
Efficient Inter-Device Data-Forwarding
in the Madeleine Communication Library

Olivier Aumage Lionel Eyraud
Raymond Namyst
LIP, ENS-LYON
46, Allée d’Italie

69364 Lyon Cedex 07, France
{Olivier.Aumage,Lionel.Eyraud,Raymond.Namyst}@ens-l yon.fr

Abstract

Interconnecting multiple clusters with a high speed net-
work to form a single heterogeneous architecture (i.e. a
cluster of clusters) is currently a hot issue. Consequently,
new runtime systems that are able to simultaneously deal
with multiple high speed networks within the same appli-
cation have to be designed. This paper presents how we
did extend an existing multi-device communication library
with fast internal data-forwarding capabilities on gateway
nodes. On top of that, efficient high-level routing mecha-
nisms can be implemented. Our approach is easily appli-
cable to many network protocols and is completely inde-
pendant from the application code. Efficiency is achieved
by avoiding extra data copies when possible and by using
pipelining techniques. The preliminary experiments show
that the observed inter-cluster bandwidth is close to the one
that can be delivered by the hardware.

1 Introduction

The current success of cluster computing in both aca-
demic institutions and compagnies leads many people to
consider interconnecting several clusters to form powerful
heterogeneous infrastructures for parallel computing. In-
deed, this approach is very attractive as far as the perfor-
mance/cost ratio is concerned. However, runtime systems
for such architectures are still relatively experimental and
their development raises many research issues. Among
them, the design of the communication subsystem is per-
haps the most delicate one. Because network links between
clusters may be as fast as internal cluster links, clusters of
clusters significantly differ from grid architectures where
inter-cluster links are assumed to be slow. Consequently,
communication environments that were designed for grids

may not be suitable for clusters of clusters.

The network protocol used to handle inter-cluster com-
munication on grids of computers is typically TCP/IP. For
instance, environments such as PACX-MPI [5] use native
implementations of MPI [2] to handle intra-cluster commu-
nication and use TCP for all inter-cluster communication.
Obviously, this is not acceptable for fast clusters of clus-
ters where all the links are able to deliver more than one
gigabit per second. Actually, inter-cluster communication
should also use efficient communication libraries such as
MPI, VIA [7], BIP/Myrinet [9], SISCI/SCI [6], etc. On
gateway nodes (i.e. machines connected to several phys-
ical network devices), it means that multiple communica-
tion libraries should be integrated in a common subsystem
that would provide facilities for message forwarding be-
tween clusters. Nexus [3], the communication component
of the Globus [4] environment, is a good example of such
a runtime system. It features a multi-device communica-
tion layer that is able to exploit several networks simulta-
neously. However, Nexus does not provide any support for
message routing between networks. It is up to the applica-
tion to forward messages from one network device to an-
other one, using regular receive and send operations. This
raises two major problems: the routing is not transparent to
the application and the data transfers are inefficient in terms
of bandwidth since extra copies of data are performed and
no pipelining techniques can be used.

This paper presents a fast data-forwarding mechanism
that we have integrated into Madeleine, an existing multi-
device communication library originally designed for high
performance clusters. Contrary to approaches such as
PACX-MPI which try to link separate communication li-
braries by an “interconnecting glue”, our approach consists
in designing a natively multi-device communication library
able to efficiently transfer messages across devices. This
way, the inter-device data-transfer mechanism is completely



hidden to the upper layers and some low-level characteris-
tics of network devices can be used to optimize transfers
(preallocated buffers, DMA operations, etc.) On top of
Madeleine, high-level traditional routing mechanisms can
easily and efficiently be implemented. Moreover, our ap-
proach is portable on top of many network protocols thanks
to a low-level generic interface. The preliminary experi-
ments we conducted using one Myrinet cluster connected
to a SCI cluster (with a Myrinet link) revealed a maximum
bandwidth of49:5MB/s between two nodes located on each
clusters.

2 Portable and efficient multiprotocol for-
warding

2.1 The Madeleine communication interface

Madeleine[1] aims at enabling an efficient use of the
complete set of communication software and hardware
available on clusters of workstations. It is able to deal
with several networks (through possibly different inter-
faces) within the same application session and to manage
multiple network adapters (NIC) for each of these networks.
The library provides an explicit control over communica-
tion on each underlying network. The user application can
dynamically switch from one network to another, accord-
ing to its communication needs. Moreover, just like FAST-
MESSAGES(FM) [8] or NEXUS [3], Madeleineallows ap-
plications to incrementally build messages to be transmit-
ted.

Nowadays communication libraries are expected to ful-
fill two seemingly contradictory aims. They must achieve
effective portability over a wide range of hardware/software
combinations, whilst achieving a high level of efficiency us-
ing these network components. To meet these goals, the
Madeleinedesign follows a modular approach leading to a
highly flexible architecture. This approach allows the li-
brary to very tightly fit and optimally exploit the specific
characteritics of each targeted network component.

2.1.1 Structure

Data Transmission Modules Madeleineis organized as
two software layers (Fig. 1), following a commonly used
scheme. Protocol/network-specific interfacingis realized
by the lowerHardware Abstraction Layer, providing the
portability of the whole library. This layer relies on a
set of network specificTransmission Modules(TM). TMs
are grouped into Protocol Management Modules (PMM).
There is one PMM for each supported protocol (e.g.,
BIP/MYRINET or TCP/FAST-ETHERNET). Each PMM im-
plements whole or part of a generic set of functions. This
set of functions constitutes the protocol driving interface. It

insures independence between the upper layer and the com-
munication protocols.

Buffer Management The upper layer is independent of
the supported network interfaces and is in charge of the
generic buffer management. Indeed, while some TM can
benefit from grouped buffer transfers, other may not, de-
pending on the functionalities implemented by the underly-
ing network. Each TM should thus be fed with its optimal
shape of data. As a result, each TM is associated with a
Buffer Management Module(BMM) from the buffer man-
agement layer. The set of BMMs constitute the upper layer
of Madeleine. Of course, it is expected that several TMs
share the same preferred data shape so that BMMs can be
reused, which results in a significant improvement in devel-
opment time and reliability.

A BMM may either controldynamic buffers(the user-
allocated data block is directly referenced as a buffer) or
static buffers(data is copied into a buffer provided by the
TM), but not both. Moreover, each BMM may implement
a specific aggregation scheme to group successive buffers
into a single virtual piece of message in order to exploit op-
tional scatter/gather protocol capabilities. On the contrary,
a BMM may adopt an eager behavior and send buffers as
soon as they are ready.

2.1.2 Interface

TheMadeleineprogramming interface provides a small set
of message-passing-oriented primitives. Basically, thisin-
terface provides primitives to send and receivemessages
and to allow the user to specify how data should be inserted
into/extracted from messages.Madeleineis able to effi-
ciently deal with several network protocols within the same
session and to manage multiple network adapters (NIC) for
each of these protocols. It allows the user application to dy-
namically switch from one protocol to another, according to
its communication needs.

Communication objects Such a control is offered by
means of two basic objects. Thechannelobject defines a
closed world for communication. A channel is associated
with a network protocol, a corresponding network adapter
and a set ofconnectionobjects. Each connection object
virtualizes a point-to-point reliable network connectionbe-
tween two processes belonging to the session. It is of course
possible to have several channels related to the same proto-
col and/or the same network adapter, which may be used
to logically split communication. Yet, in-order delivery
is only enforced for point-to-point connections within the
same channel.



Buffer
Generic

Layer

Layer

Management

Protocol

Switch ModuleSwitch Module

Specific

BMM

TM1
rdma

2TM
mesg

Fast-Ethernet

Driver

Fast-Ethernet

Adapter

1 BMM 2 ... BMM n

Application

BMM

TM1
rdma

2TM
mesg

Fast-Ethernet

Driver

Fast-Ethernet

Adapter

1 BMM 2 ... BMM n

Application

Network

PMM VIA PMM VIA

Figure 1. Madeleine’s modular architecture.

Message Building A Madeleinemessage is composed of
several pieces of data, located anywhere in user-space. It
is initiated with a call tomad begin packing . Its pa-
rameters are the remote nodeid and the channel object to
use for the message transmission. Each data block is then
appended to the message usingmad pack . In addition to
the data address and size, the packing primitive features a
pair of flag parameters which specify the semantics of the
operation. Eventually, the message construction is finalized
usingmad end packing . This final step guarantees that
the whole message has been actually transmitted to the re-
ceiving side through the network.

One should note, though, that for the sake of effi-
ciency, the messages are notself-describedat the level of
Madeleine: the data blocks should beunpackedprecisely in
the order as they werepacked, with the same flag specifica-
tion.

2.2 Portable and efficient multiprotocol forward-
ing on clusters of clusters

In order to allowMadeleineto be able to benefit from
configurations including a larger number of nodes, which
are not always connected altogether, but rather as clusters
of clusters, we had to insert intoMadeleinea forwarding
mechanism. This mechanism had to be transparent to the
user application and to keep the wholeMadeleine’s porta-
bility while being as efficient as possible with regards to the
capabilities of high-speed networks.

2.2.1 General description

User interface Our solution is mostly transparent to the
user. The changes were indeed made insideMadeleine, thus
keeping compatibility with the former applications. The
only change in the interface is due to the necessity to de-
scribe more precisely the configuration of the network when
a channel is created. Instead of simply creating a channel
using a network protocol, we now create avirtual channel
that includes a set of real channels. When sending a mes-
sage over a virtual channel, the appropriate underlying real
channel is dynamically chosen depending whether it is nec-
essary to forward the message through a gateway or not.

Integration into Madeleine The first issue we had to face
is related to the level at which we would implement our for-
warding mechanism within theMadeleinelayered architec-
ture.

Because transmission Modules are strongly protocol-
dependent, it is not possible to implement the forwarding
mechanism at this level without compromisingMadeleine’s
whole portability. On the other hand, modifying the Buffer
Management Layer could be an option, yet with a high de-
velopment cost because of the number of modules in that
layer. Furthermore,conversionmodules between Buffer
Management Modules would have to be written because the
BMMs used on each side of a virtual channel may differ.
Also, we could implement this mechanism just on top of
Madeleine, which would perfectly meet our needs in terms
of portability. Obviously, it would also have dramatic im-



1 2 ... n

Application

Generic TM

1
rdma

2
mesg

TM

selectionMGP VIA

BMM BMM BMM

buffer
management
layer

Generic

Portability
layerTM

Switch Module

Messages to be forwarded

Regular messages

Figure 2. Generic Transmission Module integration into Madeleine: emission example.

pact on the efficiency because all data transfers would have
to thoughMadeleinetwice on the gateway nodes, incuring
an overhead due to unavoidable extra copies in temporary
buffers.

Hence, the best solution seems to be the one which
would place the forwarding mechanism between BMMs
and TMs. That said, the most efficient way of performing
the actual data transfers would be to consider raw transfers
between transmission modules. However, such a raw for-
warding is impossible becauseMadeleinemay use different
BMMs for different network devices (in order to optimally
exploit the characteristics of the underlying networks) and
thus may group buffers in a different way for each device.
As a result, when a message is to be transfered through two
different networks, it would be very expensive for a gate-
way to ungroup buffers and then regroup those buffers in
a different way. To solve this problem, we have designed
a generic TM which is used for every message that has to
travel through at least two different networks. This TM,
used by both the sender and the receiver of a message as an
interface between BMMs and real TMs (see Fig. 2), guaran-
tees that data is handled in the same way on both ends. Of
course, some optimizations are lost but, most importantly,
the cost of ungrouping and regrouping buffers is saved.

The generic TM is also used to construct self-described

messages by adding the information needed by the gateway
to get the size and actual destination of a message. Within
homogeneousMadeleineapplications, this was not neces-
sary since the user gave this information when receiving a
message. Yet, this information is not available to the gate-
way, unless the code of that gateway is written as part of
the application (precisely what we try to avoid). Hence,
self-describing messages are mandatory to our transparent
forwarding mechanism.

2.2.2 Detailed architecture

Virtual channels Because a gateway node is also a reg-
ular node that supports the execution of some application
code, it must distinguish the messages destinated to itself
from the ones that have to be forwarded. A good way of
doing this is to send messages over two separateMadeleine
real channels, depending on whether they should be deliv-
ered to the gateway itself or not. Since aMadeleinechannel
is related to a network device, there will be two channels
per network device per virtual channel (see Fig. 3). The
first one is used for messages that do not have to be redi-
rected to another node (they are calledregular messages),
the second one is used for messages that cross the gateway.

Another issue concerns the choice of the appropriate real



����������������
����������������
����������������
����������������

����������������
����������������
����������������
����������������

�����
�����
�����
�����

�����
�����
�����
�����

����������������
����������������
����������������
����������������

����������������
����������������
����������������
����������������

Special channelRegular channel

Message from 2 to 5Message from 1 to 2

SCI Myrinet

Myrinet channels

SCI Channels

1 2 3 4 5

Figure 3. The different channels in a virtual channel

channel when messages are forwarded from the last gate-
way to their final destination. A possible solution is to use
the special channels designed for non-direct messages. This
would allow the receiver to distinguish easily between reg-
ular and special messages, so as to know if it has to use the
GTM or not.

However, this solution suffers from two major draw-
backs. First, regular nodes would have to poll two differ-
ent channels when waiting for a message, depending on
whether it arrives directly or through a gateway. And since
channels are totally independent inMadeleine, this would
involve a quite complex polling mechanism. Second, it
raises the problem of distinguishing messages in configura-
tions using multiple gateways. For instance, in a configura-
tion with two gateways, it is possible that a message sent to
the first gateway should be forwarded to the second one. If
the destination gateway receives this message on the special
channel, it will not be able to distinguish it from a message
that has to be forwarded. The right solution thus consists
in sending messages over a regular channel once they have
crossed the last gateway (see Fig. 3).

As a counterpart, this policy does not allow the receiver
to know whether the message it receives has been forwarded
or not. To be able to chose between a regular Transmission
Module and the Generic one, it needs some additional in-
formation. We chose to transmit this information before the
actual message body transmission.

Message scrutation Another issue is raised by the fact
that the sender of a message is unknown before the receive
operation actually begins. Remember that the application
sends messages over virtual channels that includes several
real channels. On a regular node, there is only one useable
protocol/network, so messages can only be received on one
real channel. Things are different for a gateway node where
at least two real channels can be used. A polling mecha-
nism involving complex threads synchronizations has to be
implemented so as to poll multiple networks at the same
time.

There are also other threads on the gateway responsi-
ble of performing the forwarding of messages itself. These
threads are listening to the special channels and are respon-
sible for re-transmitting messages to their appropriate des-
tination. The main issue is to let messages transit as fast
as possible so as to optimally use the full bandwidth of the
underlying networks. For improved efficiency, we have im-
plemented a multithreaded pipeline mechanism for receiv-
ing and re-transmitting messages. Two threads are bound
to each network and share two buffers. The first thread re-
ceives data into one buffer while the second sends data from
the other buffer that has previously been filled. This allows
the gateway to receive a data paquet while sending the one it
has received at the previous step. The figure 4 illustrate this
organization on a gateway between a SCI and a MYRINET

network.
Note that this thread-based solution is even more inter-



���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������

Forwarding threads

SCI channels

Polling threads

Madeleine II

Network

Application

Myrinet channels

Thread Data
path

Empty buffer

Full buffer

Figure 4. The threads running on a gateway node

esting on multi-processors machines where true parallelism
can be achieved.

2.3 Implantation

Generic Transmission Module Because of the diversity
of the BMMs in Madeleine, we have designed a specific
Generic Transmission Module for the messages that have to
be forwarded, so as to guarantee that buffers are grouped in
the same way on both ends. This way, the gateway node
does not have to group/ungroup buffers in several manners.

This Generic Transmission Module plays another role:
it determines a MTU (Maximum Transmission Unit) so as
to send messages with an optimal packet size for every net-
work they go through. To optimally use the pipeline mech-
anism on the gateways, the messages have to be fragmented
into several packets. The size of those fragments is defined
so that each network is able to send them without having to
fragment them further. Note that in our case, an appropri-
ate paquet size can be chosen at compile time because the
network configuration is statically configured.

Self-described messagesThe Generic Transmission
Module is also used to add self-description information to
the messages that go through the gateways. This description

is compulsory for those messages, because a gateway knows
nothing about what kind of messages it will receive. Since
some information (like the destination of the message) is
common to several buffers, it is sent only once, as part of
the first packet. The protocol between the sender and the
gateway (implemented in the GTM) is the following one:� the sender sends the rank of the destination node, and

the MTU used for this connexion;� then, for each user buffer to be sent, the sender trans-
mits the size and the emission and reception con-
straints and finally the buffer itself (fragmented into
several pieces if necessary);� to end a message, the sender sends the description of
an empty message.

Minimizing copies In order to optimally use the capa-
bilities of high-speed networks, one of our priorities is to
avoid copying messages, which can take as much time as
the reception of a message. This is easily done when deal-
ing with dynamic buffer networks, but some networks like
SBP [10] require data to be written in special buffers be-
fore being sent. In that case, using an additional temporary



buffer to receive data should be avoided.Madeleine’s sup-
port for static buffer protocols allowed us to easily imple-
ment azero-copymechanism. TheMadeleinetransmission
modules may be asked for protocol/network-specific static
buffers when a message has to be sent.

If the sending-side network uses static buffers while the
network on the receiving side uses dynamic buffers, we
only have to ask the outgoing protocol/network transmis-
sion module for a static buffer which we use to receive data
into. Obviously, an extra copy is unavoidable when both
networks require static buffers.

3 Evaluation

To evaluate the efficiency of our forwarding mechanism,
we did perform several inter-cluster ping tests between a
regular node (i.e. not the gateway node) of a Myrinet clus-
ter and a regular node of a SCI cluster, the two clusters be-
ing connected together by a Myrinet link. Consequently, all
these tests involved three nodes: the two endpoints and a
gateway node that was equipped with both a Myrinet card
and a SCI card and was running the forwarding code. More
precisely, both clusters were composed of dual INTEL PEN-
TIUM II 450 MHz PC nodes equipped with 128 MB of
RAM and with a 33 MHz 32 bits PCI bus. The operating
system kernel was Linux v2.2.13. The first cluster inter-
connection network was Myrinet (NICs specs: LANai 4.3,
32bit bus, 1 MB SRAM) and the second one was Dolphin
SCI (D310 NICs). The underlying network interface used
on Myrinet was BIP [9]. On the SCI network, we used the
SISCI library provided by Dolphin.

3.1 Test programs

To get an accurate evaluation of our mechanism, we dis-
tinguished two cases: messages going from the SCI sub-
network to the Myrinet one and messages going the other
way. In the following, we refer to “theSCI-to-Myrinettest”
to describe the experiment that consisted in sending mes-
sages from one endpoint located within the SCI cluster to
the other endpoint located within the Myrinet cluster. All
the messages are obviously crossing the gateway. We refer
to “the Myrinet-to-SCItest” to decribe the experiment that
consisted in sending messages in the other direction.

For both tests, we obtained the performance of one-way
transmission by using a single ping test. The ping program
transmits messages of the desired size using the high speed
networks in one direction (through the gateway) and trans-
mits only a small ack over a Fast-Ethernet connection in the
over direction. Since we exactly know the latency of the
ack, it is easy to deduce the one-way message transmission
time from the observed round-trip time.

3.2 Preliminary remarks

3.2.1 Bandwidthvs latency

Our forwarding mechanism is basically designed to provide
a high bandwidth when transmitting messages over clusters
of clusters connected by high speed networks. In this con-
text, we obviously are not expecting interesting latencies
by using such a mechanism. The first reason is that we
did not perform a lot of code optimizations in the current
implementation, so the resulting latency of a inter-cluster
transmission not only includes the native latencies of each
networks, but it also includes a significant amount of soft-
ware overhead. The second reason is that we did not imple-
ment any particular policy that would minimize the pipeline
startup time: the gateway always manipulate paquets of the
same size. For this reason, in the following figures, we only
provide bandwidth numbers to discuss the efficiency of our
approach.

3.2.2 On the paquet-forwarding pipeline

On the gateway node, our implementation uses two threads
to pipeline the re-transmission of paquets. Ideally, the best
performance is achieved when the sending and the receiving
of paquets takes approximately the same time (Figure 5) and
if the software overhead incured when the threads exchange
their buffers is neglectible. In this case, the first buffer can
be sent while the second buffer is received, and then the
second one can be sent while the first one is received, and
so on.

However, if the gateway node bridges two different net-
works (as it is the case in our experiments), the correspond-
ing transmission times may differ for a given paquet size.
For instance, SCI achieves very good performance for small
messages whereas Myrinet competes better for large mes-
sages. In fact,Madeleineachieves approximately the same
performance on top of Myrinet and SCI for messages of size16 KB (latency = 250�s, bandwidth =60 MB/s), which
suggests that the correct paquet size should be set to16 KB.
Unfortunately, we will see in the next sections that sev-
eral other factors have an impact on the behaviour of the
pipeline, making it quite difficult to predict its performance.

3.3 The SCI-to-Myrinet experiments

We first did some experiments to measure the perfor-
mance of our forwarding mechanism in theSCI-to-Myrinet
direction. We have evaluated the bandwidth achieved for
several paquet sizes: Figure 6 reports the results for pa-
quet sizes going from8 KB to 128 KB. As one can see,
the asymptotic bandwidth obtained when using8 KB pa-
quets is only36:5 MB/s. But for larger paquets, the ob-
tained asymptotic bandwidth is greater than45 MB/s and



...

: buffer 2

: buffer 1

software overhead
time

MYRINET_recv

SCI_send

Figure 5. The paquet-forwarding pipeline on the gateway nod e.

even close to50 MB/s for 128 KB paquets. This can be
considered as a very good result, since the theoretical max-
imum bandwidth one can achieve on a machine equipped
with a single 33 MHz PCI bus is 66 MB/s.

3.3.1 Discussion

For 8 KB paquets, a pureMadeleineping-pong program
achieves a bandwidth of58 MB/s over SCI and47 MB/s
over Myrinet. Thus, the period of the pipeline (i.e. the du-
ration of a single step) for8 KB paquets is at least166�s.
In practice, the observed bandwidth of36:5 MB means that
the effective pipeline period is rather215�s. This seems
to indicate that the software overhead that we pay at each
buffer switch is almost50�s, which is not neglectible.

For larger paquets however, another phenomenon ap-
pears. Indeed, for paquet sizes greater that16 KB, a
pureMadeleineping-pong program achieves a bandwidth
of more than60MB/s, which can be considered as the maxi-
mum one-way bandwidth one can get over a32 bits PCI bus
in practice. So it appears that the incoming paquets occupy
so much place on the bus that the outgoing paquets cannot
be sent with a bandwidth greater than60 MB/s. However,
we only reach an asymptotic bandwidth of49:5 MB/s in
practice: we assume that this is due to some conflicts ap-
pearing on the PCI bus when doing intensive full-duplex
communications.

3.4 The Myrinet-to-SCI experiments

We did conduct the same experiments in the “Myrinet-
to-SCI” direction. Figure 7 reports the results for paquet
sizes going from8 KB to 128 KB. One can see that the ob-
tained performance are by far lower than the one obtained in
the opposite direction. The asymptotic bandwidth obtained

when using8 KB paquets is only29 MB/s, and the asymp-
totic bandwidth obtained for larger paquets never exceeds36:5 MB/s!

Obviously, such results are not simply due to some soft-
ware overhead nor to the saturation of the PCI bus. We thus
conducted some additional measurements to explain such a
poor performance.

3.4.1 Discussion

To understand the behaviour of the pipelining algorithm in
theMyrinet-to-SCIexperiments, we have instrumented the
low-level code inMadeleinethat deals with message re-
ceiving on Myrinet and message sending on SCI. We have
used the Intel Pentium specific internal clock-tick register
(rdtsc ) to get very accurate timings. After having re-
runned our tests again, we have discovered that our pipeline
mechanism was no longuer able to perform a complete mes-
sage sending and a complete message receiving simultane-
ously.

Over Myrinet, a receive operation consists in a series of
DMA PCI transactions initiated by the network interface
card upon message arrival. Over SCI, a send operation con-
sists in several PIO PCI transactions initiated by the pro-
cessor. These transactions are accelerated by the use of a
Write Combining buffer, which groups the data in order to
perform PCI transactions using chunks of size128 bytes.

According to our measurements, it appears that DMA
PCI transactions initiated by the Myrinet card have a greater
priority than PIO PCI transactions initiated by the proces-
sor. Consequently, during a (Myrinet-) buffer receiving, the
sending of the other buffer over SCI is slowed down by a
factor of two, while the receiving operation itself is evolv-
ing at the nominal speed. As illustrated on Figure 8, this
results in the sending steps lasting a lot more time than the
receiving steps.



0

5

10

15

20

25

30

35

40

45

50

256 1024 4096 16384 65536 262144 1.04858e+06 4.1943e+06 1.67772e+07

ba
nd

w
id

th
 (

M
B

/s
)

messages size (bytes)

Paquet size = 8192
Paquet size = 16384
Paquet size = 32768
Paquet size = 65536

Paquet size = 131072

Figure 6. Madeleine’s multiprotocol forwarding bandwidth when messages are coming from a SCI
network and are going to a Myrinet one.

...

time

software overheadPCI conflicts

MYRINET_recv

SCI_send

Figure 8. PCI bus conflicts and software over-
head may strongly decrease the performance
of the pipeline.

For 16 KB paquets, for instance, the sending operation
lasts460�s instead of250�s! In fact, the sending opera-
tion itself lasts appromimately410�s, and one must add the50�s of software overhead that arise at each buffer switch.

As of now, we do not know if it will be possible to avoid
such a phenomenon on the PCI bus. However, we are cur-
rently investigating several work-around solutions, suchas
using the SCI DMA engine instead of PIO operations to
send buffers over SCI.

4 Conclusion and future work

We presented an efficient and yet portable data-
forwarding mechanism for network-heterogeneous clusters
of clusters that we integrated into the Madeleine multi-
device communication library. We showed that by integrat-
ing such a mechanism at the right abstraction level, it can be
completely transparent from the application point of view
and portable on a wide range of network protocols while
remaining efficient. In particular, we did demonstrate that
zero-copy mechanisms together with pipelining techniques
are mandatory to keep a high bandwidth over inter-cluster
links.

The preliminary experiments we conducted between a
Myrinet cluster and a SCI cluster confirmed that our ap-
proach can deliver an important part of the performance
achieved by the underlying hardware. However, some one-
way communication experiments revealed that the sharing
of the gateway internal system bus bandwidth seems to be
an important issue. More precisely, it seems that some so-
phisticated “bandwidth control” mechanism is needed to
regulate the incoming communication flow on gateways.
This is a point we intend to investigate in the future.



0

5

10

15

20

25

30

35

40

256 1024 4096 16384 65536 262144 1.04858e+06 4.1943e+06 1.67772e+07

ba
nd

w
id

th
 (

M
B

/s
)

messages size (bytes)

Paquet size = 8192
Paquet size = 16384
Paquet size = 32768
Paquet size = 65536

Paquet size = 131072

Figure 7. Madeleine’s multiprotocol forwarding bandwidth when messages are coming from a Myrinet
network and are going to a SCI one.

References

[1] Olivier Aumage, Luc Bougé, and Raymond Namyst. A
portable and adaptative multi-protocol communication li-
brary for multithreaded runtime systems. InParallel and
Distributed Processing. Proc. 4th Workshop on Runtime Sys-
tems for Parallel Programming (RTSPP ’00), volume 1800
of Lect. Notes in Comp. Science, pages 1136–1143, Cancun,
Mexico, May 2000. Held in conjunction with IPDPS 2000.
IEEE TCPP and ACM, Springer-Verlag. Electronic version
available.

[2] Jack Dongarra, Steven Huss-Lederman, Steve Otto, Marc
Snir, and David Walker.MPI : The Complete Reference. The
MIT Press, 1996.

[3] I. Foster, C. Kesselman, and S. Tuecke. The Nexus approach
to integrating multithreading and communication.Journal
on Parallel and Distributed Computing, 37(1):70–82, 1996.

[4] Ian Foster and Carl Kesselman. Globus: A metacomputing
infrastructure toolkit. Intl. Journal of Super-Computer Ap-
plications, 11(2):115–128, 1997.

[5] Edgar Gabriel, Michael Resch, Thomsa Beisel, and Rainer
Keller. Distributed Computing in a Heterogeneous Com-
puting Environment. In Vassil Alexandrov and Jack Don-
garra, editors,Recent Advances in Parallel Virtual Machine

and Message Passing Interface, Lecture Notes in Computer
Sciences. Springer, 1998.

[6] IEEE. Standard for Scalable Coherent Interface (SCI), Au-
gust 1993. Standard no. 1596.

[7] Xin Liu. Performance evaluation of a hardware implementa-
tion of VIA. Technical report, U. of California in San Diego,
1999.

[8] S. Pakin, V. Karamcheti, and A. Chien. Fast Messages: Ef-
ficient, portable communication for workstation clusters and
MPPs.IEEE Concurrency, 5(2):60–73, April 1997.

[9] Loı̈c Prylli and Bernard Tourancheau. BIP: a new proto-
col designed for high performance networking on Myrinet.
In 1st Workshop on Personal Computer based Networks Of
Workstations (PC-NOW ’98), volume 1388 ofLect. Notes
in Comp. Science, pages 472–485. Held in conjunction with
IPPS/SPDP 1998, Springer-Verlag, April 1998.

[10] R.D. Russell and P.J. Hatcher. Efficient kernel supportfor re-
liable communication. In13th ACM Symposium on Applied
Computing, pages 541–550, Atlanta, GA, February 1998.

Lionel Eyraud is a student at théEcole Normale Supérieure de
Lyon. He is the designer of the fast forwarding mechanism imple-
mented within theMadeleinecommunication library.
Olivier Aumage is a PhD. Student at the LIP computer science
laboratory (́Ecole Normale Supérieure de Lyon, France). He is



the main designer of theMadeleinemessage passing communi-
cation library. TheMadeleinelibrary is part of thePM2 multi-
threaded distributed programming environment (http://www.
pm2.org ).
Raymond Namystholds an assistant professor position at the LIP
laboratory (́Ecole Normale Supérieure de Lyon, France). He re-
ceived his PhD in Computer Science with honours from the Uni-
versity of Sciences and Techniques of Lille in 1997 and his MSin
C.S. with honours from the Lille University in 1993. His research
interests include parallel programming environments and multi-
threaded runtime systems for high speed networks. Seehttp:
//www.ens-lyon.fr/˜rnamyst for further information.


