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Abstract

This paper introducesMadeleine II, a new adaptive and
portable multi-protocol implementation of theMadeleine
communication library. Madeleine II has the ability to
control multiple network interfaces (BIP, SISCI, VIA)
and multiple network adapters (Ethernet, Myrinet, SCI)
within the same application session. We report on per-
formance measurements obtained using BIP/Myrinet and
SISCI/SCI and we present preliminary results about our
MPICH/Madeleine II and Nexus/Madeleine II ports. We
also discuss an extension ofMadeleine II for clusters of
clusters which is able to handle heterogeneous networks.
In particular, we present the fast internal data-forwarding
mechanism that is used on gateway nodes to speed up inter-
cluster transmissions. Preliminary experiments show that
the resulting inter-cluster bandwidth is close to the one de-
livered by the hardware.

1 Introduction

Due to their ever-growing success in the development
of distributed applications on clusters of workstations and
SMP machines, today’s multithreaded programming envi-
ronments have to be highlyportableandefficienton a large
variety of architectures. For portability reasons, most of
these environments are built on top of widespread message-
passing communication interfaces such as PVM or MPI.
However, the implementation of such environments often
involves remote service request (RSR), remote procedure
call (RPC) or remote method invocation-like (RMI) inter-
actions. This is obviously true for environments providing
an RPC-based programming model such as Nexus [6] or
PM2 [10], but also for others which often provide function-
alities that can be efficiently implemented by RPC opera-
tions.�LIP, ENS-Lyon, 46, Allée d’Italie, F-69364 Lyon Cedex 07, France.
Contact:{Olivier.Aumage@ens-lyon.fr}

We have shown in [1] that message passing interfaces
such as MPI do not meet the needs of RPC-based multi-
threaded environments with respect to efficiency. There-
fore, we have proposed a portable and efficient commu-
nication interface, calledMadeleine, which was specifi-
cally designed to provide RPC-based multithreaded envi-
ronments withboth transparent and highly efficient com-
munication. However, the internals of the first implemen-
tation were strongly message-passing oriented [1]. Conse-
quently, the support of non message-passing network inter-
faces such as SISCI/SCI [16] or even VIA [4] was cumber-
some and introduced some unnecessary overhead. In addi-
tion, no provision was made to use multiple networks within
the same application. For these reasons, we decided to de-
sign Madeleine II, a full multi-protocol implementation of
Madeleine, efficiently portable on a wider range of network
interfaces, including non message-passing ones.

Much work has been devoted to high-performance com-
munication interfaces in the context ofhomogeneousclus-
ters. Yet, cheap and powerful platforms for parallel com-
puting can be obtained by interconnecting several clusters
together. In general, the resulting configuration is highly
heterogeneous. In opposite to the assumption for Grid-
computing, the inter-cluster connections may be as pow-
erful as the intra-cluster ones: environments designed for
grids are not suitable for such clusters of clusters. We
demonstrate in this paper thatMadeleine IIcan be extended
with a fast data-forwarding mechanism to handle such a het-
erogeneous configuration in a uniform way.

Section 2 presents the generic communication interface
featured byMadeleine IIand the explicit control over mes-
sage construction it provides to the application. Then,
we describe the internal structure of our library in Sec-
tion 3 through an in-depth study of its highly modular
organization. Section 4 displays this organization in ac-
tion while transmitting a message. Section 5 reports on
the performance ofMadeleine II. It also demonstrates how
Madeleine II can be used as a low-level communication
layer for two famous communication libraries: MPICH [8]
and Globus/Nexus [6]. Section 6 describes some prelim-



mad begin packing Initiates a new message
mad begin unpacking Initiates a message reception
mad end packing Finalize an emission
mad end unpacking Finalize a reception
mad pack Packs a data block
mad unpack Unpacks a data block

Table 1. Functional interface of Madeleine II.

inary work to extendMadeleine IIwith an efficient inter-
device data-forwarding facility.

2 An Interface to Multiprotocol Communica-
tion

2.1 Basic Concepts

Madeleine IIaims at enabling an efficient use of the com-
plete set of underlying communication software and hard-
ware available on a given cluster. It is able to deal with sev-
eral networks (through possibly different interfaces) within
the same session and to manage multiple network adapters
(NIC) for each of these networks. The library provides
an explicit control over communication on each underly-
ing network. The user application can dynamically switch
from one network to another, according to its communica-
tion needs.

This control is offered by means of two basic objects.
Thechannelobject defines a closed world for communica-
tion. Communication over a given channel does not inter-
fere with communication over another channel. A channel
is associated with a network interface, a corresponding net-
work adapter and a set ofconnectionobjects. Each connec-
tion object virtualizes a point-to-point reliable networkcon-
nection between two processes belonging to the session. It
is of course possible to have several channels related to the
same interface and/or the same network adapter. This fea-
ture may be used to logically split communication from two
different modules. Yet, in-order delivery is only enforced
for point-to-point connections within the same channel.

2.2 Message Construction

The Madeleine II programming interface is essentially
the same as theMadeleineinterface but a few minor mod-
ifications and improvements. LikeMadeleine, it provides
a small set of primitives to build RPC-like communica-
tion schemes. These primitives actually look like classical
message-passing-oriented primitives. Essentially, thisin-
terface provides primitives to send and receivemessages,
and severalpackingandunpackingprimitives that allow the
user to specify how data should be inserted into/extracted
from messages (Table 1). Just like Fast-Messages [12] or

Nexus [6], Madeleine II allows applications to incremen-
tally build messages to be transmitted, possibly at multiple
software levels. To illustrate this, let us consider a remote
procedure call which takes an array of unpredictable size as
a parameter. When the request reaches the destination node,
the header must be examined both by the multithreaded run-
time (to extract the name of the function that will be exe-
cuted by the server thread) and by the user application (to
allocate the memory where the array should be stored).

A Madeleine II message consists of several pieces of
data, located anywhere in user-space. It is initiated with
a call tomad begin packing. Its parameters are the re-
mote nodeid and the channel object to use for the message
transmission. Each data block is then appended to the mes-
sage usingmad pack. The message construction is even-
tually finalized by callingmad end packing. This last
operation ensures that each previously packed piece of the
message has actually been flushed to the network.

In addition to the data address and size, the packing
primitive features a pair offlag parameters which specify
the semantics of the operation. This is an original speci-
ficity of Madeleine IIwith respect to other communication
libraries. For example, it is possible to requireMadeleine II
to enforce a piece of data to be immediately available on the
receiving side after the correspondingmad unpack call.
Alternatively, one may completely relax this constraint to
allow Madeleine IIto optimize data transmission according
to the underlying network as explained below. The expres-
sion of such constraints by the application is the key point to
provide an optimal level of performance through a generic
interface. The available emission flags are the following:

send SAFER This flag indicates thatMadeleine IIshould
pack the data in a way that further modifications to
the corresponding memory area should not corrupt the
message. This is particularly mandatory if the data lo-
cation is reused before the message is actually sent.

send LATER This flag indicates thatMadeleine IIshould
not consider accessing the value of the corresponding
data until themad end packing primitive is called.
This means that any modification of these data be-
tween their packing and their sending shall actually
update the message contents.

send CHEAPER This is the default flag. It allows
Madeleine II to do its best to handle the data as ef-
ficiently as possible. The counterpart is that no as-
sumption should be made about the wayMadeleine II
will access the data. Thus, the corresponding data
should be left unchanged until the send operation has
completed. Note that most data transmissions in-
volved in parallel applications can accommodate the
send CHEAPER semantics.
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The following flags control the reception of user data pack-
ets:

receive EXPRESS This flag forces Madeleine II to
guarantee that the corresponding data are immediately
available after theunpackingoperation. Typically, this
flag is mandatory if the data is needed to issue the up-
comingunpackingcalls. On some network protocols,
this functionality may be available for free. On some
others, it may result in poor performance. The user
should therefore extract data this way only when nec-
essary.

receive CHEAPER This flag allowsMadeleine IIto pos-
sibly defer the extraction of the corresponding data
until the execution ofmad end unpacking. Thus,
no assumption can be made about the exact moment
at which the data will be extracted. Depending on
the underlying network protocol,Madeleine IIwill do
its best to minimize the overall message transmission
time. If combined withsend CHEAPER, this flag
guarantees that the corresponding data is transmitted
as efficiently as possible.

It should be stressed that this message construction is
in fact virtual. Madeleine IImay well choose at any pack
step to send data over the network or to keep data in place
and delay transmission or even to copy data into protocol-
specific preallocated buffers. There is no restriction about
the combinations of the send and receive modes in the cur-
rent implementation.

However,Madeleine IImessages do not contain any in-
formation about which mode was selected for each piece
of data, for the sake of optimal latency. Hence, one should
ensure that packing and unpacking sequences are strictly
symmetrical (regarding both packet sizes and combinations
of packing/unpacking modes). Unspecified behavior would
occur otherwise.

2.3 Example

Figure 1 illustrates the power of theMadeleine II inter-
face. Consider sending a message made of an array of bytes
whose size is unpredictable on the receiving side. Thus, the
receiver has first to extract the size of the array (an inte-
ger) before extracting the array itself, because the destina-
tion memory has to be dynamically allocated. In this exam-
ple, the constraint is that the integer must be extractedEX-
PRESS beforethe corresponding array data is extracted. In
contrast, the array data may safely be extractedCHEAPER,
striving to avoid any copies. It is fine to do so, as the size of
the array is expected to be much larger than the size of an
integer. Theend unpacking call ensures that the array
has actually been filled with the expected piece of data.

Sending side
(1) connection = mad_begin_packing(channel,

remote);
(2) mad_pack(connection, &size, sizeof(int),

send_CHEAPER, receive_EXPRESS);

(3) mad_pack(connection, array, size,
send_CHEAPER, receive_CHEAPER);

(4) mad_end_packing(connection);

Receiving side
(1) connection = mad_begin_unpacking(channel);
(2) mad_unpack(connection, &size, sizeof(int),

send_CHEAPER, receive_EXPRESS);
array = malloc(size);

(3) mad_unpack(connection, array, size,
send_CHEAPER, receive_CHEAPER);

(4) mad_end_unpacking(connection);

Figure 1. Sending and receiving messages
with Madeleine II.
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3 The Core Structure of Madeleine II

3.1 Global Organization

Nowadays communication libraries have to reach two
seemingly contradictory goals. They are expected to pro-
vide both an effective portability over a wide range of hard-
ware/software combinations, whilst achieving a high ef-
ficiency using these components. To meet these goals,
Madeleine II follows a modular approach built around a
highly flexible architecture. This approach allows the li-
brary to tightly fit and optimally exploit the specific charac-
teristics of each target network.

Madeleine IIis organized as two software layers (Fig. 2),
following a commonly used scheme.Protocol/network-
specific interfacingis realized by the lower layer, providing
the portability of the whole library. This layer relies on a set
of network specificTransmission Modules(TM). The upper
layer is independent of the supported network interfaces and
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send buffer Send a single buffer
send buffer group Send a group of buffers
receive buffer Receive a single buffer
receive sub buffer group Receive a group of buffers
obtain static buffer Obtain a protocol level buffer
release static buffer Release a protocol level buffer

Table 2. Functional interface of TMs.

is in charge of thegeneric buffer management. It is made of
severalBuffer Management Modules(BMM), each of these
implementing a given buffer management policy.

3.2 Transfer Management

One of the goals ofMadeleine II is to support multi-
modal interfaces such as VIA [4] or SISCI/SCI [7]. Such
interfaces provide several data transfer methods. For in-
stance, regular Processor IO (PIO) and Direct Memory Ac-
cess (DMA) are available for Dolphin SCI NICs. Moreover,
it should be able to easily take into account interface imple-
mentations like BIP/Myrinet [13] which make a difference
betweenshortbuffers andlong buffers. As a consequence,
Madeleine IIfeatures specific modules to encapsulate each
of thesesub-interfaces. These modules are calledTransmis-
sion Modules(TM).

Table 2 shows the common interface of the TMs (note
that some functions may not be relevant for a specific TM
and will not be implemented in such case). We can see that
TMs provide single buffer transmission support and poten-
tially optimized scatter/gather multi-buffer transfers.De-
pending on the underlying network properties, they may
also implement protocol-specific buffer allocation routines.
This feature is needed for protocols which provide their own
set of preallocated buffers.

3.3 Network Management

TMs are grouped intoProtocol Management Modules
(PMM). There is one PMM for each supported network in-
terface (e.g., BIP or TCP). Each PMM implements whole
or part of a generic set of functions. This set of functions
constitutes the protocol driving interface. It ensures inde-
pendence between the upper layer and the communication
networks. The protocol management modules are based on
a hierarchy of data structures that virtualize each basic ob-
ject involved during a data transfer: Driver, Adapter, etc.

3.4 Buffer Management

While some TMs can benefit from grouped buffer trans-
fers, others may behave worse depending on the function-
alities implemented by the underlying network. Each TM
should thus be fed with its optimal shape of data. As a

result, each TM is associated with aBuffer Management
Module (BMM) from the Buffer Management Layer. Of
course, it is expected that several TMs share the same shape
so that BMMs can be reused, which results in a significant
improvement in development time and reliability.

Each BMM implements a generic, protocol-independent
management policy. A BMM may either control
dynamic buffers(the user-allocated data block is di-
rectly referenced as a buffer) orstatic buffers (data
is copied into a buffer provided by the TM), but not
both. The static buffer BMMs work together with TMs
implementing theobtain static buffer and re-
lease static buffer functions. These functions pro-
vide the BMMs with a generic access to pools of protocol
specific buffers. The work of copying user pieces of data
into and from static buffers is done by the BMMs.

Moreover, each BMM may implement a specific aggre-
gation scheme to group successive buffers into a single
virtual piece of message in order to exploit optional scat-
ter/gather protocol capabilities. However, a BMM may also
adopt an eager behavior and send buffers as soon as they are
ready.

4 A Message Transmission Step-by-Step

We now show theMadeleine IIcomponents in operation
while transmitting an application message.

4.1 Sending

The application initiates the construction of an outgoing
message through a call tobegin packing(channel,
remote). Thechannel object selects the protocol mod-
ule, and the adapter to use for sending the message. The
remote parameter specifies the destination node. Thebe-
gin packing function returns aconnection object.

Using this connection object, the application
can start packing user data into packets by call-
ing pack(connection, ptr, len, s mode,
r mode). Entering the Generic Buffer Management
Layer, the packet is examined by theSwitch Module(Step 1
on Fig. 3). It queries the Specific Protocol Layer (Step 2)
for the best suitedTransmission Module, given the length
and the send/receive mode combination. The selected
TM (Step 3) determines the optimalBuffer Management
Module to use (Step 4). Finally, the Switch Module for-
wards the packet to the selected BMM. Depending on the
BMM, the packet may be handled as is (and considered as
a buffer), or copied into a new buffer, possibly provided by
the TM. Depending on its aggregation scheme, the BMM
either immediately sends the buffer to the TM or delays
this operation for a later time. The buffer is eventually
sent to the TM (Step 5). The TM immediately processes
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Figure 3. Conceptual view of the data path through Madeleine II’s internal modules.

and transmits it to the network driver/library (Step 6). The
buffer is then eventually shipped to the network adapter
(Step 7).

Special attention must be paid to guarantee the delivery
order in presence of multiple TMs. Each time the Switch
Step selects a TM differing from the previous one, the cor-
responding previous BMM is flushed (commiton Fig. 3) to
ensure that any remaining delayed packet has been shipped
to the network. A generalcommitoperation is also per-
formed by theend packing(connection) call to en-
sure that no delayed packet remains waiting in the BMM.

4.2 Receiving

Processing an incoming message on the destination side
is just symmetric. A message reception is initiated by a
call to begin unpacking(channel) which starts the
extraction of the first incoming message for the specified
channel. This function returns theconnection object
corresponding to the established point-to-point connection,
which contains the remote node identification among other
things.

Using thisconnection object, the application issues
a sequence ofunpack(connection, ptr, len,
s mode, r mode) calls, symmetrically to the series of
pack calls that generated the message. Exact symmetry
betweenpack andunpack call series is mandatory be-
causeMadeleine IImessages are not self-described (in or-

der to optimize efficiency). The Switch Step is performed
on eachunpack and must select the same sequence of
TM as on the sending side. For instance, a packet sent by
the DMA Transmission Module of SCI must be received
by the same module on the receiving side. Thecheckout
function (dual to thecommitone on the sending side) is
used to actually extract data from the network to the user
application space: indeed, just like packet sending could
be delayed on the sending side for aggregation, the actual
packet extraction from the network may also be delayed
to allow for burst data reception. Of course, the final call
to end unpacking(connection) ensures that all ex-
pected packets are made available to the user application.

5 Implementation and Performance

5.1 Testing Environment

The following performance results are obtained using a
cluster of dual Intel Pentium II 450 MHz PC nodes with
128 MB of RAM running Linux version 2.2.13. The clus-
ter interconnection networks are Dolphin SCI (D310 NICs)
for SISCI and Myrinet (NICs specs: LANai 4.3, 32-bit bus,
1 MB SRAM) for BIP. Please note that the latency measure-
ments are one-way transfer time measurements.
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5.2 Madeleine II on Top of Existing Interfaces

5.2.1 SISCI/SCI

Results The performance measurements of the SISCI
PMM are shown in Figure 4. We can see that the minimal
latency is very low (3.9�s), thanks to our highly optimized
short message TM (see implementation details below).

The bandwidth is very good, too, thanks to the use of
an adaptive, dual-buffering algorithm. This algorithm is ac-
tivated for data blocks larger than 8 kB within the regular
SISCI TM as clearly seen on Figure 4. This optimization
allowsMadeleine IIto deliver a bandwidth of 82 MB/s.

The SISCI PMM handles both transmission modes pro-
vided by the SISCI interface: a regular PIO mode and a
DMA mode. Three transmission modules are currently im-
plemented, as the regular PIO mode uses an additional TM
specifically optimized for short message transfer. Note that
the DMA mode TM is implemented but not active in the
current version, because of the poor performance of the SCI
DMA: we have not been able to get more than 35 MB/s with
Dolphin SCI D310 NICs.

5.2.2 BIP/Myrinet

BIP (Basic Interface for Parallelism) is a low-level commu-
nication interface specifically designed for the Myrinet net-
work protocol [13]. The main advantage of BIP is to pro-
vide communication control in user space: the application
may directly interact with the network interface card. The
BIP interface makes a distinction between short messages
(< 1 kB) and long messages. Short messages are temporar-
ily stored into internal buffers (preallocated by BIP) on the
receiving side. No participation of the receiver is neces-
sary. In contrast, long messages are directly delivered at
their final location without any intermediate copy. In this

latter case, a strict synchronization is necessary betweenthe
sender and the receiver: the receiver must acknowledge the
sender that it is ready to receive before a message is actually
transmitted.

The BIP PMM of Madeleine IIhandles both transmis-
sion modes. Theshort messageTM uses a credit-based flow
control algorithm to make sure that each message can be
stored into a buffer. Thelong messageTM implements the
receiver-acknowledgment synchronization scheme. This
Madeleine II BIP PMM achieves top performance results
with a minimal latency of 7�s and a bandwidth of 122 MB/s
(Figure 5). Theses results are very close to the raw BIP re-
sults: 5�s minimal latency and 126 MB/s maximal band-
width.

5.3 Madeleine II as a Basis for High-Level Com-
munication Libraries

While Madeleine IIhas also been ported (quite straight-
forwardly) on top of MPI, it may also be used as a low-
level multiprotocol communication component for MPI im-
plementations (as well as other for communication inter-
faces) too. We now present two implementations of high-
level communication libraries–namely MPICH [8, 9] and
Globus/Nexus [6, 3]–overMadeleine II.

5.3.1 MPICH/Madeleine II

Madeleine IIhas been integrated into MPICH as a newch-
madmodule. Our goal was to let MPICH benefit from the
multi-protocol features ofMadeleine II. Preliminary perfor-
mance measurements are quite encouraging. Figure 6 com-
pares MPICH/Madeleine II/SISCI to two other implemen-
tations of MPI over SCI, namely SCI-MPICH [16] and the
commercial version ScaMPI [15]. The performance curves
of Madeleine II over SISCI (without MPICH) are plotted
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too, in order to provide an idea of the current overhead of
our MPI/Madeleine IIimplementation.

Though latency does not compare favorably to direct im-
plementations of MPI over SCI, we can see that things are
much different as far as bandwidth is concerned. Ourch-
madmodule provides the best results for messages of 32 kB
and above. Moreover, this module is able to use most of the
bandwidth provided byMadeleine IIfor large messages.

5.3.2 Nexus/Madeleine II

While Nexus is valuable–as part of Globus–for intercon-
necting supercomputers and clusters of workstations with
wide area networks (WAN), it suffers from its heavy mech-
anisms when it comes to perform high performance ap-
plication communication at the cluster scale. In contrast,
Madeleine II was specifically designed to provide appli-
cations with highly efficient access to cluster network re-
sources. Hence, it was interesting to investigate merg-
ing these two communication libraries in order to get the
best of both worlds. The problem is the different models
adopted by these communication interfaces: Nexus initial-
ization scheme is point-to-point connection-oriented while
Madeleine IIis cluster-oriented.

Figure 7 shows the level of performance achieved by
our implementation of Nexus overMadeleine II/TCP and
Madeleine II/SISCI. It is clear that even with a rather heavy
interface and without any sophisticated optimization, our
Nexus/Madeleine II implementation is very effective on a
high-performance network like SCI (with a minimal latency
below 25�s) and offers a more interesting solution as far as
cluster computing is concerned.

Nexus features multiprotocol support [5] and
Madeleine II is currently seen as one protocol by Nexus.
Hence, we can easily imagine Globus applications using
regular the TCP/Nexus protocol for wide area transmission
and the “Madeleine II” Nexus protocol for local cluster
high-performance computation.

6 Efficient Inter-Device Data-Forwarding in
Madeleine II

The success of cluster computing in both academic in-
stitutions and companies led to consider interconnecting
several clusters to form powerful heterogeneous infrastruc-
tures for parallel computing. However, developing runtime
systems for such architectures raises many research issues.
Among them, the design of the communication subsystem
is perhaps the most challenging. Because network links be-
tween clusters may be as fast as internal cluster links, clus-
ters of clusters significantly differ from grid architectures
where inter-cluster links are assumed to be slow Conse-
quently, communication environments originally designed

Messages to be forwarded

Regular messages
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Application

Generic TM

1 2TM

BMM BMM BMM
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TM

Switch Module
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Management
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Layer

Specific
Protocol

selectPMM SCI
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Figure 8. Integrating the Generic Transmis-
sion Module into Madeleine II: Emitting a mes-
sage.

for grids, such as Nexus [6], cannot be efficiently used in
this new context.

It has been proposed (e.g., PACX-MPI [11]) toglue
togetherheterogeneous communication libraries. In con-
trast, we propose to extend the natively multi-device com-
munication libraryMadeleine II with an additional facil-
ity to efficiently transfer messages across devices. Doing
so, the inter-device data-transfer mechanism is completely
hidden to the upper layers and the low-level characteris-
tics of network devices can be used to optimize transfers
(pre-allocated buffers, DMA operations, etc.) Then, higher-
level traditional routing mechanisms can be efficiently im-
plemented on top of this extendedMadeleine II interface.
Our approach retainsMadeleine II’s portability while being
as efficient as possible with regards to the capabilities of
high-speed networks. The only change in the interface is
due to the necessity to provide additional information about
the configuration of the network when a channel is created:
instead of a single channel using a given network protocol,
one has to specify avirtual channelthat includes a sequence
of real channels.

6.1 Implementation Principles

Forwarding mechanism Where should the forwarding
mechanism be implemented within the layered architecture
of Madeleine II? Because Transmission Modules (TMs) are
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strongly protocol-dependent, it is not possible to implement
the forwarding mechanism at this level without compro-
misingMadeleine II’s portability. Alternatively, modifying
the Buffer Management Layer could be considered, but a
prohibitive development cost would be expected because
of the number of modules in that layer. Furthermore, ad-
ditional conversionmodules between Buffer Management
Modules (BMMs) would have to be introduced because the
BMMs used on each side of a virtual channel may differ.
Finally, we could merely implement this mechanism on top
of Madeleine II, which would perfectly meet our needs in
terms of portability. However, this would also have a dra-
matic impact on the efficiency because all data transfers
would have to throughMadeleine II twice on the gateway
nodes, with the need for extra copies in temporary buffers.
Hence, the best solution seems to insert the forwarding
mechanism between BMMs and TMs.

Data transfers How can actual data transfers be per-
formed? The most efficient way would be to consider raw
transfers between transmission modules. However, such a
raw forwarding is impossible becauseMadeleine IImay use
different BMMs for different network devices in order to
optimally exploit the characteristics of the various underly-
ing networks. Buffers may thus be grouped in a specific
way for each single device, and they should be ungrouped
and then regrouped in a different way at each gateway. To
circumvent this difficult problem, we have decided that all
inter-cluster traffic should be handled by agenericTM. This
TM, used by both the sender and the receiver of a message
as an interface between BMMs and real TMs (see Fig. 8),
guarantees that data is handled in the same way on both
ends. Some optimizations are lost, but the cost of ungroup-
ing and regrouping buffers is definitely saved.

Self-described messagesWithin homogeneous
Madeleine II applications, messages need not be self-
described, since the user provides the necessary informa-
tion on receiving a message. Yet, this information is not
available to the gateway, unless the code of that gateway
is written as part of the application, which is precisely
what we try to avoid. Hence, self-describing messages
are mandatory to our transparent forwarding mechanism.
The generic TM is in charge of transparently inserting
information needed by the gateway to get the size and
actual destination of a message.

Generic Transmission Modules The Generic Transmis-
sion Module (Generic TM) guarantees that intermediate
gateways can merely forward the buffers without consid-
ering the initial grouping method.

The Generic TM is also in charge of determining the
common, optimal packet size (MTU, Maximum Transmis-
sion Unit) to be used along the route. To optimally use the
pipeline mechanism on the gateways, the messages have to
be fragmented into several packets. The size of those frag-
ments is defined so that each network is able to send them
without having to fragment them further. In the current ver-
sion, the appropriate packet size is specified at compile time
because the network configuration is statically configured.

The Generic TM is also used to add self-description in-
formation to the messages that go through the gateways.
This description is compulsory as gateways know nothing
about what messages are to be expected. Since some infor-
mation (e.g., the destination of the whole message) is com-
mon to several buffers, it is sent only once, as part of the
first packet. Buffer-specific information, such as the size
and the emission/reception constraints, is sent together with
each buffer.
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Avoiding copies on forwarding Efficiently using high-
performance communication interfaces demand avoiding
copies. This is easily done for interfaces based ondynamic
buffers. Yet, some interfaces (e.g., SBP [14]) require data
to be written in specific buffers before being sent. In that
case, using an additional temporary buffer to receive data
should definitely be avoided.Madeleine II’s support for
static buffer protocols allows us to avoid any extra copy
as follows. If the sending-side interface uses static buffers
while the receiving-side one uses dynamic buffers, it suf-
fices to request a static buffer from the outgoing proto-
col/network TM: it can be used to receive data, thereby sav-
ing one copy. Obviously, one extra copy cannot be avoided
whenbothnetworks require static buffers.

6.2 Experimental Evaluation

We report below on a series of tests run on a two-cluster
configuration: a Myrinet cluster and a SCI one, connected
through a shared node with both interfaces. Both clusters
are built with dual Intel Pentium II 450 MHz PC nodes,
equipped with 128 MB of RAM and with a 33 MHz, 32-
bit PCI bus. The operating system is Linux version 2.2.13.
The Myrinet cluster uses LANai 4.3 NICs, with a 32-bit
bus and 1 MB SRAM. The SCI cluster uses Dolphin SCI
D310 NICs. The communication interfaces are BIP [13] for
Myrinet and the Dolphin SISCI for SCI.

We run inter-cluster ping tests between a regular node
(i.e., not the gateway node) of one cluster and a regular node
of the other, through the common gateway, first from SCI to
Myrinet, and then from Myrinet to SCI. For each case, the
ping program repeatedly transmits messages of the given
size using the heterogeneousMadeleine II in one direction
through the gateway. At each message, a small acknowl-
edgment is sent back using the common Fast-Ethernet con-
nection. Since we exactly know the latency of the acknowl-
edgment, we are able to infer the one-way message trans-
mission time from the total round-trip time.

6.2.1 Packet-forwarding pipeline architecture

Our forwarding mechanism is essentially designed to pro-
vide a high bandwidth on forwarding messages among clus-
ters interconnected by high speed networks. However, low
latency should not be expected from this design: 1) The
overall latency of a inter-cluster transmission includes at
least the native latencies of each networks; 2) It also in-
cludes a significant amount of software overhead at the
gateway. Actually, the size of packets handled by the gate-
way is fixed by design in the current implementation, so that
no optimization of the pipeline startup latency is possibleat
this time. In the sequel, we only discuss bandwidth perfor-
mance.

...

: Buffer 1

: Buffer 2

Time
Software overhead

SCI_send

MYRINET_recv

Figure 9. Packet-forwarding pipeline on the
gateway node.

On the gateway node, our implementation uses two sep-
arate threads to pipeline the packet forwarding from one
network to the other with adual-bufferingstrategy. The
best performance is achieved if: 1) Sending and receiv-
ing packets approximately take the same time (Figure 9);
2) The software overhead of having the threads exchange
their buffers is small. Then, one buffer can be sent while
the other is received with a perfect overlap.

However, the gateway node bridges two different net-
works and the respective transmission times for a given
packet size differ in general. For instance, SCI achieves
very good performance for small messages, whereas
Myrinet behaves better for large messages. In fact,
Madeleine IIachieves approximately the same performance
on top of Myrinet and SCI for messages of size 16 kB (la-
tency: ca. 250�s, bandwidth: ca. 60 MB/s), which suggests
that the correct packet size should be set to 16 kB. Unfortu-
nately, we will see in the next sections that several other fac-
tors have significant impact on the pipeline behavior, mak-
ing it quite difficult to predict its actual performance.

6.2.2 Forwarding from SCI to Myrinet

We first report on the performance of our forwarding mech-
anism in theSCI-to-Myrinet direction (Figure 10) with
packet sizes ranging from 8 kB to 128 kB. The bandwidth
obtained when using 8 kB packets is only 36.5 MB/s. For
larger packets, the bandwidth is greater than 45 MB/s and
even close to 50 MB/s for 128 kB packets. This can be
considered as satisfactory, since the theoretical maximum
bandwidth one can achieve on a machine equipped with a
single 33 MHz PCI bus is 66 MB/s.

For 8 kB packets, a pureMadeleine II ping-pong pro-
gram achieves a bandwidth of 58 MB/s over SISCI/SCI and
47 MB/s over BIP/Myrinet. Thus, the period of the pipeline
(i.e., the duration of a single step) for 8 kB packets is at least
166�s. In practice, the observed bandwidth is 36.5 MB,
which means that the effective pipeline period is closer to
215�s. This seems to indicate that the software overhead
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Figure 10. Forwarding bandwidth: from SISCI/SCI
to BIP/Myrinet.
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Figure 11. Forwarding bandwidth: from
BIP/Myrinet to SISCI/SCI.

of this approach is 50�s per step. We are unfortunately not
able to analyze this behavior in greater detail as of today.

For larger packets however, another phenomenon ap-
pears. Indeed, for packet sizes greater that 16 kB, a pure
Madeleine IIping-pong program achieves a bandwidth of
more than 60 MB/s, which can be considered as the maxi-
mum one-way bandwidth one can get over a 32-bit PCI bus
in practice. Thus, the outgoing packets cannot be sent with
a bandwidth greater than 60 MB/s. However, we only reach
an asymptotic bandwidth of 49.5 MB/s in practice: we as-
sume that this is due to some conflicts raised on the PCI bus
when doing intensive full-duplex communications.

6.2.3 Forwarding from Myrinet to SCI

We run similar tests in the opposite direction for packet
sizes ranging from 8 kB to 128 kB (Figure 11). The ob-
served performance is by far lower than the previous one.
The bandwidth obtained when using 8 kB packets is only
29 MB/s (instead of 36.5 MB/s), and the asymptotic band-
width obtained for larger packets remains under 36.5 MB/s
(instead of 50 MB/s)!

Obviously, such disappointing results cannot be due to
some software overhead nor to the saturation of the PCI bus.
In fact, we run several additional experiments that seems
to indicate that the problem is related to the priority of the
involved PCI transactions: the DMA PCI transactions initi-
ated by the Myrinet card seem to have a greater priority than
the PIO PCI transactions initiated byMadeleine II. Conse-
quently, during a (Myrinet-) buffer receiving, the sendingof
the other buffer over SCI is slowed down by a factor of two.
We are currently investigating several techniques to reduce
this phenomenon.

7 Conclusion

Madeleine IIis a new high-performance communication
library for distributed programming environments. Our li-
brary features full multi-protocol, multi-adapter support as
well as an integrated new dynamicmost-efficient transfer-
methodselection mechanism. It currently runs on top of
BIP, SISCI, TCP, VIA and common MPI implementations.
We reported very interesting performance results on top of
BIP/Myrinet and SISCI over a SCI network.

In addition, we have shown the effectiveness of
Madeleine II as a foundation for higher level commu-
nication libraries and introduced two implementations:
Nexus/Madeleine IIand MPICH/Madeleine II. Here again,
results are highly encouraging. MPICH/Madeleine IIeven
outperforms the current best implementations of MPI over
SCI as far as bandwidth is concerned.

Madeleine IIcan also be extended with a portable data-
forwarding mechanism for network-heterogeneous clusters
of clusters. We showed that targeting the right abstraction
level can make this additional mechanism completely trans-
parent from the application point of view, portable on a
wide range of network protocols, while remaining efficient.
Zero-copy techniques together with pipelining strategiesare
mandatory to keep a high bandwidth over inter-cluster links.
However, the sharing of the gateway internal system bus
bandwidth appears to be a central issue: some sophisticated
bandwidth controlmechanism is needed to regulate the in-
coming communication flow on gateways. This is a point
we intend to investigate in the future.

We are now actively investigating the integration of
Madeleine II with our user-level multithreading library
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Marcelby the design and development of advanced adaptive
polling/interruption network interaction mechanisms cou-
pled to an extensive support of our implementation of the
Scheduler Activations[2]
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