
Programming Environments forHigh-Performan
e Grid Computing:the Albatross Proje
tThilo Kielmann a;� Henri E. Bal a, Jason Maassen a,Rob van Nieuwpoort a, Lionel Eyraud b, Rutger Hofman a,Kees Verstoep aaDivision of Mathemati
s and Computer S
ien
e, Vrije Universiteit, Amsterdam,The Netherlandsb �E
ole Normale Sup�erieure de Lyon, Fran
eAbstra
tThe aim of the Albatross proje
t is to study appli
ations and programming environ-ments for 
omputational Grids. We fo
us on high performan
e appli
ations, runningin parallel on multiple 
lusters or MPPs that are 
onne
ted by wide-area networks(WANs). We brie
y present three Grid programming environments developed inthe 
ontext of the Albatross proje
t: the MagPIe library for 
olle
tive 
ommuni-
ation with MPI, the Repli
ated Method Invo
ation me
hanism for Java (RepMI),and the Java-based Satin system for running divide-and-
onquer programs on Gridplatforms.A major 
hallenge in investigating the performan
e of su
h appli
ations is thea
tual WAN behavior. Typi
al wide-area links are just part of the Internet and thusshared among many appli
ations, making runtime measurements irreprodu
ible andthus s
ienti�
ally hardly valuable. To over
ome this problem, we developed a WANemulator as part of Panda, our general-purpose 
ommuni
ation substrate. The WANemulator allows us to run parallel appli
ations on a single (large) parallel ma
hinewith only the wide-area links being emulated. The Panda emulator is highly a

urateand 
on�gurable at runtime. We present a 
ase study in whi
h Satin runs a
rossvarious emulated WAN s
enarios.Key words: Grid 
omputing, wide-area network emulation, Albatross, MagPIe,Panda, RepMI, Satin� Corresponding author.Email addresses: kielmann�
s.vu.nl (Thilo Kielmann), bal�
s.vu.nl (HenriE. Bal), jason�
s.vu.nl (Jason Maassen), rob�
s.vu.nl (Rob van Nieuwpoort),Preprint submitted to Elsevier S
ien
e 1 O
tober 2001



1 Introdu
tionThe development of 
omputational Grids opens up possibilities for 
ompletelynew types of appli
ations, ranging from a

ess to remote data and instrumentsto distributed super
omputing on geographi
ally distributed resour
es. Expe-rien
e with several distributed super
omputing appli
ations shows that thiste
hnique 
an e�e
tively solve 
hallenging problems that 
annot be done withmore tradional approa
hes. Examples in
lude RSA-155 [1℄, SETI�home [2℄,and Entropia [3℄. Unfortunately, these 
ase studies are limited to parallel ap-pli
ations that are extremely 
oarse-grained.In our resear
h, 
alled the Albatross proje
t, we study whether this approa
h
an be made more general by running medium-grained high-performan
e ap-pli
ations on a Grid. The key problem of 
ourse is the low 
ommuni
ationperforman
e of the wide-area networks (WANs) in a Grid, whi
h typi
ally areorders of magnitude slower than lo
al inter
onne
ts. We believe, however, thatin pra
ti
e many parallel Grid appli
ations will run on 
olle
tions of 
lusters,NOWs, or super
omputers, rather than on individual workstations on the In-ternet. A 
olle
tion of, say, 
lusters 
an be seen as a hierar
hi
al system withfast lo
al 
ommuni
ation (over the LAN) and slow wide-area 
ommuni
ation(over the WAN). We therefore study how parallel appli
ations 
an be op-timized to run eÆ
iently on hiera
hi
al systems. To do useful performan
eexperiments, we also have built a geographi
ally distributed 
luster system,
alled DAS, whi
h 
onsists of four Myrinet-based 
lusters lo
ated at di�erentuniversities in The Netherlands.In the �rst phase of the Albatross proje
t, we have su

esfully optimized manymedium-grained appli
ations to run eÆ
iently on a DAS-like system, show-ing that there is far more opportunity for distributed super
omputing thanmay be expe
ted. Next, we have developed several programming environmentsthat ease the development parallel Grid appli
ations. Ea
h environment takesthe hierar
hi
al stru
ture of the Grid into a

ount and optimizes 
ertain as-pe
ts: MagPIe (an MPI library) optimizes 
olle
tive 
ommuni
ation, RepMI(a Java extension) supports obje
t repli
ation on Grids, and Satin is a Java-
entri
 divide-and-
onquer system that optimizes load balan
ing. In the paper,we summarize these three programming environments brie
y. Finally, we de-s
ribe new resear
h that aims at a methologi
al performan
e evaluation ofparallel appli
ations and programming systems on a Grid. The key idea is thedevelopment of a testbed that emulates a Grid on a single large 
luster andsupports various user-de�ned performan
e s
enarios for the wide-area links ofthe emulated Grid. We give a detailed performan
e evaluation of several loadleyraud�ens-lyon.fr (Lionel Eyraud), rutger�
s.vu.nl (Rutger Hofman),versto�
s.vu.nl (Kees Verstoep). 2



balan
ing algorithms in Satin using this testbed.The outline of the paper is as follows. In Se
tion 2 we des
ribe the DASsystem and the three programming environments MagPIe, RepMI, and Satin.In Se
tion 3 we des
ribe the Panda wide-area emulator. In Se
tion 4 we presentthe 
ase study for the Satin load balan
ing algorithms. Finally, Se
tion 5dis
usses related work and Se
tion 6 
on
ludes.2 The Albatross Grid Programming EnvironmentsThe Albatross proje
t started by investigating the behavior of medium-grainedparallel appli
ations, running on multiple 
luster 
omputers that are 
onne
tedby wide-area links [4{6℄. Our experimentation platform is the DistributedASCI Super
omputer (DAS), as shown in Fig. 1. It 
onsists of Myrinet-based
luster 
omputers lo
ated at four Dut
h universities that parti
ipate in theASCI resear
h s
hool. 1 Ea
h DAS 
ompute node is a 200MHz Pentium-Pro,running RedHat Linux. By the end of 2001, a follow-up system, 
alled DAS-2, will be operational. DAS-2 will 
onsist of �ve Myrinet-based 
lusters withdual Pentium-III nodes, enabling us to investigate the behavior of parallelappli
ations on multiple 
lusters of SMPs.
LeidenDelft

SURF
net

128

24 24

24

VU Amsterdam UvA Amsterdam

Fig. 1. The wide-area DAS systemThe �ndings from [4{6℄ indi
ate that parallel appli
ations that have beenwritten for homogeneous systems (like a single 
luster 
omputer) do not runeÆ
iently on multi-
luster systems with hiera
hi
al network inter
onne
ts.1 The ASCI resear
h s
hool is unrelated to, and 
ame into existen
e before, theA

elerated Strategi
 Computing Initiative.3



However, most appli
ations 
an be rewritten in order to tolerate the highlaten
y and the low bandwidth of the WAN links. High WAN laten
y 
an betolerated by overlapping 
omputation with asyn
hronous 
ommuni
ation. LowWAN bandwidth 
an be tolerated by redu
ing 
ommuni
ation overhead, bothby avoiding redundant 
ommuni
ation between 
lusters and by 
ombiningseveral short messages into longer ones that 
an be pro
essed more eÆ
iently.However, su
h appli
ations 
an not run eÆ
iently on multi-
luster systemsthat either inherently require high inter-
luster bandwidth or that rely onfrequent syn
hronization between pro
esses. In the latter 
ase, the high WANlaten
y 
auses the performan
e problems.Our manual modi�
ations to the appli
ation sour
e 
ode were e�e
tive butalso in
reased 
ode 
omplexity. In an ideal 
ase, the multi-
luster aspe
ts of
ommuni
ation should be separated from the appli
ation-spe
i�
 parts of thesour
e 
ode. For this purpose, we developed the Grid programming environ-ments presented in the following subse
tions.2.1 MagPIeThe 
olle
tive 
ommuni
ation operations as de�ned by the MPI standard [7℄des
ribe an important set of 
ommuni
ation patterns o

uring between groupsof pro
esses. Frequently used examples are the broad
ast, barrier, and redu
eoperations. Our MagPIe library [8,9℄ implements MPI's 
olle
tive operationswith optimizations for wide area systems (Grids). Existing parallel MPI appli-
ations 
an be run on Grid platforms using MagPIe by relinking the programswith our library. No 
hange in appli
ation 
ode is ne
essary. MagPIe is inde-pendent of the underlying MPI platform. MagPIe has a simple API throughwhi
h the underlying Grid 
omputing platform (Panda, in our 
ase) providesthe information about the number of 
lusters in use, and whi
h pro
ess islo
ated in whi
h 
luster.MagPIe's basi
 idea is to adapt MPI's 
olle
tive algorithms to the hierar
hi
alshape of Grid-based systems. Our hierar
hi
al 
olle
tive algorithms speed up
olle
tive 
ompletion time by redu
ing the utilization of the slow wide-arealinks to the ne
essary minimum. For this purpose, MagPIe ensures that ea
hsender-re
eiver path 
ontains at most one wide-area link and that ea
h dataitem is sent at most on
e to ea
h re
eiving 
luster. We have shown in [8,9℄ thatMagPIe signi�
antly redu
es the 
ompletion times of individual 
olle
tive op-erations as well as that of parallel appli
ations, 
ompared to Grid-unaware 
ol-le
tive algorithms. A
tual performan
e improvements depend on the numberof 
lusters and on WAN laten
y/bandwidth. With long messages, wide-areabandwidth needs to be utilized 
arefully. MagPIe a
hieves this by splittinglong messages into small segments whi
h 
an be sent in parallel over multiple4



wide-area links.2.2 RepMIOur work in [4℄ investigated the use of Java RMI for running parallel appli
a-tions on Grid platforms. We found that manually optimized Java appli
ations
an indeed run eÆ
iently on a Grid platform, at the pri
e of using RMI ina style resembling \message passing." Sharing obje
ts using RMI, however,leads to prohibitive performan
e penalties.An important observation is that many shared obje
ts have a very high ratioof read to write operations. Using obje
t repli
ation 
an help solving the per-forman
e problems for su
h obje
ts. For this purpose, we have delevoped theRepli
ated Method Invo
ation me
hanism (RepMI) [10℄. RepMI is a 
ompiler-based approa
h for obje
t repli
ation in Java that is designed to resemble aRemote Method Invo
ation. Our model does not allow arbitrarily 
omplexobje
t graphs to be repli
ated, but deliberately imposes restri
tions to ob-tain a 
lear programming model and high performan
e. Brie
y, our modelallows the programmer to de�ne 
losed groups of obje
ts, 
alled 
louds, thatare repli
ated as a whole. A 
loud has a single entry point, 
alled the rootobje
t, on whi
h its methods are invoked. The 
ompiler and runtime systemtogether determine whi
h methods will only read (but not modify) the obje
t
loud; su
h read-only methods are exe
uted lo
ally, without any 
ommuni
a-tion. Methods that modify any data in the 
loud are broad
ast and appliedto all repli
as. RepMI implements a MagPIe-like broad
ast operation for Gridenvironments. The semanti
s of su
h repli
ated method invo
ations are similarto those of RMI. We have implemented RepMI in the Manta high-performan
eJava system [11℄.2.3 SatinSatin's programming model is an extension of the single-threaded Java model.To a
hieve parallel exe
ution, Satin programs do not have to use Java's threadsor Remote Method Invo
ations (RMI). Instead, they use the mu
h simplerdivide-and-
onquer primitives. Satin does allow the 
ombination of its divide-and-
onquer primitives with Java threads and RMIs. Additionally, Satin pro-vides shared obje
ts via RepMI.We augmented the Java language with three keywords, mu
h as in the Cilk [12℄system: spawn, syn
, and satin. The satin modi�er is pla
ed in front of amethod de
laration. It indi
ates that the method may be spawned. The spawnkeyword is pla
ed in front of a method invo
ation to indi
ate possibly paral-5



lel exe
ution. We 
all this a spawned method invo
ation. Con
eptually, a newthread is started for running the method upon invo
ation. Satin's implemen-tation, however, eliminates thread 
reation altogether. A spawned method in-vo
ation is put into a lo
al work queue. From the queue, the method might betransferred to a di�erent CPU where it may run 
on
urrently with the methodthat exe
uted the spawn. The syn
 operation waits until all spawned 
allsin the 
urrent method invo
ation are �nished; the return values of spawnedmethod invo
ations are unde�ned until a syn
 is rea
hed. A detailed des
rip-tion of Satin's implementation 
an be found in [14℄.Spawned method invo
ations are distributed a
ross the pro
essors of a par-allel Satin program by work stealing from the work queues mentioned above.In [15℄, we presented a new work stealing algorithm, Cluster-aware RandomStealing (CRS), spe
i�
ally designed for 
luster-based, wide-area (Grid 
om-puting) systems. In Se
tion 4, we will present a 
ase study with Satin runninga
ross a variety of emulated wide-area network s
enarios. We run four parallelappli
ations, for ea
h 
omparing the following three work stealing algorithms.A detailed des
ription of Satin's wide-area work stealing 
an be found in [15℄.Random Stealing (RS) RS attempts to steal a job from a randomly se-le
ted peer when a pro
essor �nds its own work queue empty, repeatingsteal attempts until it su

eeds [12,13℄. This approa
h minimizes 
ommuni-
ation overhead at the expense of idle time. No 
ommuni
ation is performeduntil a node be
omes idle, but then it has to wait for a new job to arrive. Ona single-
luster system, RS is the best performing load-balan
ing algorithm.On wide-area systems, however, this is not the 
ase. With C 
lusters, onaverage (C � 1)=C � 100% of all steal requests will go to nodes in remote
lusters, 
ausing signi�
ant wide-area 
ommuni
ation overheads.Cluster-Hierar
hi
al Stealing (CHS) CHS has been proposed for loadbalan
ing divide-and-
onquer appli
ations in wide-area systems [16,17℄. CHSminimizes wide-area 
ommuni
ation. The idea is to arrange pro
essors in atree topology, and to send steal messages along the edges of the tree. Whena node is idle, it �rst asks its 
hild nodes for work. If the 
hildren are alsoidle, steal messages will re
ursively des
end the tree. Only when the entiresubtree is idle, messages will be sent upwards in the tree (e.g., a
ross WANlinks), asking parent nodes for work. CHS has the drawba
k that all nodesof a 
luster have to be
ome idle before wide-area steal attempts are started.During the round-trip time of the steal message, the entire 
luster remainsidle.Cluster-aware Random Stealing (CRS) In CRS, ea
h node 
an dire
tlysteal jobs from nodes in remote 
lusters, but at most one job at a time.Whenever a node be
omes idle, it �rst attempts to steal from a node in aremote 
luster. This wide-area steal request is sent asyn
hronously: Insteadof waiting for the result, the thief simply sets a 
ag and performs additional,syn
hronous steal requests to randomly sele
ted nodes within its own 
lus-6



ter, until it �nds a new job. As long as the 
ag is set, only lo
al stealingwill be performed. The handler routine for the wide-area reply simply resetsthe 
ag and, if the request was su

essful, puts the new job into the workqueue. CRS 
ombines the advantages of RS inside a 
luster with a verylimited amount of asyn
hronous wide-area 
ommuni
ation. In Se
tion 4 wewill show that CRS performs almost as good as with a single, large 
luster,even in extreme wide-area network settings.3 The Panda Wide-area Network EmulatorOn the Distributed ASCI Super
omputer (DAS) system, parallel program-ming environments run on top of our Panda 
ommuni
ation library [18℄. ForMPI-style message passing, we ported the MPICH library [19℄ to run on topof Panda. Both RepMI and Satin use our Manta high-performan
e Java sys-tem [11℄, whi
h also 
ommuni
ates via Panda.Panda provides an eÆ
ient portability layer for parallel appli
ations and run-time systems. Its lower, system-level modules provide threads and 
ommuni
a-tion primitives. Panda's interfa
e modules provide higher-level 
ommuni
ationlike message passing, remote pro
edure 
all (RPC), and group 
ommuni
ation.Panda adapts itself to the underlying 
ommuni
ation system; e.g. it imple-ments reliable 
ommuni
ation if the underlying network does not guaranteepa
ket delivery. The nodes within a DAS 
luster 
ommuni
ate via Myrinet [20℄,to whi
h Panda has a

ess via the LFC 
ommuni
ation substrate [21℄.
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������

��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������

Gateway

Gateway

Emulator

Gateway

Emulator

Gateway

Panda

LFC

M
ag

P
Ie

 / 
M

P
I

Manta
Java /

R
ep

M
I

S
at

in

Panda

LFC

M
ag

P
Ie

 / 
M

P
I

Manta
Java /

R
ep

M
I

S
at

in

Panda

LFC

M
ag

P
Ie

 / 
M

P
I

Manta
Java /

R
ep

M
I

S
at

in

Panda

LFC

M
ag

P
Ie

 / 
M

P
I

Manta
Java /

R
ep

M
I

S
at

inPanda

TCPLFC

Panda

TCP LFC

WAN

LFC

Panda

LFC

Panda
Myrinet Myrinet

. . . . . .

Fig. 2. Lo
al and wide-area 
ommuni
ation with Panda and the WAN emulatorPanda also allows to run parallel appli
ations a
ross multiple DAS 
lusters. Forthis purpose, one dedi
ated node in ea
h 
luster a
ts as a gateway. Wheneveran appli
ation node wants to send a message to a node in a di�erent 
luster,it sends the message to its lo
al gateway node, whi
h in turn forwards it tothe gateway node of the remote 
luster, where the message gets forwarded tothe re
eiver node. Between 
luster gateways, Panda 
ommuni
ates using the7



standard TCP proto
ol. This 
ommuni
ation path is shown in Fig. 2, usingthe upper, shaded path between the two 
lusters (on the left and on the rightsides). The Panda gateway nodes run binaries of the a
tual appli
ation pro-gram. During program startup, a Panda gateway enters the 
ode for messageforwarding rather than the appli
ation's main() fun
tion.A major 
hallenge in investigating the performan
e of parallel Grid appli
a-tions is the a
tual WAN behavior. Typi
al wide-area (Internet) links are sharedamong many appli
ations, making runtime measurements irreprodu
ible andthus s
ienti�
ally hardly valuable. To over
ome this problem, we developed aWAN emulator for Panda. The WAN emulator allows us to run parallel appli-
ations on a single (large) 
luster with only the wide-area links being emulated.For this purpose, Panda provides an emulator version of its gateway fun
tion-ality. Here, 
ommuni
ation between gateway nodes physi
ally o

urs inside asingle 
luster, in our 
ase using Myrinet. This 
ommuni
ation path is shownin Fig. 2, using the lower path between the two 
lusters.The a
tual emulation of WAN behavior o

urs in the re
eiving 
luster gate-ways whi
h delay in
oming messages before forwarding them to the respe
tivere
eivers. On arrival of a message from a remote 
luster, the gateway 
om-putes the emulated arrival time, taking into a

ount the emulated laten
yand bandwidth from sending to re
eiving 
luster, and the message length.The message is then put into a queue and gets delivered as soon as the delayexpires. With this setup, the WAN emulation is 
ompletely transparent tothe appli
ation pro
esses, allowing realisti
 and simultaneously reprodu
iblewide-area experimentation.
0

5

10

15

20

25

1 4 16 64 256 1024 4096 16384 65536

La
te

nc
y 

(m
se

c)

Message size (bytes)

Latency for the VU - Delft  link

Real measurements
Emulated

0

100

200

300

400

500

600

700

800

900

1 32 1024 32768 1048576 33554432

B
an

dw
id

th
 (

K
by

te
s/

se
c)

Message size (bytes)

Bandwidth for the VU - Delft  link

Real measurements
Emulated

Fig. 3. Measured vs. emulated laten
y and bandwidth between 2 DAS 
lusters (inboth dire
tions)We also investigated the pre
ision of our emulator. Therefore, we measuredbandwidth and laten
y between the DAS 
lusters using ping-pong tests withmessages of varying sizes. We then fed the measured parameters into theemulator and re-ran our tests. Fig. 3 
ompares real and emulated laten
y andbandwidth between the DAS 
lusters at VU (Amsterdam) and Delft Universityof Te
hnology (in both dire
tions). In the graphs, the respe
tive pairs of lines8



are hardly distinguishable, giving eviden
e for the 
lose mat
h between thereal system and its emulation. The measurements for the other wide-areaDAS links show similar behavior.Whenever a message arrives at a gateway node, its delay time is 
omputed.For making the emulation dynami
ally 
on�gurable, the delay 
omputationis en
apsulated in an up
all routine, that is 
alled upon message arrival. Thegateways 
an be 
on�gured at any time of an appli
ation run by a
tivatingone of the following kinds of up
all routine. Furthermore, our emulator allowsadditional, user-de�ned up
alls to be used.The 
onstant up
all emulates a WAN in whi
h ea
h link has 
onstant la-ten
y and bandwidth. However, ea
h sender-re
eiver pair of gateways mayhave di�erent link speeds.The s
ript up
all is a variation of the 
onstant up
all. Here, the gatewaysinterpret a 
on�guration s
ript in order to 
hange the setting of the linkparameters throughout the appli
ation run. Fig. 4 shows a sample s
riptused for the 
ase study presented in Se
tion 4.The TCP up
all is another variation of the 
onstant up
all. Here, the gate-ways a

ept 
ommands from a remote pro
ess on a given TCP port. We havedeveloped a Java-based GUI pro
ess that allows a human user to dynami-
ally 
hange the emulated links while an appli
ation is running.The measure up
all lets ea
h gateway read laten
y and bandwidth valuesfrom prere
orded �les 
ontaining time series, e.g. from measurements of realwide-area links. One of the s
enarios in Se
tion 4 uses the measure up
all toemulate the behavior of the real DAS system, as measured by the NetworkWeather Servi
e (NWS) [22℄.The emulation up
alls 
an be a
tivated in two di�erent ways. First, Panda
an interpret 
ommand line options to sele
t and parameterize an up
all. Thisway, the emulation is 
ompletely transparent to the appli
ation program. More
exible, although not transparent to the appli
ation, is Panda's emulation APIthat allows a running appli
ation program to dire
tly in
uen
e the gatewaybehavior. The emulation API allows, for example, the a
tivation of a user-de�ned up
all or the 
ontrolled experimentation from inside the appli
ationitself.4 A Case Study: Evaluation of Satin using various WAN S
enariosWe will now present a 
ase study in whi
h we evaluate Satin's work stealing al-gorithms by running four di�erent appli
ations a
ross four emulated 
lusters.We use the following nine di�erent WAN s
enarios of in
reasing 
omplexity,demonstrating the 
exibility of Panda's WAN emulator. Fig. 5 illustrates s
e-9



narios 1{8 in detail.(1) The WAN is fully 
onne
ted. The laten
y of all links is 100ms; but thebandwidth di�ers between the links.(2) The WAN is fully 
onne
ted. The bandwidth of all links is 100KB/s; butthe laten
y di�ers between the links.(3) The WAN is fully 
onne
ted. Both laten
y and bandwidth di�er betweenthe links.(4) Like s
enario 3, but the link between 
lusters 1 and 4 drops every thirdse
ond from 100KB/s and 100ms to 1KB/s and 300ms, emulating beingbusy due to unrelated, bursty network traÆ
. Fig. 4 shows the emulators
ript used for this s
enario.(5) Like s
enario 3, but every se
ond all links 
hange bandwidth and laten
yto random values between 10% and 100% of their nominal bandwidth,and between 1 and 10 times their nominal laten
y.(6) All links have 100ms laten
y and 100KB/s bandwidth. Unlike the previ-ous s
enarios, two WAN links are missing, 
ausing 
ongestion among thedi�erent 
lusters.(7) Like s
enario 3, but two WAN links are missing.(8) Like s
enario 5, but two WAN links are missing.(9) Bandwidth and laten
y are taken from pre-re
orded NWS measurementsof the real DAS system.read s
enario3sleep 2000foreverset_sym one 1 4 1000 0.3sleep 1000set_sym one 1 4 1000000 0.001sleep 2000Fig. 4. The emulator s
ript for s
enario 4We used the following Satin appli
ations, taken from the set presented in [15℄.Adaptive Integration numeri
ally integrates a fun
tion over a given inter-val by re
ursive interval division. This appli
ation is mostly sensitive tolaten
y be
ause the job des
riptions and results 
an be sent in very shortmessages.N Queens solves the problem of pla
ing n queens on a n � n 
hess board.This appli
ation sends medium-size messages and has a very irregular tasktree.Ray Tra
er is a simple ray tra
ing program. It divides a s
reen down to jobsof single pixels. The individually 
al
ulated pixel 
olors are 
omposed intolarger image segments. This appli
ation sends long result mesages, makingit sensitive to the available bandwidth.Traveling Salesperson solves the famous problem of �nding the shortest10



1

1

4

2

3
1000 KB/s, 100 ms

200 KB/s, 100 ms

30
0 

K
B

/s
, 1

00
 m

s 500 K
B

/s, 100 m
s

80
0 K

B/s

10
0 m

s

100 KB/s

100 m
s

2

1

4

2

3

100 KB/s, 30 ms

10
0 

K
B

/s
, 8

0 
m

s 100 K
B

/s, 50 m
s

10
0 K

B/s

8 m
s

100 KB/s

100 m
s

100 KB/s, 1 ms

3

1

4

2

3

200 KB/s, 30 ms

30
0 

K
B

/s
, 8

0 
m

s 500 K
B

/s, 50 m
s

80
0 K

B/s

8 m
s

100 KB/s

100 m
s

1000 KB/s, 1 ms

100 KB/s, 100 ms

1 KB/s, 300 ms

4

1

4

2

3

200 KB/s, 30 ms

30
0 

K
B

/s
, 8

0 
m

s 500 K
B

/s, 50 m
s

80
0 K

B/s

8 m
s

1000 KB/s, 1 ms

10%

100%

5

1

4

2

3

200 KB/s, 30 ms

30
0 

K
B

/s
, 8

0 
m

s 500 K
B

/s, 50 m
s

80
0 K

B/s

8 m
s

100 KB/s

100 m
s

1000 KB/s, 1 ms

6

1

4

2

3

100 KB/s, 100 ms

10
0 K

B/s

10
0 m

s

100 KB/s

100 m
s

100 KB/s, 100 ms

7

1

4

2

3

200 KB/s, 30 ms

80
0 K

B/s

8 m
s

100 KB/s

100 m
s

1000 KB/s, 1 ms

10%

100%

8

1

4

2

3

200 KB/s, 30 ms

80
0 K

B/s

8 m
s

100 KB/s

100 m
s

1000 KB/s, 1 msFig. 5. Emulated WAN s
enarios 1{8path between n 
ities. By passing the distan
e table as a parameter, medium-sized messages are ex
hanged.Fig. 6 shows the speedups a
hieved by the four appli
ations on four 
lusters of16 nodes ea
h, with the WAN links between them being emulated a

ording tothe nine s
enarios des
ribed above. For 
omparison, we also show the speedupsfor a single, large 
luster of 64 nodes. The three work stealing algorithmsdes
ribed in Se
tion 2 are 
ompared with ea
h other. RS sends by far the most11



0

20

40

60
sp

ee
du

p

RS CHS CRS

Adaptive Integration

0

20

40

60

sp
ee

du
p

RS CHS CRS

N Queens

0

20

40

60

sp
ee

du
p

RS CHS CRS

Ray Tracer

0

20

40

60
sp

ee
du

p

RS CHS CRS

Traveling Salesperson

single cluster Scenario 1

Scenario 2

Scenario 3

Scenario 4

Scenario 5

Scenario 6

Scenario 7

Scenario 8

Scenario 9Fig. 6. Speedups of 4 Satin appli
ations with 3 load balan
ing algorithms and 9di�erent, emulated WAN s
enariosmessages a
ross the WAN links. The speedups it a
hieves are signi�
antlysmaller, 
ompared to a single, large 
luster. This is espe
ially the 
ase ins
enarios in whi
h high WAN laten
y 
auses long idle times or in whi
h lowbandwidth 
auses network 
ongestion. CHS is always the worst-performingalgorithm, even within a single 
luster, due to 
omplete 
lusters being idleduring a work-stealing message roundtrip time.12



CRS always is the best performing algorithm. Due to its limited and asyn-
hronous wide-area 
ommuni
ation, it 
an tolerate even very irregular WANs
enarios, resulting in speedups 
lose to a single, large 
luster. However, thereare a few ex
eptions to the very high speedups a
hieved by CRS whi
h o

urwhenever the WAN bandwidth be
omes too low for the appli
ation's require-ments. This happens with s
enarios 4, 8, and 9. But even in those 
ases, CRSstill is Satin's best performing work-stealing algorithm.5 Related WorkMany Grid 
omputing proje
ts fo
us on building software infrastru
tures thatenable appli
ation exe
ution in Grid evironments [23{25℄. Our Panda library
an provide the 
ommuni
ation-related runtime system for parallel appli
a-tions that are running on top of su
h Grid infrastru
tures.Network simulators like NSE [26℄ or DaSSF [27℄ fo
us on pa
ket delivery andnetwork proto
ols, rather than the network behavior as it is observed by an ap-pli
ation. LAPSE [28℄ simulates parallel appli
ations on 
on�gurations withmore than the available number of CPUs; the network behavior simulatesthe Intel Paragon ma
hines. The Mi
roGrid software [29℄ virtualizes the Gridresour
es like memory, CPU, and networks. For the simulation, all relevantsystem 
alls are trapped and mediated through the Mi
roGrid s
heduler andthe NSE network simulator. This approa
h goes further than Panda's networkemulation, but also impa
ts the sequential exe
ution of the appli
ation bina-ries. Panda's wide-area emulator, however, allows to run unmodi�ed binariesof a parallel appli
ation, 
onne
ting them via physi
al LANs and emulatedWANs. This network emulation provides a unique environment for experi-mentation with parallel appli
ations on Grid platforms, whi
h has led to thedevelopment of our Grid programming environments.Some proje
ts provide Grid-enabled implementations of the message passinginterfa
e, MPI. MPI Conne
t [30℄ fo
uses on interoperability between hetero-geneous platforms. The works in [31,32℄ provide Grid-optimized implementa-tions for some of MPI's 
olle
tive operations. Our MagPIe library, however,provides the most 
omplete and advan
ed set of 
olle
tive operations for Gridplatforms.Systems like the SuperWeb [33℄, Gateway [34℄, and Bayanihan [35℄ provideJava-
entri
 environments for Grid 
omputing platforms. However, eÆ
ientGrid-aware 
ommuni
ation me
hanisms for parallel appli
ations are not anissue for these systems. Atlas [16℄ and Javelin 2.0 [36℄ are other Java-baseddivide-and-
onquer systems for Grid 
omputing. Their main fo
us is on het-erogeneity and fault toleran
e. Satin's main obje
tive is appli
ation speed.13



Both MPJ [37℄ and CCJ [38℄ provide MPI-style message passing and 
olle
tive
ommuni
ation for Java. Although their set of 
ommuni
ation me
hanisms isri
her than RMI and RepMI, they do not 
ome with implementations that areoptimized for wide-area Grid platforms. Finally, Hyperion [39℄, Ja
kal [40℄, andJavanaise [41℄ implement shared Java obje
ts based on obje
t 
a
hing. Thesesystems do not aim at Grid 
omputing either. In 
ontrast, our RepMI me
h-anism is based on message shipping for whi
h we also provide a Grid-awareimplementation.6 Con
lusionsIn the Albatross proje
t, we study the eÆ
ien
y of high-performan
e appli
a-tions with medium-grained 
ommuni
ation patterns on Grid 
omputing plat-forms. The key problem is the low 
ommuni
ation performan
e of the wide-area networks (WANs) in a Grid, whi
h typi
ally are orders of magnitudeslower than lo
al inter
onne
ts. In the initial phase of the proje
t, we de-veloped several strategies for modifying a parallel appli
ation to improve itsruntime eÆ
ien
y on a Grid. We use these modi�
ation strategies to buildprogramming environments for writing high-performan
e Grid appli
ations.In this paper, we have des
ribed three su
h environments, MagPIe, RepMI,and Satin. A major 
hallenge in investigating the performan
e of Grid appli-
ations is the a
tual WAN behavior. Typi
al wide-area links are shared amongmany appli
ations, making runtime measurements irreprodu
ible and thus s
i-enti�
ally hardly valuable. To allow a realisti
 performan
e evaluation of Gridprogramming systems and their appli
ations, we have developed the PandaWAN emulator, a testbed that emulates a Grid on a single, large 
luster.The testbed runs the appli
ations in parallel but emulates wide-area links byadding arti�
ial delays. The laten
y and bandwidth of the WAN links 
an bespe
i�ed by the user in a highly 
exible way. This network emulation providesa unique environment for experimentation with high-performan
e appli
ationson Grid platforms.We have used the Panda WAN emulator to evaluate the performan
e of one ofthe three programming environments (Satin) under many di�erent WAN s
e-narios. The emulator allowed us to 
ompare several load balan
ing algorithmsused by Satin under 
onditions that are realisti
 for an a
tual Grid, but thatare hard to reprodu
e on su
h a Grid. Our experiments showed that Satin'sCHS algorithm 
an a
tually tolerate a large variety of WAN link performan
esettings, and s
hedule parallel divide-and-
onquer appli
ations su
h that theyrun almost as fast on multiple 
lusters as they do on a single, large 
lus-ter. In the near future, we will also investigate our other Grid programmingenvironments on a variety of di�erent wide-area network s
enarios.14



A
knowledgementsThis work is supported in part by a USF grant from the Vrije Universiteit. Thewide-area DAS system is an initiative of the Advan
ed S
hool for Computingand Imaging (ASCI). We thank Ceriel Ja
obs, Gr�egory Mouni�e, John Romein,and Ronald Veldema for their 
ontributions to this paper.Referen
es[1℄ RSA Laboratories, Fa
torization of RSA-155,http://www.rsase
urity.
om/rsalabs/
hallenges/fa
toring/rsa155.html.[2℄ SETI�home, The Sear
h for Extraterrestri
al Intelligen
e,http://setiathome.ssl.berkeley.edu/.[3℄ Entropia In
., Distributed Computing, http://www.entropia.
om/.[4℄ R. van Nieuwpoort, J. Maassen, H. E. Bal, T. Kielmann, R. Veldema, Wide-Area Parallel Programming using the Remote Method Invo
ation Model,Con
urren
y: Pra
ti
e and Experien
e 12 (8) (2000) 643{666.[5℄ A. Plaat, H. E. Bal, R. F. H. Hofman, T. Kielmann, Sensitivity of ParallelAppli
ations to Large Di�eren
es in Bandwidth and Laten
y in Two-LayerInter
onne
ts, Future Generation Computer Systems 13 (8{9) (2001) 769{782.[6℄ J. W. Romein, H. E. Bal, Wide-Area Transposition-Driven S
heduling, in:IEEE International Symposium on High Performan
e Distributed Computing(HPDC-10), San Fran
is
o, CA, 2001.[7℄ Message Passing Interfa
e Forum, MPI: A Message Passing Interfa
e Standard,International Journal of Super
omputing Appli
ations 8 (3/4).[8℄ T. Kielmann, R. F. H. Hofman, H. E. Bal, A. Plaat, R. A. F. Bhoedjang,MagPIe: MPI's Colle
tive Communi
ation Operations for Clustered WideArea Systems, in: Seventh ACM SIGPLAN Symposium on Prin
iples andPra
ti
e of Parallel Programming (PPoPP'99), Atlanta, GA, 1999, pp. 131{140.[9℄ T. Kielmann, H. E. Bal, S. Gorlat
h, K. Verstoep, R. F. Hofman, NetworkPerforman
e-aware Colle
tive Communi
ation for Clustered Wide AreaSystems, Parallel Computing 27 (11) (2001) 1431{1456.[10℄ J. Maassen, T. Kielmann, H. E. Bal, Parallel Appli
ation Experien
e withRepli
ated Method Invo
ation, Con
urren
y & Computation: Pra
ti
e &Experien
e 13 (8{9) (2001) 681{712.[11℄ J. Maassen, R. van Nieuwpoort, R. Veldema, H. Bal, T. Kielmann, C. Ja
obs,R. Hofman, EÆ
ient Java RMI for Parallel Programming, A

epted for15



publi
ation in ACM Transa
tions on Programming Languages and Systems(TOPLAS) (2001) .[12℄ R. D. Blumofe, C. E. Leiserson, S
heduling multithreaded 
omputations bywork stealing, in: 35th Annual Symposium on Foundations of Computer S
ien
e(FOCS'94), Santa Fe, New Mexi
o, 1994, pp. 356{368.[13℄ I.-C. Wu, H. Kung, Communi
ation Complexity for Parallel Divide-and-Conquer, in: 32nd Annual Symposium on Foundations of Computer S
ien
e(FOCS '91, San Juan, Puerto Ri
o, 1991, pp. 151{162.[14℄ R. van Nieuwpoort, T. Kielmann, H. E. Bal, Satin: EÆ
ient Parallel Divide-and-Conquer in Java, in: Euro-PAR 2000, no. 1900 in Le
ture Notes in ComputerS
ien
e, Springer, Muni
h, Germany, 2000, pp. 690{699.[15℄ R. van Nieuwpoort, T. Kielmann, H. E. Bal, EÆ
ient Load Balan
ing forWide-area Divide-and-Conquer Appli
ations, in: ACM SIGPLAN Symposiumon Prin
iples and Pra
ti
e of Parallel Programming (PPoPP'01), Snowbird,Utah, 2001, pp. 34{43.[16℄ J. Baldes
hwieler, R. Blumofe, E. Brewer, ATLAS: An Infrastru
ture for GlobalComputing, in: Seventh ACM SIGOPS EuropeanWorkshop on System Supportfor Worldwide Appli
ations, 1996.[17℄ M. Ba
ks
hat, A. PfaÆnger, C. Zenger, E
onomi
 Based Dynami
 LoadDistribution in Large Workstation Networks, in: Euro-Par'96, no. 1124 inLe
ture Notes in Computer S
ien
e, Springer, 1996, pp. 631{634.[18℄ T. R�uhl, H. E. Bal, G. Benson, R. A. F. Bhoedjang, K. Langendoen, Experien
ewith a Portability Layer for Implementing Parallel Programming Systems, in:International Conferen
e on Parallel and Distributed Pro
essing Te
hniques andAppli
ations (PDPTA'96), Sunnyvale, CA, 1996, pp. 1477{1488.[19℄ W. Gropp, E. Lusk, N. Doss, A. Skjellum, A High-performan
e, PortableImplementation of the MPI Message Passing Interfa
e Standard, ParallelComputing 22 (6) (1996) 789{828.[20℄ N. Boden, D. Cohen, R. Felderman, A. Kulawik, C. Seitz, J. Seizovi
, W. Su,Myrinet: A Gigabit-per-se
ond Lo
al Area Network, IEEE Mi
ro 15 (1) (1995)29{36.[21℄ R. A. F. Bhoedjang, T. R�uhl, H. E. Bal, User-Level Network Interfa
e Proto
ols,IEEE Computer 31 (11) (1998) 53{60.[22℄ R. Wolski, Fore
asting Network Performan
e to Support Dynami
 S
hedulingUsing the Network Weather Servi
e, in: Pro
. High-Performan
e DistributedComputing (HPDC-6), Portland, OR, 1997, pp. 316{325, the network weatherservi
e is at http://nws.npa
i.edu/.[23℄ I. Foster, C. Kesselman, Globus: A Meta
omputing Infrastru
ture Toolkit,International Journal of Super
omputer Appli
ations 11 (2) (1997) 115{128.16



[24℄ A. Grimshaw,W. A. Wulf, The Legion Vision of a Worldwide Virtual Computer,Communi
ations of the ACM 40 (1) (1997) 39{45.[25℄ G. E. Fagg, K. Moore, J. J. Dongarra, A. Geist, S
alable Network InformationPro
essing Environment (SNIPE), in: SC'97, 1997,http://www.super
omp.org/s
97/pro
eedings/.[26℄ S. Bajaj, L. Breslau, D. Estrin, K. Fall, S. Floyd, P. Haldara, M. Handley,A. Helmy, J. Heidemann, P. Huang, S. Kumar, S. M
Canne, R. Rejaie,P. Sharma, K. Varadhan, Y. Xu, H. Yu, D. Zappala, Improving Simulation forNetwork Resear
h, Te
hni
al Report 99{702, University of Southern California(1999).[27℄ J. Liu, D. M. Ni
ol, DaSSF 3.1 User's Manual,http://www.
s.dartmouth.edu/~jasonliu/proje
ts/ssf/ (2001).[28℄ P. M. Di
kens, P. Heidelberger, D. M. Ni
ol, A Distributed Memory LAPSE:Parallel Simulation of Message-Passing Programs, in: Pro
eedings of the 8thWorkshop on Parallel and Distributed Simulation (PADS '94), 1994.[29℄ H. J. Song, X. Liu, D. Jakobsen, R. Bhagwan, X. Zhang, K. Taura, A. Chien,The Mi
roGrid: a S
ienti�
 Tool for Modeling Computational Grids, in:Super
omputing 2000, Dallas, TX, 2000.[30℄ G. E. Fagg, K. S. London, J. J. Dongarra, MPI Conne
t: ManagingHeterogeneous MPI Appli
ations Interoperation and Pro
ess Control, in: Pro
.5th European PVM/MPI Users' Group Meeting, no. 1497 in LNCS, Liverpool,UK, 1998, pp. 93{96.[31℄ E. Gabriel, M. Res
h, T. Beisel, R. Keller, Distributed Computing in aHeterogeneous Computing Environment, in: Pro
. 5th European PVM/MPIUsers' Group Meeting, no. 1497 in LNCS, Liverpool, UK, 1998, pp. 180{187.[32℄ N. T. Karonis, B. R. de Supinski, I. Foster, W. Gropp, E. Lusk, J. Bresnahan,Exploiting Hierar
hy in Parallel Computer Networks to Optimize Colle
tiveOperation Performan
e, in: Pro
. International Parallel and DistributedPro
essing Symposium (IPDPS 2000), IEEE, Can
un, Mexi
o, 2000, pp. 377{384.[33℄ A. D. Alexandrov, M. Ibel, K. E. S
hauser, C. J. S
heiman, SuperWeb: Resear
hIssues in Java-Based Global Computing, Con
urren
y: Pra
ti
e and Experien
e9 (6) (1997) 535{553.[34℄ T. Haupt, E. Akarsu, G. Fox, A. Kalini
henko, K.-S. Kim, P. Sheethalnath,C.-H. Youn, The Gateway System: Uniform Web Based A

ess to RemoteResour
es, in: ACM 1999 Java Grande Conferen
e, San Fran
is
o, CA, 1999,pp. 1{7.[35℄ L. F. G. Sarmenta, S. Hirano, Bayanihan: Building and Studying Web-Based Volunteer Computing Systems Using Java, Future Generation ComputerSystems 15 (5/6). 17



[36℄ M. O. Neary, A. Phipps, S. Ri
hman, P. Cappello, Javelin 2.0: Java-basedparallel 
omputing on the internet, in: Pro
. Euro-Par 2000, Muni
h, Germany,2000, pp. 1231{1238.[37℄ B. Carpenter, V. Getov, G. Judd, A. Skjellum, G. Fox, MPJ: MPI-like MessagePassing for Java, Con
urren
y: Pra
ti
e and Experien
e 12 (11) (2000) 1019{1038.[38℄ A. Nelisse, T. Kielmann, H. E. Bal, J. Maassen, Obje
t-based Colle
tiveCommuni
ation in Java, in: Joint ACM JavaGrande-ISCOPE 2001 Conferen
e,Stanford University, 2001, pp. 11{20.[39℄ G. Antoniu, L. Boug�e, P. Hat
her, M. Ma
Beth, K. M
Guigan, R. Namyst,The Hyperion system: Compiling multithreaded Java byte
ode for distributedexe
ution, Parallel Computing .[40℄ R. Veldema, R. Hofman, C. Ja
obs, R. Bhoedjang, H. Bal, Sour
e-Level GlobalOptimizations for Fine-Grain Distributed Shared Memory Systems, in: ACMSIGPLAN Symposium on Prin
iples and Pra
ti
e of Parallel Programming(PPoPP'01), Snowbird, Utah, 2001, pp. 83{92.[41℄ D. Hagimont, D. Louvegnies, Javanaise: Distributed Shared Obje
ts for InternetCooperative Appli
ations, in: Pro
. Middleware'98, The Lake Distri
t, England,1998.

18


