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Abstract We have shown in [1] that message passing interfaces
such as MPI do not meet the needs of RPC-based multi-
This paper introduceMadeleine 1| a new adaptive and  threaded environments with respect to efficiency. There-
portable multi-protocol implementation of tidadeleine  fore, we have proposed a portable and efficient commu-
communication library. Madeleinell has the ability to ~ nication interface, calledMadeleing which was specifi-
control multiple network interfaces (BIP, SISCI, VIA) cally designed to provide RPC-based multithreaded envi-
and multiple network adapters (Ethernet, Myrinet, SCI) ronments withboth transparent and highly efficient com-
within the same application session. We report on per- munication. However, the internals of the first implemen-
formance measurements obtained using BIP/Myrinet andtation were strongly message-passing oriented [1]. Conse-
SISCI/SCI and we present preliminary results about our quently, the support of non message-passing network inter-
MPICH/Madeleine lland Nexusiadeleine llports. We  faces such as SISCI/SCI [16] or even VIA [4] was cumber-
also discuss an extension ®adeleinellfor clusters of ~ some and introduced some unnecessary overhead. In addi-
clusters which is able to handle heterogeneous networks.tion, no provision was made to use multiple networks within
In particular, we present the fast internal data-forwardgin  the same application. For these reasons, we decided to de-
mechanism that is used on gateway nodes to speed up intersign Madeleine I} a full multi-protocol implementation of
cluster transmissions. Preliminary experiments show that Madeleing efficiently portable on a wider range of network
the resulting inter-cluster bandwidth is close to the one de interfaces, including non message-passing ones.

livered by the hardware. Much work has been devoted to high-performance com-
munication interfaces in the context bbmogeneouslus-
ters. Yet, cheap and powerful platforms for parallel com-
puting can be obtained by interconnecting several clusters
together. In general, the resulting configuration is highly
heterogeneous In opposite to the assumption for Grid-
Due to their ever-growing success in the developmentcomputing, the inter-cluster connections may be as pow-
of distributed applications on clusters of workstations an erful as the intra-cluster ones: environments designed for
SMP machines, today’s multithreaded programming envi- grids are not suitable for such clusters of clusters. We
ronments have to be highportableandefficienton alarge  demonstrate in this paper tHdideleine lican be extended
variety of architectures. For portability reasons, most of with a fast data-forwarding mechanism to handle such a het-
these environments are built on top of widespread messageerogeneous configuration in a uniform way.
passing communication interfaces such as PVM or MPI. Section 2 ts th . ication interf
However, the implementation of such environments often ection 2 Presents e generic communicafion infertace
: ' : featured byMadeleine lland the explicit control over mes-
involves remote service request (RSR), remote procedureSage construction it provides to the application. Then
call (RPC) or remote method invocation-like (RMI) inter- ' '

. o : . .. we describe the internal structure of our library in Sec-
actions. This is obviously true for environments providing tion 3 through an in-depth study of its highly modular

an RPC-based programming model such as Nexus [6] or - Section 4 displ hi AT

PM2 [10], but also for others which often provide function- organization. Section Isplays this organization in ac-
. ' . . tion while transmitting a message. Section 5 reports on

alities that can be efficiently implemented by RPC opera- .

. the performance dfladeleinell It also demonstrates how

tions. : L

Madeleinell can be used as a low-level communication

“LIP, ENS-Lyon, 46, Allee d'ltalie, F-69364 Lyon Cedex OfiaRce.  layer for two famous communication libraries: MPICH [8]

Contact:{ A i vi er . Aumage@ns- | yon. fr} and Globus/Nexus [6]. Section 6 describes some prelim-
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mad_begi n_packi ng
mad_begi n_unpacki ng
mad_end_packi ng
mad_end_unpacki ng
nad_pack

mad_unpack

Initiates a new message
Initiates a message receptid
Finalize an emission
Finalize a reception

Packs a data block
Unpacks a data block

Table 1. Functional interface of Madeleine Il.

inary work to extendVladeleine llwith an efficient inter-
device data-forwarding facility.

2 AnInterface to Multiprotocol Communica-
tion

2.1 Basic Concepts

Madeleine llaims at enabling an efficient use of the com-
plete set of underlying communication software and hard-
ware available on a given cluster. It is able to deal with sev-
eral networks (through possibly different interfacesivit
the same session and to manage multiple network adapter
(NIC) for each of these networks. The library provides
an explicit control over communication on each underly-
ing network. The user application can dynamically switch
from one network to another, according to its communica-
tion needs.

This control is offered by means of two basic objects.
The channelobject defines a closed world for communica-
tion. Communication over a given channel does not inter-
fere with communication over another channel. A channel
is associated with a network interface, a corresponding net
work adapter and a set obnnectiorobjects. Each connec-
tion object virtualizes a point-to-point reliable netwan-
nection between two processes belonging to the session. |

is of course possible to have several channels related to the
same interface and/or the same network adapter. This fea-

ture may be used to logically split communication from two
different modules. Yet, in-order delivery is only enforced
for point-to-point connections within the same channel.

2.2 Message Construction

The Madeleine Il programming interface is essentially
the same as th®ladeleineinterface but a few minor mod-
ifications and improvements. Likegladeleine it provides
a small set of primitives to build RPC-like communica-
tion schemes. These primitives actually look like cladsica
message-passing-oriented primitives. Essentially, ithis
terface provides primitives to send and receiwessages
and severgbackingandunpackingprimitives that allow the
user to specify how data should be inserted into/extracted

from messages (Table 1). Just like Fast-Messages [12] or

Nexus [6], Madeleine Il allows applications to incremen-
tally build messages to be transmitted, possibly at matipl
software levels. To illustrate this, let us consider a ramot
procedure call which takes an array of unpredictable size as
a parameter. When the request reaches the destination node,
the header must be examined both by the multithreaded run-
time (to extract the name of the function that will be exe-
cuted by the server thread) and by the user application (to
allocate the memory where the array should be stored).

A Madeleine |l message consists of several pieces of
data, located anywhere in user-space. It is initiated with
a call tomad_begi n_packi ng. Its parameters are the re-
mote nodead and the channel object to use for the message
transmission. Each data block is then appended to the mes-
sage usingrad_pack. The message construction is even-
tually finalized by callingmad_end_packi ng. This last
operation ensures that each previously packed piece of the
message has actually been flushed to the network.

In addition to the data address and size, the packing
primitive features a pair oflag parameters which specify
the semantics of the operation. This is an original speci-
ficity of Madeleine llwith respect to other communication
libraries. For example, it is possible to requidadeleine
to enforce a piece of data to be immediately available on the
receiving side after the correspondimgd_unpack call.
Alternatively, one may completely relax this constraint to
allow Madeleine llto optimize data transmission according
to the underlying network as explained below. The expres-
sion of such constraints by the application is the key paint t
provide an optimal level of performance through a generic
interface. The available emission flags are the following:

send_SAFER This flag indicates thatladeleine lIshould
pack the data in a way that further modifications to
the corresponding memory area should not corrupt the
message. This is particularly mandatory if the data lo-
cation is reused before the message is actually sent.

t

send_LATER This flag indicates thatladeleine lishould
not consider accessing the value of the corresponding
data until therad_end_packi ng primitive is called.
This means that any modification of these data be-
tween their packing and their sending shall actually
update the message contents.

send_CHEAPER This is the default flag. It allows
Madeleinellto do its best to handle the data as ef-
ficiently as possible. The counterpart is that no as-
sumption should be made about the wagdeleine Il

will access the data. Thus, the corresponding data
should be left unchanged until the send operation has
completed. Note that most data transmissions in-
volved in parallel applications can accommodate the
send_CHEAPER semantics.



The following flags control the reception of user data pack- Sending side

ets: (1) connection = nad_begi n_packi ng(channel,
! renote);
(2) mad_pack(connection, &size, sizeof(int),
recei ve_EXPRESS This flag forces Madeleinell to send_CHEAPER, recei ve_EXPRESS);
guarantee that the corresponding data are immediately | 3 rag pack(connection, array, size,
available after theinpackingoperation. Typically, this send_CHEAPER, recei ve_CHEAPER);

flag is mandatory if the data is needed to issue the up-  [(#)_md_end_packi ng(connect i on) ;

comingunpackingcalls. On some network protocols,
this functionality may be available for free. On some —— . 4 ,

. . 1) connection = nad_begi n_unpacki ng(channel ) ;
others, it may result in poor performance. The user (2) mad_unpack(connection, &size, sizeof(int),

Receiving side

should therefore extract data this way only when nec- send_CHEAPER, recei ve_EXPRESS);
array = malloc(size);
essary. (3) mad_unpack(connection, array, size,

send_CHEAPER, recei ve_CHEAPER);
mad_end_unpacki ng(connection);

r ecei ve_CHEAPER This flag allowsMadeleine Iito pos- o)
sibly defer the extraction of the corresponding data
until the execution ofrad_end_unpacki ng. Thus,
no assumption can be made about the exact moment
at which the data will be extracted. Depending on
the underlying network protocdladeleine llwill do popicaton popicaton
its best to minimize the overall message transmission ...
time. If combined withsend _CHEAPER, this flag ‘ e 1] Generic ‘ Ty i

guarantees that the corresponding data is transmitted Buffer ot
as efficiently as possible. [ I et

It should be stressed that this message construction is [pvmsci Specific [Pwm sci

. . . Protocol
in fact virtual. Madeleine llmay well choose at any pack Layer

step to send data over the network or to keep datainplace .. .

Figure 1. Sending and receiving messages
with Madeleine Il.

and delay transmission or even to copy data into protocol- [ssc ‘ sisci ‘
specific preallocated buffers. There is no restriction abou river Driver
the combinations of the send and receive modes in the cur- [ ‘ sci ‘
. . Adapter Adapter
rent implementation. | I
However,Madeleine IImessages do not contain any in- Network

formation about which mode was selected for each piece

of data, for the sake of optimal latency. Hence, one should ~ Figure 2. Madeleine II's modular architecture.
ensure that packing and unpacking sequences are strictly

symmetrical (regarding both packet sizes and combinations3 The Core Structure of Madeleine |l
of packing/unpacking modes). Unspecified behavior would

occur otherwise. 3.1 Global Organization
2.3 Example Nowadays communication libraries have to reach two
seemingly contradictory goals. They are expected to pro-
Figure 1 illustrates the power of thdadeleine llinter- vide both an effective portability over a wide range of hard-

face. Consider sending a message made of an array of byteware/software combinations, whilst achieving a high ef-
whose size is unpredictable on the receiving side. Thus, theficiency using these components. To meet these goals,
receiver has first to extract the size of the array (an inte- Madeleine Il follows a modular approach built around a
ger) before extracting the array itself, because the destin highly flexible architecture. This approach allows the li-
tion memory has to be dynamically allocated. In this exam- brary to tightly fit and optimally exploit the specific charac
ple, the constraint is that the integer must be extraEbed teristics of each target network.

PRESS beforethe corresponding array data is extracted. In Madeleine llis organized as two software layers (Fig. 2),
contrast, the array data may safely be extraCdHAPER, following a commonly used schemeProtocol/network-
striving to avoid any copies. Itis fine to do so, as the size of specific interfacings realized by the lower layer, providing
the array is expected to be much larger than the size of arthe portability of the whole library. This layer relies onet s
integer. Theend_unpacki ng call ensures that the array of network specifidfransmission ModulgdM). The upper
has actually been filled with the expected piece of data. layer is independent of the supported network interfacds an



seng_gu;;er ge”gasmg'e b;igefrf result, each TM is associated withBauffer Management
send_buf f er group end a group of buffers

recel ve.buf f er Receive a single buffer Module (BMM) from the Buffer Management Layer. Of
recei ve_sub_buf f er .group | Receive a group of buffers course, it is expected that several TMs share the same shape
obtai nstatic_buffer Obtain a protocol level buffer so that BMMs can be reused, which results in a significant
rel easestatic_buffer Release a protocol level buffer improvement in development time and reliability.

Each BMM implements a generic, protocol-independent
management policy. A BMM may either control
o ] . dynamic buffers(the user-allocated data block is di-
is in charge of thgeneric buffer managementis made of  (ectly referenced as a buffer) ostatic buffers (data
severaBuffer Management Modul¢BMM), each of these 5 copied into a buffer provided by the TM), but not

Table 2. Functional interface of TMs.

implementing a given buffer management policy. both. The static buffer BMMs work together with TMs
implementing theobt ai n.stati c_buffer andre-
3.2 Transfer Management | ease st ati c_buf f er functions. These functions pro-
vide the BMMs with a generic access to pools of protocol
One of the goals oMadeleinellis to support multi-  specific buffers. The work of copying user pieces of data

modal interfaces such as VIA [4] or SISCI/SCI [7]. Such into and from static buffers is done by the BMMs.

interfaces provide several data transfer methods. For in- Moreover, each BMM may implement a specific aggre-
stance, regular Processor IO (PIO) and Direct Memory Ac- gation scheme to group successive buffers into a single
cess (DMA) are available for Dolphin SCI NICs. Moreover, Vvirtual piece of message in order to exploit optional scat-

it should be able to easily take into account interface imple ter/gather protocol capabilities. However, a BMM may also
mentations like BIP/Myrinet [13] which make a difference adopt an eager behavior and send buffers as soon as they are
betweershortbuffers andong buffers. As a consequence, ready.

Madeleine lIfeatures specific modules to encapsulate each

of thesesubinterfaces. These modules are calfednsmis- 4 A Message Transmission Step-by-Step
sion ModulegTM).

Table 2 Sho"YS the common interface of the TM;_(note We now show théMadeleine Ilcomponents in operation
that some funclt|ons may not_ be relevant for a specific TM while transmitting an application message.
and will not be implemented in such case). We can see that
TMs provide single buffer transmission support and poten-
tially optimized scatter/gather multi-buffer transferBe-
pending on the underlying network properties, they may
also implement protocol-specific buffer allocation roesn
This feature is needed for protocols which provide their own
set of preallocated buffers.

4.1 Sending

The application initiates the construction of an outgoing
message through a call begi n_packi ng( channel ,
renot e) . Thechannel object selects the protocol mod-
ule, and the adapter to use for sending the message. The
r enot e parameter specifies the destination node. Géie
gi n_packi ng function returns @onnect i on object.

. Using this connecti on object, the application

TMs are grouped intd’rotocol Management Modules -5 start packing user data into packets by call-
(PMM). There is one PMM for each supported network in- ing pack(connection, ptr, len, s_node,
terface (e.g., BIP or TCP). Each PMM implements whole r_mode). Entering the Generic Buffer Management
or part of a generic set of functions. This set of functions Layer, the packet is examined by tBwitch ModuldStep 1
constitutes the protocol driving interface. It ensure%lind_ on Fig. 3). It queries the Specific Protocol Layer (Step 2)
pendence between the upper layer and the communicatiofy, the pest suitedransmission Modulegiven the length
networks. The protocol management modules are based 0B the send/receive mode combination. The selected
a hierarchy of data structures that virtualize each basic ob 1 (Step 3) determines the optimBuffer Management
jectinvolved during a data transfer: Driver, Adapter, etc.  poduleto use (Step 4). Finally, the Switch Module for-

wards the packet to the selected BMM. Depending on the
3.4 Buffer Management BMM, the packet may be handled as is (and considered as
a buffer), or copied into a new buffer, possibly provided by

While some TMs can benefit from grouped buffer trans- the TM. Depending on its aggregation scheme, the BMM
fers, others may behave worse depending on the function-either immediately sends the buffer to the TM or delays
alities implemented by the underlying network. Each TM this operation for a later time. The buffer is eventually
should thus be fed with its optimal shape of data. As a sent to the TM (Step 5). The TM immediately processes

3.3 Network Management



Application Application
----------------- pack ----------------- s--------------unpack ---------------e
|
L@ Switch Module | | Generic \ Switch Module
* pack, commit Buffer unpack, checkout
‘BMMl BMM | ...| BMM 'Ii/'ai/’;argemem BMM | |BMM,,|...|BMM ,
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DMA PIO Layer DMA PIO
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Driver Driver
SCI SCI
Adapter Adapter
@
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Figure 3. Conceptual view of the data path through Madeleine II’'s internal modules.

and transmits it to the network driver/library (Step 6). The der to optimize efficiency). The Switch Step is performed
buffer is then eventually shipped to the network adapter on eachunpack and must select the same sequence of
(Step 7). TM as on the sending side. For instance, a packet sent by
Special attention must be paid to guarantee the deliverythe DMA Transmission Module of SCI must be received
order in presence of multiple TMs. Each time the Switch by the same module on the receiving side. Theckout
Step selects a TM differing from the previous one, the cor- function (dual to thecommitone on the sending side) is
responding previous BMM is flusheddmmiton Fig. 3) to used to actually extract data from the network to the user
ensure that any remaining delayed packet has been shippedpplication space: indeed, just like packet sending could
to the network. A generatommitoperation is also per- be delayed on the sending side for aggregation, the actual
formed by theend_packi ng( connect i on) call to en- packet extraction from the network may also be delayed
sure that no delayed packet remains waiting in the BMM.  to allow for burst data reception. Of course, the final call
to end_unpacki ng(connecti on) ensures that all ex-

4.2 Receiving pected packets are made available to the user application.

Processing an incoming message on the destination side
is just symmetric. A message reception is initiated by a S
call to begi n_unpacki ng( channel ) which starts the
extraction of the first incoming message for the specified
channel. This function returns treonnect i on object
corresponding to the established point-to-point conoacti
which contains the remote node identification among other
things. The following performance results are obtained using a

Using thisconnect i on object, the application issues cluster of dual Intel Pentium Il 450 MHz PC nodes with
a sequence ofunpack(connection, ptr, |en, 128 MB of RAM running Linux version 2.2.13. The clus-
s_node, r_npde) calls, symmetrically to the series of terinterconnection networks are Dolphin SCI (D310 NICs)
pack calls that generated the message. Exact symmetryfor SISCI and Myrinet (NICs specs: LANai 4.3, 32-bit bus,
betweenpack andunpack call series is mandatory be- 1 MB SRAM) for BIP. Please note that the latency measure-
causeMadeleine IImessages are not self-described (in or- ments are one-way transfer time measurements.

Implementation and Performance

5.1 Testing Environment
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Figure 4. Latency and bandwidth over SISCI/SCI

5.2 Madeleine Il on Top of Existing Interfaces latter case, a strict synchronization is necessary betieen
sender and the receiver: the receiver must acknowledge the
5.2.1 SISCI/SCI sender that it is ready to receive before a message is actuall

transmitted.
Results The performance measurements of the SISCI  The BIP PMM of Madeleine Il handles both transmis-
PMM are shown in Figure 4. We can see that the minimal sion modes. Thehort messagéM uses a credit-based flow
latency is very low (3.9:s), thanks to our highly optimized  control algorithm to make sure that each message can be
short message TM (see implementation details below).  stored into a buffer. Thiong messag&M implements the
The bandwidth is very good, too, thanks to the use of receiver-acknowledgment synchronization scheme. This
an adaptive, dual-buffering algorithm. This algorithmds a  Madeleine Il BIP PMM achieves top performance results
tivated for data blocks larger than 8 kB within the regular ith a minimal latency of f:s and a bandwidth of 122 MB/s
SISCI TM as clearly seen on Figure 4. This optimization (Figure 5). Theses results are very close to the raw BIP re-
allowsMadeleine lIto deliver a bandwidth of 82 MB/s. sults: 5,U'S minimal |atency and 126 MB/s maximal band-
The SISCI PMM handles both transmission modes pro- width.
vided by the SISCI interface: a regular PIO mode and a
DMA mode. Three transmission modules are currently im- 5.3 Madeleinell as a Basis for High-Level Com-
plemented, as the regular PIO mode uses an additional TM munication Libraries
specifically optimized for short message transfer. Note tha
the DMA mode TM is implemented but not active in the  whjle Madeleine Ilhas also been ported (quite straight-
current version, because of the poor performance of the SCorwardly) on top of MPI, it may also be used as a low-
DMA: we have not been able to get more than 35 MB/s with |eve| multiprotocol communication component for MPI im-

Dolphin SCI D310 NICs. plementations (as well as other for communication inter-
faces) too. We now present two implementations of high-
5.2.2 BIP/Myrinet level communication libraries—namely MPICH [8, 9] and

) _ ) Globus/Nexus [6, 3]-ovdvladeleine Il
BIP (Basic Interface for Parallelism) is a low-level commu-

nication interface specn‘lcally designed for the Mynnelt—ne 531 MPICH/Madeleine Ii

work protocol [13]. The main advantage of BIP is to pro-

vide communication control in user space: the application Madeleine Ilhas been integrated into MPICH as a new

may directly interact with the network interface card. The madmodule. Our goal was to let MPICH benefit from the
BIP interface makes a distinction between short messagesnulti-protocol features dfladeleine Il Preliminary perfor-

(< 1 kB) and long messages. Short messages are temporamance measurements are quite encouraging. Figure 6 com-
ily stored into internal buffers (preallocated by BIP) oeth pares MPICH\adeleine IISISCI to two other implemen-
receiving side. No participation of the receiver is neces- tations of MPI over SCI, namely SCI-MPICH [16] and the
sary. In contrast, long messages are directly delivered atcommercial version ScaMPI [15]. The performance curves
their final location without any intermediate copy. In this of Madeleinell over SISCI (without MPICH) are plotted
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too, in order to provide an idea of the current overhead of Application

our MPIMadeleine llimplementation. oo
Though latency does not compare favorably to direct im-

pIemenFatlons of MPI over SCI,_We can see that things are | Switch Module || Generic

much different as far as bandwidth is concerned. Ghur Buffer

madmodule provides the best results for messages of 32 kB Management
and above. Moreover, this module is able to use most of the | | BMM || BMM /... | BMM, Layer
bandwidth provided byvadeleine lifor large messages. !

T | B
5.3.2 Nexus/Madeleinell ‘ Generic TM ‘
While Nexus is valuable—as part of Globus—for intercon- A
necting supercomputers and clusters of workstations with |pmm scll | . select Specific
wide area networks (WAN), it suffers from its heavy mech- | ] \ V Protocol
anisms when it comes to perform high performance ap- ™, T™; Layer
plication communication at the cluster scale. In contrast, DMA PIO

Madeleine Il was specifically designed to provide appli-
cations with highly efficient access to cluster network re-
sources. Hence, it was interesting to investigate merg-
ing these two communication libraries in order to get the _ _ _ _ _ » Messages to be forwarded
best of both worlds. The problem is the different models
adopted by these communication interfaces: Nexus initial-
ization scheme is point-to-point connection-orientedlgvhi
Madeleine llis cluster-oriented.

Figure 7 shows the level of performance achieved by
our implementation of Nexus ovévladeleine IITCP and
Madeleine IISISCI. It is clear that even with a rather heavy
interface and without any sophisticated optimization, our
NexusMadeleine Ilimplementation is very effective on a
high-performance network like SCI (with a minimal latency
below 25us) and offers a more interesting solution as far as
cluster computing is concerned.

Nexus features multiprotocol support [5] and
Madeleine llis currently seen as one protocol by Nexus.
Hence, we can easily imagine Globus applications using
regular the TCP/Nexus protocol for wide area transmission
and the Madeleine Il Nexus protocol for local cluster
high-performance computation.

Regular messages

Figure 8. Integrating the Generic Transmis-
sion Module into Madeleine It Emitting a mes-
sage.

for grids, such as Nexus [6], cannot be efficiently used in
this new context.

It has been proposed (e.g., PACX-MPI [11]) ¢due
togetherheterogeneous communication libraries. In con-
trast, we propose to extend the natively multi-device com-
munication libraryMadeleine Il with an additional facil-
ity to efficiently transfer messages across devices. Doing
so, the inter-device data-transfer mechanism is comgpletel
hidden to the upper layers and the low-level characteris-
tics of network devices can be used to optimize transfers
(pre-allocated buffers, DMA operations, etc.) Then, highe
level traditional routing mechanisms can be efficiently im-
o . . . plemented on top of this extenddthdeleine llinterface.

6 Efficient Inter-Device Data-Forwarding in Our approach retairdadeleine lls portability while being
Madeleinel | as efficient as possible with regards to the capabilities of
high-speed networks. The only change in the interface is

The success of cluster computing in both academic in- due to the necessity to provide additional information abou
stitutions and companies led to consider interconnectingthe configuration of the network when a channel is created:
several clusters to form powerful heterogeneous infrastru instead of a single channel using a given network protocol,
tures for parallel computing. However, developing runtime one has to specifywrtual channethat includes a sequence
systems for such architectures raises many research issue8f real channels.

Among them, the design of the communication subsystem

is perhaps the most challenging. Because network links be-6.1  Implementation Principles

tween clusters may be as fast as internal cluster links; clus

ters of clusters significantly differ from grid architeatsr ~ Forwarding mechanism Where should the forwarding
where inter-cluster links are assumed to be slow Conse-mechanism be implemented within the layered architecture
guently, communication environments originally designed of Madeleine IP? Because Transmission Modules (TMs) are
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strongly protocol-dependent, it is not possible to implatme  Self-described messagesWithin homogeneous

the forwarding mechanism at this level without compro- Madeleinell applications, messages need not be self-
mising Madeleine lIs portability. Alternatively, modifying described, since the user provides the necessary informa-
the Buffer Management Layer could be considered, but ation on receiving a message. Yet, this information is not
prohibitive development cost would be expected becauseavailable to the gateway, unless the code of that gateway
of the number of modules in that layer. Furthermore, ad- is written as part of the application, which is precisely
ditional conversionmodules between Buffer Management what we try to avoid. Hence, self-describing messages
Modules (BMMs) would have to be introduced because the are mandatory to our transparent forwarding mechanism.
BMMs used on each side of a virtual channel may differ. The generic TM is in charge of transparently inserting
Finally, we could merely implement this mechanism on top information needed by the gateway to get the size and
of Madeleine I} which would perfectly meet our needs in actual destination of a message.

terms of portability. However, this would also have a dra-

matic impact on the efficiency because all data transfers

would haye o througMadeleine ”t.WiC.e on the gateway  eneric Transmission Modules The Generic Transmis-
nodes, with the need for extra copies in temporary buffers. ;. viodule (Generic TM) guarantees that intermediate

Hencr:]e, _the SeSt So'“é'&r;ﬂseergi_;/? insert the forWardmggateways can merely forward the buffers without consid-
mechanism between san S ering the initial grouping method.

The Generic TM is also in charge of determining the

common optimal packet size (MTU, Maximum Transmis-
Data transfers How can actual data transfers be per- Sion Unit) to be used along the route. To optimally use the
formed? The most efficient way would be to consider raw Pipeline mechanism on the gateways, the messages have to
transfers between transmission modules. However, such &€ fragmented into several packets. The size of those frag-
raw forwarding is impossible becaustadeleine Imay use ~ Ments is defined so that each network is able to send them
different BMMs for different network devices in order to Without having to fragment them further. In the current ver-
optimally exploit the characteristics of the various urigler ~ Sion, the appropriate packet size is specified at compile tim
ing networks. Buffers may thus be grouped in a specific because the network configuration is statically configured.
way for each single device, and they should be ungrouped The Generic TM is also used to add self-description in-
and then regrouped in a different way at each gateway. Toformation to the messages that go through the gateways.
circumvent this difficult problem, we have decided that all This description is compulsory as gateways know nothing
inter-cluster traffic should be handled bgenericTM. This about what messages are to be expected. Since some infor-
TM, used by both the sender and the receiver of a messagenation (e.g., the destination of the whole message) is com-
as an interface between BMMs and real TMs (see Fig. 8), mon to several buffers, it is sent only once, as part of the
guarantees that data is handled in the same way on botlirst packet. Buffer-specific information, such as the size
ends. Some optimizations are lost, but the cost of ungroup-and the emission/reception constraints, is sent togetitler w
ing and regrouping buffers is definitely saved. each buffer.



[ : Buffer 1

Avoiding copies on forwarding Efficiently using high- 1 - Buffer 2

performance communication interfaces demand avoiding
copies. This is easily done for interfaces basedpmamic SClsend 7/, S/ S/
buffers Yet, some interfaces (e.g., SBP [14]) require data \ | | | | |
to be written in specific buffers before being sent. In that P

case, using an additional temporary buffer to receive data | . . 1| ., . [~ « 11 ., . |
should definitely be avoided Madeleinells support for MYRINET_recv P

static buffer protocols allows us to avoid any extra copy
as follows. If the sending-side interface uses static bsffe
while the receiving-side one uses dynamic buffers, it suf-
fices to request a static buffer from the outgoing proto-  Figure 9. Packet-forwarding pipeline on the
col/network TM: it can be used to receive data, thereby sav- gateway node.

ing one copy. Obviously, one extra copy cannot be avoided

whenbothnetworks require static buffers.

Time
Software overhead

On the gateway node, our implementation uses two sep-
6.2 Experimental Evaluation arate threads to pipeline the packet forwarding from one
network to the other with aual-bufferingstrategy. The

We report below on a series of tests run on a two-cluster Pest performance is achieved if: 1) Sending and receiv-
configuration: a Myrinet cluster and a SCI one, connected iNd packets approximately take the same time (Figure 9);
through a shared node with both interfaces. Both clusters2) The software overhead of having the threads exchange
are built with dual Intel Pentium 1l 450 MHz PC nodes, their buffers is small. Then, one buffer can be sent while
equipped with 128 MB of RAM and with a 33 MHz, 32- the other is received with a perfect overlap.
bit PCI bus. The operating system is Linux version 2.2.13.  However, the gateway node bridges two different net-
The Myrinet cluster uses LANai 4.3 NICs, with a 32-bit Works and the respective transmission times for a given
bus and 1 MB SRAM. The SCI cluster uses Dolphin SCI packet size differ in general. For instance, SCI achieves
D310 NICs. The communication interfaces are BIP [13] for very good performance for small messages, whereas
Myrinet and the Dolphin SISCI for SCI. Myrinet behaves better for large messages. In fact,

We run inter-cluster ping tests between a regular nodeMadeleine llachieves approximately the same performance
(i.e., not the gateway node) of one cluster and a regular node®n top of Myrinet and SCI for messages of size 16 kB (la-
of the other, through the common gateway, first from SCI to tency: ca. 25@is, bandwidth: ca. 60 MB/s), which suggests
Myrinet, and then from Myrinet to SCI. For each case, the that the correct packet size should be set to 16 kB. Unfortu-
ping program repeatedly transmits messages of the giverpately, we will see in the next sections that several other fa
size using the heterogeneddsdeleine Ilin one direction  tors have significant impact on the pipeline behavior, mak-
through the gateway. At each message, a small acknowldng it quite difficult to predict its actual performance.
edgment is sent back using the common Fast-Ethernet con-
nection. Since we exactly know the latency of the acknowl- ¢
edgment, we are able to infer the one-way message trans-
mission time from the total round-trip time. We first report on the performance of our forwarding mech-
anism in theSCI-to-Myrinet direction (Figure 10) with
packet sizes ranging from 8 kB to 128 kB. The bandwidth
obtained when using 8 kB packets is only 36.5 MB/s. For
Our forwarding mechanism is essentially designed to pro- larger packets, the bandwidth is greater than 45 MB/s and
vide a high bandwidth on forwarding messages among clus-even close to 50 MB/s for 128 kB packets. This can be
ters interconnected by high speed networks. However, lowconsidered as satisfactory, since the theoretical maximum
latency should not be expected from this design: 1) The bandwidth one can achieve on a machine equipped with a
overall latency of a inter-cluster transmission includées a single 33 MHz PCI bus is 66 MB/s.
least the native latencies of each networks; 2) It also in- For 8 kB packets, a pur®adeleine Il ping-pong pro-
cludes a significant amount of software overhead at thegram achieves a bandwidth of 58 MB/s over SISCI/SCI and
gateway. Actually, the size of packets handled by the gate-47 MB/s over BIP/Myrinet. Thus, the period of the pipeline
way is fixed by design in the current implementation, so that (i.e., the duration of a single step) for 8 kB packets is atlea
no optimization of the pipeline startup latency is possdile 166 us. In practice, the observed bandwidth is 36.5 MB,
this time. In the sequel, we only discuss bandwidth perfor- which means that the effective pipeline period is closer to
mance. 215 us. This seems to indicate that the software overhead

.2.2 Forwarding from SCI to Myrinet

6.2.1 Packet-forwarding pipeline architecture
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Figure 10. Forwarding bandwidth: from SISCI/SCI Figure 11. Forwarding bandwidth: from
to BIP/Myrinet. BIP/Myrinet to SISCI/SCI.

of this approach is 5@s per step. We are unfortunatelynot 7 Conclusion
able to analyze this behavior in greater detail as of today.

For larger packets however, another phenomenon ap- . . . .
ger p P " Madeleine llis a new high-performance communication

pears. .Indee(_d, for packet sizes gregter that 16 kB.’ a pur(?ibrary for distributed programming environments. Our li-
Madeleine ll ping-pong program achieves a bandwidth Of. brary features full multi-protocol, multi-adapter suppas

more than 60 MB/s, which can be considered as the maxi- : . ..
) . well as an integrated new dynamiwost-efficient transfer-
mum one-way bandwidth one can get over a 32-bit PCI bus ; .
methodselection mechanism. It currently runs on top of

in practpe. Thus, the outgoing packets cannot be sent WIthBIP, SISCI, TCP, VIA and common MP! implementations.
a bandwidth greater than 60 MB/s. However, we only reach : .
We reported very interesting performance results on top of

an asymptotic bandwidth of 49.5 MB/s in practice: we as- .
sume that this is due to some conflicts raised on the PCI busBIP/MyrmgF and SISCI over a SCI network. .
In addition, we have shown the effectiveness of

when doing intensive full-duplex communications. ) ) X

Madeleinell as a foundation for higher level commu-
nication libraries and introduced two implementations:
NexusMadeleine lland MPICHMadeleine Il Here again,

We run similar tests in the opposite direction for packet results are highly encouraging. MPIQWdeleine lleven
sizes ranging from 8 kB to 128 kB (Figure 11). The ob- outperforms the current best implementations of MPI over
served performance is by far lower than the previous one.SCl as far as bandwidth is concerned.
The bandwidth obtained when using 8 kB packets is only ~Madeleine lican also be extended with a portable data-
29 MB/s (instead of 36.5 MB/s), and the asymptotic band- forwarding mechanism for network-heterogeneous clusters
width obtained for larger packets remains under 36.5 MB/s of clusters. We showed that targeting the right abstraction
(instead of 50 MB/s)! level can make this additional mechanism completely trans-
Obviously, such disappointing results cannot be due toparent from the application point of view, portable on a
some software overhead nor to the saturation of the PCI buswide range of network protocols, while remaining efficient.
In fact, we run several additional experiments that seemsZero-copy techniques together with pipelining strategies
to indicate that the problem is related to the priority of the mandatory to keep a high bandwidth over inter-cluster links
involved PCI transactions: the DMA PCI transactions initi- However, the sharing of the gateway internal system bus
ated by the Myrinet card seem to have a greater priority thanbandwidth appears to be a central issue: some sophisticated
the PIO PCI transactions initiated Ibjadeleine Il Conse- bandwidth controlnechanism is needed to regulate the in-
quently, during a (Myrinet-) buffer receiving, the sendafgy ~ coming communication flow on gateways. This is a point
the other buffer over SCI is slowed down by a factor of two. we intend to investigate in the future.
We are currently investigating several techniques to reduc ~ We are now actively investigating the integration of
this phenomenon. Madeleine Il with our user-level multithreading library

6.2.3 Forwarding from Myrinet to SCI
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Marcelby the design and development of advanced adaptive [14] R. Russell and P. Hatcher. Efficient kernel support & r
polling/interruption network interaction mechanisms cou
pled to an extensive support of our implementation of the
Scheduler Activationg]
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