
A pragmatic analysis of scheduling environments on
new computing platforms

Lionel Eyraud

Laboratoire ID-IMAG, Institut National Polytechnique de Grenoble,
51 avenue Jean Kuntzmann, 38330 Montbonnot Saint-Martin, France

Abstract

Today, large scale parallel systems are available at relatively low cost.
Many powerful such systems have been installed all over the world and
the number of users is always increasing. The use of such clusters re-
quire special administration tools, which have been developed recently,
and most frequently rely on intuitive heuristics to solve the underlying
difficult scheduling problems. On the other hand, recent theoretical work
has designed a number of models, such as the Parallel Task model, specif-
ically aimed at cluster environments.

The objective of this work is to study and analyze the path from
theoretical models and algorithms to their implementation on an actual
environment on a real platform. We outline in details the divergences
between classical models and a real batch scheduling system, and propose
solutions to adapt a theoretically well-founded algorithm to such a system.
Experimental results show that this implementation perform about as well
as FCFS with backfilling, and much better in the difficult instances. We
hope that further usage of this algorithm in a live system will show that
interaction between theory and practice can be fruitful.

1 Introduction

1.1 Scheduling in clusters

The last few years have been characterized by huge technological changes in
the area of parallel and distributed computing. Today, powerful machines are
available at low price everywhere in the world. The main visible line of such
changes is the large spreading of clusters which consist in a collection of tens or
hundreds of standard almost identical processors connected together by a high
speed interconnection network [6]. The next natural step is the extension to
local sets of clusters or to geographically distant grids [14].

In the last issue of the Top500 ranking (from November 2005 [3]), 360 entries
are clusters sold either by IBM, HP or Dell. Looking at previous rankings we
can see that this number (within the Top500) is still increasing rapidly. It is
also interesting to remark that while cluster-based systems occupy 72% of the
list, their total performance represents about 50% of the total performance.

1

This democratization of clusters calls for new practical administration tools.
Even if more and more applications are running on such systems, there is no
consensus towards an universal way of managing efficiently the computing re-
sources. Current available scheduling algorithms dedicated to cluster environ-
ment were mainly created to provide schedules with performance guarantees for
the makespan criterion (maximum execution time of the last job); however the
corresponding theoretical models are always simplified with respect to the real
setting of a cluster. Moreover, most of them are pseudo-polynomial, therefore
the time needed to run these algorithms on real instances and the difficulty of
their implementation is a drawback for a more popular use.

On the other hand, software solutions have been developed to be able to
use such machines: these tools are called batch schedulers; classic examples are
PBS/OpenPBS, LSF, NQS, etc. The review [4] lists these major systems and
their features. But since the theoretical work on scheduling algorithms is not
well adapted to a real implementation, and often not well-known in the software
community, the algorithms implemented in such systems are always simple on-
line heuristics, without any theoretical foundations.

1.2 Contribution of this work

The objective of this work is to study and analyze the path from theoretical
models and algorithms to their implementation on an actual environment on a
real platform.

This paper reports the adaptation and implementation of a scheduling al-
gorithm, namely DEMT [10], into an actual batch scheduling system. This
algorithm is based on a new scheduling method, inspired by several existing
theoretically well-founded algorithms. It aims at optimizing two criteria simul-
taneously: the makespan Cmax, the completion time of the last job, which is
a system-centric measure representing the utilization of the platform ; and the
minsum

∑
Ci, which can also be seen as the average completion time, and is a

rather user-centric measure.
The makespan is historically the main objective function. However, this

criterion is interesting only if we consider the tasks altogether and from the
viewpoint of a single user. If the tasks have been submitted by several users,
as is the case for grid computing, other criteria have to be considered. If we
consider that each user is interested in minimizing the completion time of his
or her jobs, selecting the minsum, or average completion time, seems to be a
good choice. It is even possible to assign a weight to each job, and minimize the
weighted sum of completion times. This allows to express a difference in priority
between certain tasks. However, since this user-centric optimization should not
degrade performance too much, it is important to be also concerned with the
makespan criterion.

This implementation was performed in an existing batch scheduling middle-
ware called OAR [5]. This batch scheduler, developed locally, is based upon
an original design that emphasizes on low software complexity by using high

2

level tools. This system offers most of the important features implemented by
other batch schedulers such as priority scheduling (with queues), reservations,
backfilling, and some global computing support. It is is used in a large number
of computing clusters in Grenoble, and is currently one of the basic blocks of
the french national Grid project Grid’5000.

When using and interacting with an actual scheduling environment like OAR,
some conceptual differences with the classical theoretical models become appar-
ent. These differences are often large enough to require a very deep rethinking;
it is beyond the scope of this paper to give a complete solution to these prob-
lems. Instead, we will try to expose the reasons for these discrepancies, and
what can be done on a practical side to deal with an actual environment while
keeping the main ideas of the theoretical results.

This paper is organized as follows. In section 2, we will present cluster
scheduling from the viewpoint of the theoretical community, and the key ideas
that are the basis for the DEMT algorithm. The key features of OAR will
be presented in section 3, as well as the flaws (or limitations) of the classical
theoretical models. Section 4 will be devoted to the practical solutions that
can be used to overcome these limitations, and to experimental results using
simulated runs of real traces from our clusters.

2 Theoretical Context

The target execution platform considered here is a cluster made of a medium
number of nodes (from some dozens to several hundreds of SMP or PC machines)
which are fully connected and (almost) homogeneous. Jobs are submitted via
some specific entry nodes, and are affected to priority queues. Typically, a job
represents a request to gain access to a fixed number of nodes for a fixed period
of time.

The application model that is best suited to study scheduling in a cluster
environment is the Parallel Tasks model. Informally, a Parallel Task (PT) is
a task that regroups elementary operations, typically a numerical routine or
a nested loop, and which contains itself enough parallelism to be executed by
more than one processor. The classification of Feitelson et al. [13] distinguishes
between:

• rigid jobs, for which the number of processors required is fixed by the user
at submission time, and

• moldable jobs, for which the number of processors is determined by the
scheduling algorithm before execution time. Each job can thus be given
any number of nodes, between 1 and m (the total size of the cluster).
In that case, the processing time of the task depends on the number of
processors alloted to the task.

In any case, the number of processors does not change until the completion
of the job. See [8] for a survey of results about the Parallel Task model.

3

For historical reasons, most submitted jobs are rigid. However, intrinsically,
most parallel jobs are moldable. Indeed, most programming environments do
not assume a priori the number of available processors; it is often specified at
execution time. This is also true for many numerical parallel libraries. The
main restriction, and admittedly the greatest limit of the moldable model, is
that some memory-limited jobs cannot be executed on less than a given number
of nodes, and the classical moldable model does not take these situations into
account1. On a theoretical level, the moldable job model gives much more
flexibility to the scheduler, allowing for more efficient algorithms and a better
overall utilization of the cluster. For example, the best known guarantee for
off-line scheduling of independent moldable tasks is 3/2 [19], whereas the best
guarantee for the equivalent rigid problem is 2 [15]. For a detailed analysis of
Parallel Tasks, see [11].

2.1 Key ingredients for guaranteed heuristics

The algorithm we have studied is DEMT, described in detail in [10] and [12].
It was designed for a model with moldable tasks, in an off-line setting, with
the goal of minimizing both the weighted minsum and makespan criteria. The
theoretical results make the additional classic assumption of monotony for the
execution times of a moldable task. A moldable task is monotonic if its execution
time does not increase with the number of processors, while its total work2 does
not decrease. This is based on the observation that a parallel task is more
efficient when executed on fewer processors, because the overhead of parallelism
is lower. Once again, this does not take into account memory constraints that
would cause this application to revert to swapping, and thus take a much longer
time to execute.

In order to have good results with respects to the minsum criteria, a common
heuristic approach is to try and schedule the smallest tasks first. The DEMT
algorithm is thus built on a quite classical structure of batches of increasing
lengths, so that the smaller tasks, that can fit into the first smaller batches, are
scheduled first. This batch structure has been studied in a number of algorithms
presented in the literature.

The principle of the algorithm is presented in figure 2.1: the length of the
batches are decided at the beginning of the scheduling, each batch being twice
as long as the previous one. Then, for each batch, there are three consecutive
steps:

• In the first step, we start by selecting the tasks that are not too long to
run in the batch.

• In the second step, since the tasks are supposed to be moldable, we can
select for each task the minimum number of processors that allows it to

1This is the reason why some moldable models assume that each job has a list of possible
allocations, and are thus not able to to run on any number of processors

2The total work of a task is defined as the product of its execution time and the number
of processors it is executed on.

4

t0 t3 t4t1 t2 tK tK+1

Figure 1: Principle of the DEMT algorithm

run in the batch.

• In the third step, a selection procedure chooses among these tasks, so as
to maximize the total weight of the selected tasks.

These three steps are then repeated until there is no task left.
The interest of moldability in step 2 is that a relatively short task that

couldn’t be scheduled in the first shelves can be allocated less processors (in-
creasing its processing time at the same time). This has the effect of lowering
the waste of resource that results from the shelf structure: almost all tasks will
have a processing time close to the length of the shelf.

The DEMT algorithm has two variants: the first variant is based on a struc-
ture of batches, using the clever 3/2-approximation algorithm of [19] to schedule
the tasks inside each batch. In the off-line case, this variant was proved to have
a dual approximation ratio of (3, 6) for the makespan, and the minsum crite-
rion respectively. In an on-line case, a randomized version of this variant has
an average performance guarantee of (3.88, 4.08) [9], which is much better than
the previously best known guarantee of (8, 8.53). The second variant is simpler:
it is based on a structure of shelves (a special case of batches, where all tasks
start their execution at the same time), and the selection procedure consists of
a knapsack algorithm. This variant has no known approximation ratio, but its
behavior has been extensively tested on a set of generated instances simulating
real jobs [10].

After all tasks have been assigned to a shelf, the first schedule is simple:
we start all the selected tasks of one shelf at the same time. A straightforward
improvement is to start a task at an earlier time if all the processors it uses are
idle. A further improvement is to use a list algorithm with the shelf ordering and
a local ordering within the shelves, as it allows to change the set of processors
alloted to the tasks.

The desirable property of this algorithm, and what enabled its implementa-
tion despite the limitations of the model, is that the scheduling problem (choos-
ing the start times of the tasks) and the allocation problem (choosing the nodes
on which each task will be scheduled) are decoupled. During the selection phase,
the time dimension does not interfere: all tasks that are too long to be scheduled

5

in the current shelf have been filtered out, and then the processing times of the
tasks are not considered. This is why the shelf structure is what we are going
to keep through all the transformations needed to adapt the algorithm to the
actual OAR environment.

3 Practical Context

3.1 A batch scheduler – OAR

OAR [5] is a batch scheduling system, developed at our lab, which is based
upon an original design that emphasizes on low software complexity by using
high level tools. This system offers most of the important features implemented
by other batch schedulers such as priority scheduling (with queues), reservations,
backfilling, and some global computing support.

This software is used in a large number of computing clusters in Grenoble,
and is also used as a basic block of the Grid’5000 French Grid project. It is a
full production system, and has been designed with enough modularity in mind
to allow relatively easy development of alternative scheduling policies.

OAR has the following features:

• OAR handles submission and deletion of jobs, with priority queues.

• OAR supports clusters of SMPs: with each node is associated a“maximum
weight”, and each job has a “weight”. A node can only run tasks whose
weights don’t add up to more than its maximum weight. This notion
of weight allows a non-exclusive access to a given node, in order to take
advantage of several processing units on the same node.

• OAR handles properties: users can select which nodes are candidates for
running their job. This feature is important because in a real system,
nodes are not always exactly homogeneous: some might have more mem-
ory than others, or some local hard disks might be more prone to fail-
ures; the connectivity is also an important issue (nodes that are physically
plugged to the same switch communicates faster than nodes with a longer
communication route).

• OAR handles reservations: it is possible for a user to ask for nodes ahead of
time. If the reservation is accepted, the system guarantees that it will start
on time. The reservation system is useful in at least two cases: for Grid
Computing, when users want to run their application at several different
distant sites, reservation is a way to make sure that the application starts
at the same time on all sites; for demonstration purposes, when a user
wants to show the operation of an application on a scheduled meeting.

• OAR does not handle moldable tasks: the job model is a rigid one. Even
though most jobs are intrinsically moldable (because most programming
environments do not assume a priori the number of available processors),

6

filling the moldable model with the values indicating how long the job will
last for every possible allocation is a tedious work, and very few users are
willing to spend the time necessary for it.

It is interesting to remark that these features are not specific to OAR: most
job schedulers implement them too, because they are really needed by the users
of the computing centers.

Scheduling in OAR The scheduling algorithm natively implemented in OAR
is First Come First Served (FCFS), with conservative backfilling. Such an algo-
rithm considers all tasks in the order of their arrival in the system, and greedily
schedules each task at the earliest possible date, without delaying any previously
scheduled task. It might happen that a given task x gets to run before another
task y that was submitted before it, but in that case the task y could not have
been scheduled earlier, even if x was not present.

This kind of algorithms are common in the batch scheduling literature [4],
with several more aggressive variants that allow a task to delay an earlier task
if it can be scheduled right now. Aggressivity improves the utilization of the
machine, but it may make it possible for a job to starve, being constantly delayed
by other smaller jobs arriving in a continuous stream.

From a theoretical point of view, FCFS, even with conservative backfilling,
has no constant performance guarantee for the makespan criterion. Indeed, on a
machine with m nodes, it is possible to build an instance with optimal makespan
1, and whose resulting FCFS schedule has makespan m.

3.2 Limitations of the models

On-line setting As all batch scheduling systems, the environment of OAR is
a highly on-line one: all the events that take place in the future of the current
scheduling time are completely unknown to the scheduler. This is especially
true for the submission of tasks, but also for the completion of currently run-
ning tasks. Indeed, it is important to note that the semantics of the submission
system means that jobs require an access to a certain number of nodes for a
certain period of time (this is called the walltime of the job), but do not spec-
ify even an estimation of their real running time. When a job runs for longer
than its walltime, it is killed by the system to allow other waiting jobs to be
executed. The walltime of a job is thus an upper bound of its actual running
time; and it is often a very large one, since users do not want to see their jobs
killed because of a bad estimation3. This is actually in conflict with classical
clairvoyant models, which assume that the execution times of the jobs are pre-
cisely known; on the other hand, non-clairvoyant models assume a complete
lack of knowledge about the running time of the jobs. Some recent theoretical
studies about the robustness of scheduling algorithms against modifications of
the input instance are interesting in this context, but they often assume that

3With this in mind, it would be interesting to study the effect of a scheduling algorithm
biased towards jobs with smaller walltimes on the submission habits of the users

7

these modifications are not too large. We can see here that the environment of
an actual batch scheduling system is somewhere in the middle between the two
extreme clairvoyant and non-clairvoyant models.

In OAR, this on-line setting is handled in a conservative way: at a given
time, all decisions are taken as if the available information was exact. When
an external event occur (a submission of a new job or the completion of a job
before its walltime), the scheduling process is restarted with the new state of the
system; of course, already running jobs are not re-scheduled. The result of this
behavior is that all scheduling decisions about the future are only predictions;
they are accessible to the user for information, but they are subject to change
with the state of the system.

Another interesting discussion concerning on-line scheduling is the question
of optimization criteria. Actually, when scheduling in an on-line context, the
completion metrics like the makespan or average completion time make less
sense. Indeed, their usage intrinsically assumes that there is a “time zero” in
time against which all completion times can be compared. Let us imagine, in
a schedule, two tasks being executed one at the beginning of the schedule and
the other near the end. If both tasks are delayed by one hour, the sum of the
completion time will be increased by two hours, but the relative increase will be
much higher for the first task than for the second. But from the point of view of
the second task, the important quantity is how much time it has waited in the
queue: if one additional hour of waiting doubles this time for both tasks, then
the second task has been handicapped by the same proportion than the first.

This is why it would have more sense to study flow metrics. The flow time
of a job is defined as the difference between its completion time and its release
time; it represents the time that the job spent in the system. Of course, when
one is concerned with finding an optimal schedule, the sum of completion times
and the sum of the flow times are equivalent; but the difference arises when
trying to design approximation algorithms. Some theoretical studies [18] have
looked at the max-flow criterion, as well as the (weighted) average flow. But
these criteria appear much more challenging to handle, and they haven’t been
addressed in the context of parallel tasks yet.

Scheduling with reservations With the increasing interest in large scale
computing systems, in which several clusters are connected and interoperable,
more and more scheduling systems feature advanced reservations. On the the-
oretical side, the problem of scheduling in presence of machine unavailability
is rather difficult: even very simple problems become NP-Hard when this ad-
ditional constraints is considered (like for example the makespan minimization
on a single machine). For this reason, machine unavailability has been studied
mostly in quite simple models, with either preemption or on one single machine,
and never in the parallel tasks model. A quick survey of these studies can be
found in [16].

8

A note about heterogeneity The support of properties dramatically modi-
fies the platform model: in OAR, like in most cluster-oriented batch schedulers,
it is possible to distinguish between two computing nodes.

From the user’s point of view, this differentiation of the nodes allows to ex-
press a boolean predicate to specify which subset of the nodes are eligible to run
his or her job. This is often desirable because of physical differences between
nodes (available memory, local hard disk speed, networking card). Another is-
sue is the connectivity between nodes: when a cluster is reasonably large, it
is impossible to physically connect all of the nodes on a single switch. Then
network latency between nodes connected on two different switches is slightly
higher (this is the limit of the “fully connected”machines model); this difference
is negligible for most applications, but some network intensive applications (es-
pecially benchmarking ones) need to be scheduled on nodes that share the same
switch.

This type of heterogeneity is very far from classical theoretical models, in
which nodes can be either homogeneous, related or unrelated [17]. In all these
cases, it is only the processing speed of the machines that is taken into account4.
Of course, it would be possible to use the unrelated model to take this feature
into account, assigning a very high computation time for an impossible (task,
node) pairing. But the unrelated model is too general and too complex to be
able to design efficient algorithms in such a setting; it is actually unclear how
to define the parallel tasks model in an unrelated machine model. Once again,
the platform model of actual cluster environments is somewhere in the middle
between the two extreme homogeneous and unrelated models.

4 From theory to reality

This section will describe the concrete choices that had to be made to adapt the
DEMT algorithm to run in the OAR environment. We hope that this will show
that it is actually possible to implement a clever algorithm in a real environment,
despite all the differences with the original models.

4.1 Adaptation to on-line setting

The DEMT algorithm was designed for both off-line and on-line settings. How-
ever, the very structure of the algorithm, with shelves of increasing sizes, as-
sumes that there is an “origin”, a point in time where everything starts. It
would be impracticable to use the algorithm as it is in a real environment, since
the shelves sizes would rapidly grow very large, without any connection with
the length of the tasks. On the other hand, it would not be possible either to
restart the algorithm with small shelves each time a task is submitted, since this

4Interestingly, nodes in batch scheduling systems are assumed to be homogeneous in terms
of computing speeds, or at least are not explicitly heterogeneous: the walltime, which is the
closest approximation to the processing time of a job, is given independently of the nodes it
will be scheduled on.

9

would be too highly biased towards small tasks and lead to possible starvation
of larger tasks.

In order to keep the structure in shelves of the algorithm, we decided to take
an intermediate approach, and to “reset” the shelves lengths periodically. Every
day, at the beginning of the morning and of the afternoon (specifically at 8am
and 1pm, but these choices could be changed), the DEMT algorithm is restarted
with small shelves again. Between two restart times, the algorithm behaves like
the original DEMT, and reacts to the submission of a task by inserting it in
the shelf structure at the time it is submitted. The rationale of this choice was
to favor small tasks during the day, when interactivity is a bigger concern, and
schedule larger tasks, that can afford some delay, during the night.

4.2 Rigid tasks

The DEMT algorithm was designed for moldable tasks, with the idea that future
batch scheduling systems would include a support for this different job model.
But OAR, like all actual batch schedulers, does only support parallel rigid jobs.
Actually, this is not a big drawback: the original batch structure framework was
designed in a very generic way, and is adaptable to many different job models.

Similarly, the shelf structure of the second variant can also handle rigid tasks.
The allocation step of the procedure is simply bypassed, since the allocation is
fixed when dealing with rigid jobs. With this modification, the good property
that tasks inside each shelf are about the same length is lost. Hopefully, the
compaction phase will help improve the overall utilization, even without this
property.

It is interesting to note that it will be easy to extend this algorithm to an
environment with moldable jobs mixed with rigid jobs. Since it is planned that
the next version of OAR will include a support for moldable tasks, this is an
important property.

4.3 Handling reservations

Like most scheduling algorithms, the DEMT assumes that all of the computing
nodes are available and can execute a task. In reality, because of advanced
reservations, this assumption is not true.

During the implementation of DEMT, we decided to start with a naive ap-
proach to solve this problem. The main advantage of scheduling tasks on shelves
is that during the selection process, the time dimension does not matter: during
this phase, the goal is only to select tasks that can be scheduled all at the same
time and totalize as much weight as possible. In order to keep this desirable
property, we decided to consider only the nodes that are available throughout
the whole duration of the current shelf. The selection process then takes place
as if the other nodes were absent. This choice allows to be sure that the set of
the selected tasks can be scheduled all at the same time in the shelf.

This limitation is only in place during the selection procedure. During the
compaction phase, which uses a conservative backfilling algorithm to try and

10

schedule all tasks at an earlier date if possible, the reservations are considered
with their original dates. However, it is important to remark that with this
modification, the result of the selection depends on the starting date of a shelf.
As a result, for the selection procedure to be as close to the reality as possible,
we decided to perform the compaction phase just after the tasks of a given shelf
were selected. In this way, the starting date of the next shelf can be set to the
last completion time of the previous one, and the availability of the nodes for
the next shelf is as close as possible to reality.

4.4 Non homogeneous platform

The last difficulty encountered when implementing the DEMT algorithm was
complying to the heterogeneity model of OAR. In such a context, the selection
problem turns out to be very complicated, even to formulate. Formally, it can
be expressed in this way: the input is

• a set N of nodes, each node ni having a number of available processors
πi,

• a set T of tasks, each task tj being represented by a requested number of
nodes qj , a requested number of processors wj , a set Pj of allowed nodes,
and a weight ωj .

The goal is to output a subset S of T and an allocation function σ : S →
P(N) such that:

• each selected task is allocated its requested number of nodes from its
allowed nodes:

∀tj ∈ S, σ(tj) ⊆ Pj and |σ(tj)| = qj

• The sum of the requested processors of all tasks scheduled to a given node
does not exceed this node’s number of available processors:

∀ni ∈ N ,
∑
j∈Bi

wj ≤ πi where Bi = {j ∈ S |ni ∈ σ(tj)}

The objective of this problem is to maximize the total weight of the selected
tasks, ω(S) ≡

∑
tj∈S ωj .

This problem is a very difficult one: it does contain the knapsack problem
when Pj = N and πi = 1, but it can also be seen as a SetPacking problem
when all πi = 1. The SetPacking problem is NP-Hard in the strong sense,
unlike the knapsack problem.

Even though this selection problem is untractable in the general case, it is
interesting to note that in practice, there is very little difference, if any, between
the Pjs. Indeed, most users don’t express any constraints on their jobs, and
those who do express the same constraints for all of their jobs. It is then possible
to consider as undifferentiable all the nodes that always appear together in the

11

Pjs, and to form groups of nodes that are undifferentiable. With this collapsing,
the size of the search space can be greatly reduced in most of the cases, and it is
possible to apply an integer dynamic algorithm to solve it exactly. Of course, the
size of the state space, as well as the complexity of the algorithm, is exponential
in the number of groups, as well as in the largest πi.

Nevertheless, this implementation performs very well on most cases. Of
course, special difficult cases are met in practice. In order to keep a reason-
able execution time, the selection procedure automatically reverts to a greedy
algorithm when the problem size is too large (too many groups) or when the
dynamic algorithm takes more than a certain predefined timeout.

5 Experimental analysis

5.1 Description of the environment

OAR is one of the basic blocks of the Grid’5000 French national project [1], and
is thus used on each cluster to schedule all the local jobs. Although Grid’5000
is being extensively used by a great part of the French parallel computing com-
munity, there is little competition for the resources on most clusters, and there
is not much interest in replaying the traces of these clusters. The only excep-
tion is the Icluster2 [2], consisting of 104 bi-Itanium 2 nodes, which has been
operational much earlier than the other clusters, and is consequently used by a
greater number of users, resulting in a number of large periods of high activity.
We have thus replayed the trace of the Icluster2 for these high activity periods.

5.2 Simulations

For each one of these time windows, we have run an event-based simulator with
a behavior exactly equivalent to that of OAR in the same situations. Because
some real events, especially machine failures5, cannot be simulated in this way,
we have run the simulations with the two different schedulers: our DEMT-like
implementation, and the original FCFS with conservative backfilling of OAR.
The result of one simulation is a schedule that specifies the starting time and
the machines allocated to each job. We can then compare, for each job, the
difference between its starting times6 under the two scheduling algorithms.

It is important to notice that the original traces were obtained in a system
using the FCFS scheduling algorithm. With OAR, users have access to the state
of the system, and even to the predictions of future scheduling decisions. It it
thus very likely that the results will be biased towards the FCFS algorithm,
because the jobs submitted are often adapted to fit in the holes of its schedule.

5Machine failures cannot be simulated exactly because they can only be detected by OAR
when a job starts or finishes. With only the execution traces of the jobs, it is impossible to
know when they would have been detected with a different schedule of the tasks

6Since the processing times are the same in both cases, the difference between the two
completion times is the same as the difference between the two starting times.

12

Instance Nb jobs Nb identical jobs Total diff. Avg. diff. Std dev.
2(a) 1391 362 113133 109.945 117.073
2(b) 1074 749 1824.79 5.61475 23.1384
2(c) 575 221 121.904 0.344362 10.6313
2(d) 429 364 -94.8261 -1.45886 25.825
2(e) 1292 757 -757.596 -1.41607 11.7721
2(f) 239 198 -93.0825 -2.2703 16.1927

Table 1: Numerical results of the simulation. Times are given in hours; a positive
value means that the task was executed earlier with DEMT than with FCFS.

Table 1 summarizes the results of these simulations, and gives for each in-
stance the total number of jobs and the number of identical jobs, i.e. the jobs
whose starting time was the same with the two algorithms. These identical jobs
are removed from the rest of the analysis, to put more emphasis on the distri-
bution of the other jobs. Table 1 also shows the total difference of the starting
times of all the tasks, with their average and standard deviation. Figure 2 show
the histogram that represents the distribution of these differences of starting
times, together with the average (the little line under the bars) and quartile
values (the dotted lines). In both cases, any task with a positive value of the
difference has been executed earlier with the DEMT algorithm than with the
FCFS one.

The first observation is that a little more than half of the jobs are not af-
fected by the change of scheduling algorithms. These are often the jobs which
were submitted at times where the occupation of the machine was low, and
could be executed right away. Another source of identical jobs are those which
were submitted just before a reservation, and had to wait for the end of this
reservation before being executed. Another interesting observation is that al-
though the average difference is rather low (except for instance 2(a) which will
be discussed below), the standard deviation is quite high. This can be observed
on the graphs too, where the distribution is rather spread out, with some jobs
having large differences in starting times. This happens to very long jobs, which
last for several days, and whose walltime was of one or two weeks. These jobs
sometimes can be scheduled right away, but delaying them slightly will cause
them to have to be scheduled after a reservation that is weeks ahead, and so
these jobs may suffer of a very large delay with one algorithm compared to the
other.

On about half of the experiments, the average difference is slightly negative,
around −1.5 hour. Interestingly, in these cases, the median value is a little
higher than the average: this means that DEMT penalized some jobs by a large
margin, but did not penalize so much the majority of the jobs. Nevertheless, on
these experiments, the performance of DEMT is lower than that of FCFS.

Two experiments make a notable exception: figure 2(b), where the average
difference is 5.61 hours, and figure 2(a), where it is 110 hours. This last value is

13

−50

 0

 50

 100

 150

 200

 250

−800 −600 −400 −200 0 200 400 600 800

Histogram
Average

Quartiles

(a)

−20

 0

 20

 40

 60

 80

 100

 120

 140

−100 −80 −60 −40 −20 0 20 40 60 80 100

Histogram
Average

Quartiles

(b)

−20

 0

 20

 40

 60

 80

 100

 120

−80 −60 −40 −20 0 20 40 60 80

Histogram
Average

Quartiles

(c)

−5

 0

 5

 10

 15

 20

 25

−150 −100 −50 0 50 100 150

Histogram
Average

Quartiles

(d)

−50

 0

 50

 100

 150

 200

 250

 300

 350

−150 −100 −50 0 50 100 150

Histogram
Average

Quartiles

(e)

−5

 0

 5

 10

 15

 20

 25

 30

−100 −80 −60 −40 −20 0 20 40 60 80 100

Histogram
Average

Quartiles

(f)

Figure 2: Histograms showing the number of jobs against the starting time
difference (in hours) in each experiment. A positive value means that the task
was executed earlier with DEMT than with FCFS.

14

impressively high, and we believe it is interesting to give an explanation. This
part of the trace comes from the beginning of the usage of OAR on Icluster2, and
the implementation of the FCFS scheduling algorithm was not exactly the same
as the current one. Furthermore, this was a period a higher activity than the
rest of the traces (the backlog was very large, and lots of jobs have a waiting time
of about 10 days), and a large proportion of the jobs made used of properties
and reservations, resulting in a much more constrained scheduling instance. In
this context, where the natural bias towards FCFS is removed, and the instance
is a very difficult one, our DEMT implementation performs much better than
FCFS, mostly by delaying some larger tasks to make room for smaller and more
constrained ones, and also by reordering the tasks so that compatible tasks are
scheduled together.

The next step for experimentation will be to actually use this DEMT im-
plementation in a live system. This will allow to see how the users react to a
new scheduling policy, and also to conduct experiments biased in the other way.
We also plan to convert classical traces from non-OAR clusters [7], and see the
performance of both algorithms on these different instances, even though they
come from systems with slightly different platform models.

6 Conclusion

This paper intended to bridge the gap from theoretical studies of scheduling to
actual implementation environments. This work has allowed to outline in details
the conceptual divergences between the classical models and the reality of actual
scheduling environments. Furthermore, it has resulted in the implementation
in such an environment of an algorithm based on theoretical foundations. The
results are encouraging, and we hope that this will lead to more coordinated
experiments between these two fields. For example, a theoretical study about
scheduling parallel tasks in the presence of reservations is currently being con-
ducted as a result of this practical work. Reciprocally, the next version of OAR,
which is currently in a design phase, will include a support for moldable tasks.

References

[1] The grid’5000 project website. http://www.grid5000.fr.

[2] The icluster2 website. http://www.inrialpes.fr/i-cluster2/.

[3] The top500 organization website. http://www.top500.org.

[4] M. Baker, G. Fox, and H. Yau. Cluster computing review, 1995.

[5] Nicolas Capit, Georges Da Costa, Yiannis Georgiou, Guillaume Huard,
Cyrille Marti n, Grégory Mounié, Pierre Neyron, and Olivier Richard. A
batch scheduler with high level components. In Cluster computing and Grid
2005 (CCGrid05), 2005.

15

[6] D. E. Culler, J. P. Singh, and A. Gupta. Parallel Computer Architecture:
A Hardware/Software Approach. Morgan Kaufmann Publishers, inc., San
Francisco, CA, 1999.

[7] Allen B. Downey and Dror G. Feitelson. The elusive goal of workload
characterization. Performance Evaluation Rev., 26(4):14–29, Mar 1999.

[8] M. Drozdowski. Handbook of Scheduling, chapter Scheduling Parallel Tasks
- Algorithms and Complexity. CRC Press, 2004. chapter 27 of this book.

[9] P.-F. Dutot. Algorithmes d’ordonnancement pour les nouveaux supports
d’exécution. PhD thesis, INP Grenoble, August 2004.

[10] P.-F. Dutot, L. Eyraud, G. Mounié, and D. Trystram. Bi-criteria algo-
rithm for scheduling jobs on cluster platforms. In Symposium on Parallel
Algorithm and Architectures, pages 125–132, Barcelona, 2004.

[11] P.-F. Dutot, G. Mounié, and D. Trystram. Handbook of Scheduling, chapter
Scheduling Parallel Tasks - Approximation Algorithms. CRC Press, 2004.
chapter 28 of this book.

[12] P.-F. Dutot and D. Trystram. A best-compromise bicriteria scheduling
algorithm for malleable tasks. Research report (submitted to a journal).

[13] D. G. Feitelson. Scheduling parallel jobs on clusters. In Rajkumar Buyya,
editor, High Performance Cluster Computing, volume 1, Architectures and
Systems, pages 519–533. Prentice Hall PTR, Upper Saddle River, NJ, 1999.
Chap. 21.

[14] Ian Foster and Carl Kesselman. The grid: blueprint for a new computing
infrastructure. Morgan Kaufmann Publishers Inc., 1999.

[15] M. R. Garey and R. L. Graham. Bounds on multiprocessor scheduling with
resource constraints. SIAM Journal on Computing, 4:187–200, 1975.

[16] C. Y. Lee. Handbook of Scheduling, chapter Machine Scheduling with Avail-
ability Constraints. CRC Press, 2004. chapter 22 of this book.

[17] J. Leung. Handbook of Scheduling, chapter Introduction and Notation. CRC
Press, 2004. chapter 1 of this book.

[18] M. Mastrolilli. Scheduling to minimize max flow time: Off-line and on-line
algorithms. International Journal of Foundations of Computer Science,
15:385–401, 2004.

[19] Grégory Mounié, Christophe Rapine, and Denis Trystram. Efficient ap-
proximation algorithms for scheduling malleable tasks. In Eleventh ACM
Symposium on Parallel Algorithms and Architectures (SPAA’99), pages 23–
32. ACM, juin 1999.

16

	1 Introduction
	1.1 Scheduling in clusters
	1.2 Contribution of this work

	2 Theoretical Context
	2.1 Key ingredients for guaranteed heuristics

	3 Practical Context
	3.1 A batch scheduler -- OAR
	3.2 Limitations of the models

	4 From theory to reality
	4.1 Adaptation to on-line setting
	4.2 Rigid tasks
	4.3 Handling reservations
	4.4 Non homogeneous platform

	5 Experimental analysis
	5.1 Description of the environment
	5.2 Simulations

	6 Conclusion

