
Scheduling DFRS Heuristics Experiments Conclusions

Dynamic Fractional Resource Scheduling
for HPC Workloads

Mark Stillwell1 Frédéric Vivien2,1 Henri Casanova1

1Department of Information and Computer Sciences
University of Hawai’i at Mānoa

2INRIA, France

Invited Talk, October 8, 2009

M Stillwell, F Vivien, H Casanova UH Manoa ICS, INRIA

Dynamic Fractional Resource Schedulingfor HPC Workloads

Scheduling DFRS Heuristics Experiments Conclusions

Formalization

HPC Job Scheduling Problem

0 < N homogeneous nodes
0 < J jobs, each job j has:

arrival time 0 ≤ rj
0 < tj ≤ N tasks
compute time 0 < cj

J not known
rj and tj not known before rj

cj not known until j completes

M Stillwell, F Vivien, H Casanova UH Manoa ICS, INRIA

Dynamic Fractional Resource Schedulingfor HPC Workloads

Scheduling DFRS Heuristics Experiments Conclusions

Formalization

Schedule Evaluation

make span not relevant for unrelated jobs
flow time over-emphasizes very long jobs
stretch re-balances in favor of short jobs
average stretch prone to starvation
max stretch helps with average while bounding worst case

M Stillwell, F Vivien, H Casanova UH Manoa ICS, INRIA

Dynamic Fractional Resource Schedulingfor HPC Workloads

Scheduling DFRS Heuristics Experiments Conclusions

Current Approaches

Current Approaches

Batch Scheduling, which no one likes
usually FCFS with backfilling
backfilling needs (unreliable) compute time estimates
unbounded wait times
poor resource utilization
No particular objective

Gang Scheduling, which no one uses
globally coordinated time sharing
complicated and slow
memory pressure a concern

M Stillwell, F Vivien, H Casanova UH Manoa ICS, INRIA

Dynamic Fractional Resource Schedulingfor HPC Workloads

Scheduling DFRS Heuristics Experiments Conclusions

Dynamic Fractional Resource Scheduling

VM Technology

basically, time sharing
pooling of discrete resources (e.g., multiple CPUs)
hard limits on resource consumption
job preemption and task migration

M Stillwell, F Vivien, H Casanova UH Manoa ICS, INRIA

Dynamic Fractional Resource Schedulingfor HPC Workloads

Scheduling DFRS Heuristics Experiments Conclusions

Dynamic Fractional Resource Scheduling

Problem Formulation

extends basic HPC problem
jobs now have per-task CPU need αj and memory
requirement mj

multiple tasks can run on one node if total memory
requirement ≤ 100%

job tasks must be assigned equal amounts of CPU
resource
assigning less than the need results in proportional
slowdown
assigned allocations can change
no run-time estimates
so we need another metric to optimize

M Stillwell, F Vivien, H Casanova UH Manoa ICS, INRIA

Dynamic Fractional Resource Schedulingfor HPC Workloads

Scheduling DFRS Heuristics Experiments Conclusions

Dynamic Fractional Resource Scheduling

Yield

Definition

The yield, yj(t) of job j at time t is the ratio of the CPU
allocation given to the job to the job’s CPU need.

requires no knowledge of flow or compute times
can be optimized for at each scheduling event
maximizing minimum yield related to minimizing maximum
stretch
How do we keep track of job progress when the yield can
vary?

M Stillwell, F Vivien, H Casanova UH Manoa ICS, INRIA

Dynamic Fractional Resource Schedulingfor HPC Workloads

Scheduling DFRS Heuristics Experiments Conclusions

Dynamic Fractional Resource Scheduling

Virtual Time

Definition

The virtual time vj(t) of job j at time t is the subjective time
experienced by the job.

vj(t) =
∫ t

rj
yj(τ)dτ

job completes when vj(t) = cj

M Stillwell, F Vivien, H Casanova UH Manoa ICS, INRIA

Dynamic Fractional Resource Schedulingfor HPC Workloads

Scheduling DFRS Heuristics Experiments Conclusions

Dynamic Fractional Resource Scheduling

The Need for Preemption

final goal is to minimize maximum stretch
without preemption, stretch of non-clairvoyant on-line
algorithms unbounded

consider 2 jobs
both require all of the system resources
one has cj = 1
other has cj = ∆

need criteria to decide which jobs should be preempted

M Stillwell, F Vivien, H Casanova UH Manoa ICS, INRIA

Dynamic Fractional Resource Schedulingfor HPC Workloads

Scheduling DFRS Heuristics Experiments Conclusions

Dynamic Fractional Resource Scheduling

Priority

Jobs should be preempted in order by increasing priority.
newly arrived jobs may have infinite priority
1/vj(t) performs well, but subject to starvation
(t − rj)/vj(t) time avoids starvation, but does not perform
well
(t − rj)/(vj(t))2 seems a reasonable compromise
other possibilities exist

M Stillwell, F Vivien, H Casanova UH Manoa ICS, INRIA

Dynamic Fractional Resource Schedulingfor HPC Workloads

Scheduling DFRS Heuristics Experiments Conclusions

Greedy Heuristics

Greedy Scheduling Heuristics

GREEDY– Put tasks on the host with the lowest CPU
demand on which it can fit into memory; new jobs may
have to be resubmitted using bounded exponential backoff.
GREEDY-PMTN– Like GREEDY, but older tasks may be
preempted
GREEDY-PMTN-MIGR– Like GREEDY-PMTN, but older tasks
may be migrated as well as preempted

M Stillwell, F Vivien, H Casanova UH Manoa ICS, INRIA

Dynamic Fractional Resource Schedulingfor HPC Workloads

Scheduling DFRS Heuristics Experiments Conclusions

MCB Heuristics

Connection to multi-capacity bin packing

For each discrete scheduling event:
problem similar to multi-capacity (vector) bin packing, but
has optimization target and variable CPU allocations
can formulate as an MILP [Stillwell et al., 2009]
(NP-complete)
relaxed LP heuristics slow, give low quality solutions

M Stillwell, F Vivien, H Casanova UH Manoa ICS, INRIA

Dynamic Fractional Resource Schedulingfor HPC Workloads

Scheduling DFRS Heuristics Experiments Conclusions

MCB Heuristics

Applying MCB heuristics

yield is continuous, so choose a granularity (0.01)
perform a binary search on yield, seeking to maximize
for each fixed yield, set CPU requirement and apply
heuristic
found yield is the maximized minimum, leftover CPU used
to improve average
if a solution cannot be found at any yield, remove the
lowest priority job and try again

M Stillwell, F Vivien, H Casanova UH Manoa ICS, INRIA

Dynamic Fractional Resource Schedulingfor HPC Workloads

Scheduling DFRS Heuristics Experiments Conclusions

MCB Heuristics

MCB8 Heuristic

Based on [Leinberger et al., 1999], simplified to 2-dimensional
case:

1 Put job tasks in two lists: CPU-intensive and
memory-intensive

2 Sort lists by “some criterion”. (MCB8: descending order by
maximum)

3 Starting with the first host, pick tasks that fit in order from
the list that goes against the current imbalance. Example:

current host tasks total 50% CPU and 60% memory
Assign the next task that fits from the list of CPU-intensive
jobs.

4 When no tasks can fit on a host, go to the next host.
5 If all tasks can be placed, then success, otherwise failure.

M Stillwell, F Vivien, H Casanova UH Manoa ICS, INRIA

Dynamic Fractional Resource Schedulingfor HPC Workloads

Scheduling DFRS Heuristics Experiments Conclusions

MCB Heuristics

MCB8 Heuristic

Based on [Leinberger et al., 1999], simplified to 2-dimensional
case:

1 Put job tasks in two lists: CPU-intensive and
memory-intensive

2 Sort lists by “some criterion”. (MCB8: descending order by
maximum)

3 Starting with the first host, pick tasks that fit in order from
the list that goes against the current imbalance. Example:

current host tasks total 50% CPU and 60% memory
Assign the next task that fits from the list of CPU-intensive
jobs.

4 When no tasks can fit on a host, go to the next host.
5 If all tasks can be placed, then success, otherwise failure.

M Stillwell, F Vivien, H Casanova UH Manoa ICS, INRIA

Dynamic Fractional Resource Schedulingfor HPC Workloads

Scheduling DFRS Heuristics Experiments Conclusions

MCB Heuristics

MCB8 Heuristic

Based on [Leinberger et al., 1999], simplified to 2-dimensional
case:

1 Put job tasks in two lists: CPU-intensive and
memory-intensive

2 Sort lists by “some criterion”. (MCB8: descending order by
maximum)

3 Starting with the first host, pick tasks that fit in order from
the list that goes against the current imbalance. Example:

current host tasks total 50% CPU and 60% memory
Assign the next task that fits from the list of CPU-intensive
jobs.

4 When no tasks can fit on a host, go to the next host.
5 If all tasks can be placed, then success, otherwise failure.

M Stillwell, F Vivien, H Casanova UH Manoa ICS, INRIA

Dynamic Fractional Resource Schedulingfor HPC Workloads

Scheduling DFRS Heuristics Experiments Conclusions

MCB Heuristics

MCB8 Heuristic

Based on [Leinberger et al., 1999], simplified to 2-dimensional
case:

1 Put job tasks in two lists: CPU-intensive and
memory-intensive

2 Sort lists by “some criterion”. (MCB8: descending order by
maximum)

3 Starting with the first host, pick tasks that fit in order from
the list that goes against the current imbalance. Example:

current host tasks total 50% CPU and 60% memory
Assign the next task that fits from the list of CPU-intensive
jobs.

4 When no tasks can fit on a host, go to the next host.
5 If all tasks can be placed, then success, otherwise failure.

M Stillwell, F Vivien, H Casanova UH Manoa ICS, INRIA

Dynamic Fractional Resource Schedulingfor HPC Workloads

Scheduling DFRS Heuristics Experiments Conclusions

MCB Heuristics

MCB8 Heuristic

Based on [Leinberger et al., 1999], simplified to 2-dimensional
case:

1 Put job tasks in two lists: CPU-intensive and
memory-intensive

2 Sort lists by “some criterion”. (MCB8: descending order by
maximum)

3 Starting with the first host, pick tasks that fit in order from
the list that goes against the current imbalance. Example:

current host tasks total 50% CPU and 60% memory
Assign the next task that fits from the list of CPU-intensive
jobs.

4 When no tasks can fit on a host, go to the next host.
5 If all tasks can be placed, then success, otherwise failure.

M Stillwell, F Vivien, H Casanova UH Manoa ICS, INRIA

Dynamic Fractional Resource Schedulingfor HPC Workloads

Scheduling DFRS Heuristics Experiments Conclusions

MCB Heuristics

MCB8 Heuristic

Based on [Leinberger et al., 1999], simplified to 2-dimensional
case:

1 Put job tasks in two lists: CPU-intensive and
memory-intensive

2 Sort lists by “some criterion”. (MCB8: descending order by
maximum)

3 Starting with the first host, pick tasks that fit in order from
the list that goes against the current imbalance. Example:

current host tasks total 50% CPU and 60% memory
Assign the next task that fits from the list of CPU-intensive
jobs.

4 When no tasks can fit on a host, go to the next host.
5 If all tasks can be placed, then success, otherwise failure.

M Stillwell, F Vivien, H Casanova UH Manoa ICS, INRIA

Dynamic Fractional Resource Schedulingfor HPC Workloads

Scheduling DFRS Heuristics Experiments Conclusions

MCB Heuristics

MCB8 Heuristic

Based on [Leinberger et al., 1999], simplified to 2-dimensional
case:

1 Put job tasks in two lists: CPU-intensive and
memory-intensive

2 Sort lists by “some criterion”. (MCB8: descending order by
maximum)

3 Starting with the first host, pick tasks that fit in order from
the list that goes against the current imbalance. Example:

current host tasks total 50% CPU and 60% memory
Assign the next task that fits from the list of CPU-intensive
jobs.

4 When no tasks can fit on a host, go to the next host.
5 If all tasks can be placed, then success, otherwise failure.

M Stillwell, F Vivien, H Casanova UH Manoa ICS, INRIA

Dynamic Fractional Resource Schedulingfor HPC Workloads

Scheduling DFRS Heuristics Experiments Conclusions

MCB Heuristics

MCB8 Scheduling Heuristics

DYNMCB8– Apply heuristic on every event
DYNMCB8-PER– Apply heuristic periodically
DYNMCB8-ASAP-PER– like DYNMCB8-PER, but try to
greedily schedule incoming jobs
DYNMCB8-STRETCH-PER– like DYNMCB8-PER, but try to
optimize worst-case max stretch

M Stillwell, F Vivien, H Casanova UH Manoa ICS, INRIA

Dynamic Fractional Resource Schedulingfor HPC Workloads

Scheduling DFRS Heuristics Experiments Conclusions

Methodology

Methodology

discrete event simulator takes list of jobs and returns
stretch values
workloads based on synthetic and real traces
synthetic workload arrival times scaled to show
performance on different load conditions
algorithms evaluated by per-trace degredation factor
experiment with “free” preemption/migration and
experiment where preemption/migration costs job a
constant amount of wall clock time.

M Stillwell, F Vivien, H Casanova UH Manoa ICS, INRIA

Dynamic Fractional Resource Schedulingfor HPC Workloads

Scheduling DFRS Heuristics Experiments Conclusions

Results

Average Maximum Yield, No preemption/migration
penalty

 1

 10

 100

 1000

 10000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

D
eg

re
da

tio
n

F
ac

to
r

Load

M Stillwell, F Vivien, H Casanova UH Manoa ICS, INRIA

Dynamic Fractional Resource Schedulingfor HPC Workloads

Scheduling DFRS Heuristics Experiments Conclusions

Results

Average Maximum Yield, No preemption/migration
penalty

 1

 10

 100

 1000

 10000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

D
eg

re
da

tio
n

F
ac

to
r

Load

M Stillwell, F Vivien, H Casanova UH Manoa ICS, INRIA

Dynamic Fractional Resource Schedulingfor HPC Workloads

Scheduling DFRS Heuristics Experiments Conclusions

Results

Average Maximum Yield, No preemption/migration
penalty

 1

 10

 100

 1000

 10000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

D
eg

re
da

tio
n

F
ac

to
r

Load

M Stillwell, F Vivien, H Casanova UH Manoa ICS, INRIA

Dynamic Fractional Resource Schedulingfor HPC Workloads

Scheduling DFRS Heuristics Experiments Conclusions

Results

Average Maximum Yield, 5 minute
preemption/migration penalty

 1

 10

 100

 1000

 10000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

D
eg

re
da

tio
n

F
ac

to
r

Load

M Stillwell, F Vivien, H Casanova UH Manoa ICS, INRIA

Dynamic Fractional Resource Schedulingfor HPC Workloads

Scheduling DFRS Heuristics Experiments Conclusions

Results

Average Maximum Yield, 5 minute
preemption/migration penalty

 1

 10

 100

 1000

 10000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

D
eg

re
da

tio
n

F
ac

to
r

Load

M Stillwell, F Vivien, H Casanova UH Manoa ICS, INRIA

Dynamic Fractional Resource Schedulingfor HPC Workloads

Scheduling DFRS Heuristics Experiments Conclusions

Results

Average Maximum Yield, 5 minute
preemption/migration penalty

 1

 10

 100

 1000

 10000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

D
eg

re
da

tio
n

F
ac

to
r

Load

M Stillwell, F Vivien, H Casanova UH Manoa ICS, INRIA

Dynamic Fractional Resource Schedulingfor HPC Workloads

Scheduling DFRS Heuristics Experiments Conclusions

Results

Comparison of Synthetic vs. Real workload results

Scaled synth. Unscaled synth. Real-world
Algs Deg. factor Deg. factor Deg. factor

avg. max avg. max avg. max
EASY 167 560 139 443 94 1476
FCFS 186 569 154 476 118 2219
greedy 294 1093 249 1050 153 1527
greedyp 41 875 35 785 9 147
greedypm 62 835 37 773 17 759
mcb 32 162 11 162 11 231
mcbp 1 12 2 21 3 20
gmcbp 1 9 2 22 2 20
mcbsp 1 12 2 21 3 23

M Stillwell, F Vivien, H Casanova UH Manoa ICS, INRIA

Dynamic Fractional Resource Schedulingfor HPC Workloads

Scheduling DFRS Heuristics Experiments Conclusions

Results

Computation Times

Most scheduling events involve 10 or fewer jobs and
require negligible time for all schedulers.
Even when there are about 100 jobs, the time for MCB8 is
under 5 seconds on a 3.2Ghz machine

M Stillwell, F Vivien, H Casanova UH Manoa ICS, INRIA

Dynamic Fractional Resource Schedulingfor HPC Workloads

Scheduling DFRS Heuristics Experiments Conclusions

Results

Costs

Greedy approaches use significantly less bandwidth than
MCB approaches (<1GB/s in the worst case)
MCB approaches cause jobs to be preempted around 5
times on average.
DYNMCB8 uses 1.3GB/s on average, 5.1GB/s maximum
periodic algorithms 0.6GB/s on average, 2.1GB/s
maximum

M Stillwell, F Vivien, H Casanova UH Manoa ICS, INRIA

Dynamic Fractional Resource Schedulingfor HPC Workloads

Scheduling DFRS Heuristics Experiments Conclusions

Conclusions

DFRS potentially much better than batch scheduling
multi-capacity bin packing heuristics perform best
targeting yield does as well as targeting worst case max
stretch
periodic MCB approaches perform nearly as well as
aggressive ones when there is no migration cost and much
better when there is a fixed migration cost
adding an opportunistic greedy scheduling heuristic to
DYNMCB8-PER gives no real benefit to max stretch
MCB approaches can calculate resource allocations
reasonably quickly
MCB approaches need to try to mitigate
migration/preemptions costs

M Stillwell, F Vivien, H Casanova UH Manoa ICS, INRIA

Dynamic Fractional Resource Schedulingfor HPC Workloads

Appendix

For Further Reading

References I

Leinberger, W., Karypis, G., and Kumar, V. (1999).
Multi-capacity bin packing algorithms with applications to
job scheduling under multiple constraints.
In Proc. of the Intl. Conf. on Parallel Processing, pages
404–412. IEEE.

Stillwell, M., Shanzenbach, D., Vivien, F., and Casanova, H.
(2009).
Resource Allocation using Virtual Clusters.
In Proc. of CCGrid 2009, pages 260–267. IEEE.

M Stillwell, F Vivien, H Casanova UH Manoa ICS, INRIA

Dynamic Fractional Resource Schedulingfor HPC Workloads

	Scheduling
	
	

	DFRS
	

	Heuristics
	
	

	Experiments
	
	

	Conclusions
	Appendix
	Appendix
	

