do not ome with implementations that areoptimized for wide-area Grid platforms. Finally, Hyperion [39℄, Jakal [40℄, andJavanaise [41℄ implement shared Java objets based on objet ahing. Thesesystems do not aim at Grid omputing either. In ontrast, our RepMI meh-anism is based on message shipping for whih we also provide a Grid-awareimplementation.6 ConlusionsIn the Albatross projet, we study the eÆieny of high-performane applia-tions with medium-grained ommuniation patterns on Grid omputing plat-forms. The key problem is the low ommuniation performane of the wide-area networks (WANs) in a Grid, whih typially are orders of magnitudeslower than loal interonnets. In the initial phase of the projet, we de-veloped several strategies for modifying a parallel appliation to improve itsruntime eÆieny on a Grid. We use these modi�ation strategies to buildprogramming environments for writing high-performane Grid appliations.In this paper, we have desribed three suh environments, MagPIe, RepMI,and Satin. A major hallenge in investigating the performane of Grid appli-ations is the atual WAN behavior. Typial wide-area links are shared amongmany appliations, making runtime measurements irreproduible and thus si-enti�ally hardly valuable. To allow a realisti performane evaluation of Gridprogramming systems and their appliations, we have developed the PandaWAN emulator, a testbed that emulates a Grid on a single, large luster.The testbed runs the appliations in parallel but emulates wide-area links byadding arti�ial delays. The lateny and bandwidth of the WAN links an bespei�ed by the user in a highly exible way. This network emulation providesa unique environment for experimentation with high-performane appliationson Grid platforms.We have used the Panda WAN emulator to evaluate the performane of one ofthe three programming environments (Satin) under many di�erent WAN se-narios. The emulator allowed us to ompare several load balaning algorithmsused by Satin under onditions that are realisti for an atual Grid, but thatare hard to reprodue on suh a Grid. Our experiments showed that Satin'sCHS algorithm an atually tolerate a large variety of WAN link performanesettings, and shedule parallel divide-and-onquer appliations suh that theyrun almost as fast on multiple lusters as they do on a single, large lus-ter. In the near future, we will also investigate our other Grid programmingenvironments on a variety of di�erent wide-area network senarios.14

AknowledgementsThis work is supported in part by a USF grant from the Vrije Universiteit. Thewide-area DAS system is an initiative of the Advaned Shool for Computingand Imaging (ASCI). We thank Ceriel Jaobs, Gr�egory Mouni�e, John Romein,and Ronald Veldema for their ontributions to this paper.Referenes[1℄ RSA Laboratories, Fatorization of RSA-155,http://www.rsaseurity.om/rsalabs/hallenges/fatoring/rsa155.html.[2℄ SETI�home, The Searh for Extraterrestrial Intelligene,http://setiathome.ssl.berkeley.edu/.[3℄ Entropia In., Distributed Computing, http://www.entropia.om/.[4℄ R. van Nieuwpoort, J. Maassen, H. E. Bal, T. Kielmann, R. Veldema, Wide-Area Parallel Programming using the Remote Method Invoation Model,Conurreny: Pratie and Experiene 12 (8) (2000) 643{666.[5℄ A. Plaat, H. E. Bal, R. F. H. Hofman, T. Kielmann, Sensitivity of ParallelAppliations to Large Di�erenes in Bandwidth and Lateny in Two-LayerInteronnets, Future Generation Computer Systems 13 (8{9) (2001) 769{782.[6℄ J. W. Romein, H. E. Bal, Wide-Area Transposition-Driven Sheduling, in:IEEE International Symposium on High Performane Distributed Computing(HPDC-10), San Franiso, CA, 2001.[7℄ Message Passing Interfae Forum, MPI: A Message Passing Interfae Standard,International Journal of Superomputing Appliations 8 (3/4).[8℄ T. Kielmann, R. F. H. Hofman, H. E. Bal, A. Plaat, R. A. F. Bhoedjang,MagPIe: MPI's Colletive Communiation Operations for Clustered WideArea Systems, in: Seventh ACM SIGPLAN Symposium on Priniples andPratie of Parallel Programming (PPoPP'99), Atlanta, GA, 1999, pp. 131{140.[9℄ T. Kielmann, H. E. Bal, S. Gorlath, K. Verstoep, R. F. Hofman, NetworkPerformane-aware Colletive Communiation for Clustered Wide AreaSystems, Parallel Computing 27 (11) (2001) 1431{1456.[10℄ J. Maassen, T. Kielmann, H. E. Bal, Parallel Appliation Experiene withRepliated Method Invoation, Conurreny & Computation: Pratie &Experiene 13 (8{9) (2001) 681{712.[11℄ J. Maassen, R. van Nieuwpoort, R. Veldema, H. Bal, T. Kielmann, C. Jaobs,R. Hofman, EÆient Java RMI for Parallel Programming, Aepted for15

publiation in ACM Transations on Programming Languages and Systems(TOPLAS) (2001) .[12℄ R. D. Blumofe, C. E. Leiserson, Sheduling multithreaded omputations bywork stealing, in: 35th Annual Symposium on Foundations of Computer Siene(FOCS'94), Santa Fe, New Mexio, 1994, pp. 356{368.[13℄ I.-C. Wu, H. Kung, Communiation Complexity for Parallel Divide-and-Conquer, in: 32nd Annual Symposium on Foundations of Computer Siene(FOCS '91, San Juan, Puerto Rio, 1991, pp. 151{162.[14℄ R. van Nieuwpoort, T. Kielmann, H. E. Bal, Satin: EÆient Parallel Divide-and-Conquer in Java, in: Euro-PAR 2000, no. 1900 in Leture Notes in ComputerSiene, Springer, Munih, Germany, 2000, pp. 690{699.[15℄ R. van Nieuwpoort, T. Kielmann, H. E. Bal, EÆient Load Balaning forWide-area Divide-and-Conquer Appliations, in: ACM SIGPLAN Symposiumon Priniples and Pratie of Parallel Programming (PPoPP'01), Snowbird,Utah, 2001, pp. 34{43.[16℄ J. Baldeshwieler, R. Blumofe, E. Brewer, ATLAS: An Infrastruture for GlobalComputing, in: Seventh ACM SIGOPS EuropeanWorkshop on System Supportfor Worldwide Appliations, 1996.[17℄ M. Bakshat, A. PfaÆnger, C. Zenger, Eonomi Based Dynami LoadDistribution in Large Workstation Networks, in: Euro-Par'96, no. 1124 inLeture Notes in Computer Siene, Springer, 1996, pp. 631{634.[18℄ T. R�uhl, H. E. Bal, G. Benson, R. A. F. Bhoedjang, K. Langendoen, Experienewith a Portability Layer for Implementing Parallel Programming Systems, in:International Conferene on Parallel and Distributed Proessing Tehniques andAppliations (PDPTA'96), Sunnyvale, CA, 1996, pp. 1477{1488.[19℄ W. Gropp, E. Lusk, N. Doss, A. Skjellum, A High-performane, PortableImplementation of the MPI Message Passing Interfae Standard, ParallelComputing 22 (6) (1996) 789{828.[20℄ N. Boden, D. Cohen, R. Felderman, A. Kulawik, C. Seitz, J. Seizovi, W. Su,Myrinet: A Gigabit-per-seond Loal Area Network, IEEE Miro 15 (1) (1995)29{36.[21℄ R. A. F. Bhoedjang, T. R�uhl, H. E. Bal, User-Level Network Interfae Protools,IEEE Computer 31 (11) (1998) 53{60.[22℄ R. Wolski, Foreasting Network Performane to Support Dynami ShedulingUsing the Network Weather Servie, in: Pro. High-Performane DistributedComputing (HPDC-6), Portland, OR, 1997, pp. 316{325, the network weatherservie is at http://nws.npai.edu/.[23℄ I. Foster, C. Kesselman, Globus: A Metaomputing Infrastruture Toolkit,International Journal of Superomputer Appliations 11 (2) (1997) 115{128.16

[24℄ A. Grimshaw,W. A. Wulf, The Legion Vision of a Worldwide Virtual Computer,Communiations of the ACM 40 (1) (1997) 39{45.[25℄ G. E. Fagg, K. Moore, J. J. Dongarra, A. Geist, Salable Network InformationProessing Environment (SNIPE), in: SC'97, 1997,http://www.superomp.org/s97/proeedings/.[26℄ S. Bajaj, L. Breslau, D. Estrin, K. Fall, S. Floyd, P. Haldara, M. Handley,A. Helmy, J. Heidemann, P. Huang, S. Kumar, S. MCanne, R. Rejaie,P. Sharma, K. Varadhan, Y. Xu, H. Yu, D. Zappala, Improving Simulation forNetwork Researh, Tehnial Report 99{702, University of Southern California(1999).[27℄ J. Liu, D. M. Niol, DaSSF 3.1 User's Manual,http://www.s.dartmouth.edu/~jasonliu/projets/ssf/ (2001).[28℄ P. M. Dikens, P. Heidelberger, D. M. Niol, A Distributed Memory LAPSE:Parallel Simulation of Message-Passing Programs, in: Proeedings of the 8thWorkshop on Parallel and Distributed Simulation (PADS '94), 1994.[29℄ H. J. Song, X. Liu, D. Jakobsen, R. Bhagwan, X. Zhang, K. Taura, A. Chien,The MiroGrid: a Sienti� Tool for Modeling Computational Grids, in:Superomputing 2000, Dallas, TX, 2000.[30℄ G. E. Fagg, K. S. London, J. J. Dongarra, MPI Connet: ManagingHeterogeneous MPI Appliations Interoperation and Proess Control, in: Pro.5th European PVM/MPI Users' Group Meeting, no. 1497 in LNCS, Liverpool,UK, 1998, pp. 93{96.[31℄ E. Gabriel, M. Resh, T. Beisel, R. Keller, Distributed Computing in aHeterogeneous Computing Environment, in: Pro. 5th European PVM/MPIUsers' Group Meeting, no. 1497 in LNCS, Liverpool, UK, 1998, pp. 180{187.[32℄ N. T. Karonis, B. R. de Supinski, I. Foster, W. Gropp, E. Lusk, J. Bresnahan,Exploiting Hierarhy in Parallel Computer Networks to Optimize ColletiveOperation Performane, in: Pro. International Parallel and DistributedProessing Symposium (IPDPS 2000), IEEE, Canun, Mexio, 2000, pp. 377{384.[33℄ A. D. Alexandrov, M. Ibel, K. E. Shauser, C. J. Sheiman, SuperWeb: ResearhIssues in Java-Based Global Computing, Conurreny: Pratie and Experiene9 (6) (1997) 535{553.[34℄ T. Haupt, E. Akarsu, G. Fox, A. Kalinihenko, K.-S. Kim, P. Sheethalnath,C.-H. Youn, The Gateway System: Uniform Web Based Aess to RemoteResoures, in: ACM 1999 Java Grande Conferene, San Franiso, CA, 1999,pp. 1{7.[35℄ L. F. G. Sarmenta, S. Hirano, Bayanihan: Building and Studying Web-Based Volunteer Computing Systems Using Java, Future Generation ComputerSystems 15 (5/6). 17

[36℄ M. O. Neary, A. Phipps, S. Rihman, P. Cappello, Javelin 2.0: Java-basedparallel omputing on the internet, in: Pro. Euro-Par 2000, Munih, Germany,2000, pp. 1231{1238.[37℄ B. Carpenter, V. Getov, G. Judd, A. Skjellum, G. Fox, MPJ: MPI-like MessagePassing for Java, Conurreny: Pratie and Experiene 12 (11) (2000) 1019{1038.[38℄ A. Nelisse, T. Kielmann, H. E. Bal, J. Maassen, Objet-based ColletiveCommuniation in Java, in: Joint ACM JavaGrande-ISCOPE 2001 Conferene,Stanford University, 2001, pp. 11{20.[39℄ G. Antoniu, L. Boug�e, P. Hather, M. MaBeth, K. MGuigan, R. Namyst,The Hyperion system: Compiling multithreaded Java byteode for distributedexeution, Parallel Computing .[40℄ R. Veldema, R. Hofman, C. Jaobs, R. Bhoedjang, H. Bal, Soure-Level GlobalOptimizations for Fine-Grain Distributed Shared Memory Systems, in: ACMSIGPLAN Symposium on Priniples and Pratie of Parallel Programming(PPoPP'01), Snowbird, Utah, 2001, pp. 83{92.[41℄ D. Hagimont, D. Louvegnies, Javanaise: Distributed Shared Objets for InternetCooperative Appliations, in: Pro. Middleware'98, The Lake Distrit, England,1998.

18

