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Scheduling
e0

Formalization

HPC Job Scheduling Problem

m 0 < N homogeneous nodes
m 0 < Jjobs, each job j has:
m arrival time 0 < r;

m 0 < f < Ntasks
m compute time 0 < ¢;

m J not known
m 7; and {; not known before r;
m ¢; not known until j completes
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oe

Formalization

Schedule Evaluation

m make span not relevant for unrelated jobs

m flow time over-emphasizes very long jobs

m stretch re-balances in favor of short jobs

m average stretch prone to starvation

m max stretch helps with average while bounding worst case
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Current Approaches

Current Approaches

m Batch Scheduling, which no one likes
m usually FCFS with backfilling
m backfilling needs (unreliable) compute time estimates
® unbounded wait times
m poor resource utilization
m No particular objective
m Gang Scheduling, which no one uses
m globally coordinated time sharing
m complicated and slow
E memory pressure a concern
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Dynamic Fractional Resource Scheduling

VM Technology

m basically, time sharing

m pooling of discrete resources (e.g., multiple CPUs)
m hard limits on resource consumption

m job preemption and task migration
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Dynamic Fractional Resource Scheduling

Problem Formulation

m extends basic HPC problem

m jobs now have per-task CPU need «; and memory
requirement m;

m multiple tasks can run on one node if total memory
requirement < 100%

m job tasks must be assigned equal amounts of CPU
resource

m assigning less than the need results in proportional
slowdown

m assigned allocations can change
® no run-time estimates
®m SO0 we need another metric to optimize
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Dynamic Fractional Resource Scheduling

Yield

The yield, y;(t) of job j at time t is the ratio of the CPU
allocation given to the job to the job’s CPU need.

m requires no knowledge of flow or compute times
m can be optimized for at each scheduling event

B maximizing minimum yield related to minimizing maximum
stretch

m How do we keep track of job progress when the yield can
vary?
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Dynamic Fractional Resource Scheduling

Virtual Time

The virtual time v;(t) of job j at time t is the subjective time
experienced by the job.

m yi(t) = [, y(r)dr
m job completes when v;(t) = ¢
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Dynamic Fractional Resource Scheduling

The Need for Preemption

m final goal is to minimize maximum stretch
m without preemption, stretch of non-clairvoyant on-line
algorithms unbounded

m consider 2 jobs

m both require all of the system resources
m one has ¢; =1

m otherhas ¢; = A

m need criteria to decide which jobs should be preempted
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Dynamic Fractional Resource Scheduling

Priority

Jobs should be preempted in order by increasing priority.
m newly arrived jobs may have infinite priority
m 1/v;(t) performs well, but subject to starvation

m (t—r;)/v(t) time avoids starvation, but does not perform
well

m (t—r;)/(vj(t))? seems a reasonable compromise
m other possibilities exist
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Greedy Heuristics

Greedy Scheduling Heuristics

m GREEDY- Put tasks on the host with the lowest CPU
demand on which it can fit into memory; new jobs may
have to be resubmitted using bounded exponential backoff.

m GREEDY-PMTN- Like GREEDY, but older tasks may be
preempted

m GREEDY-PMTN-MIGR— Like GREEDY-PMTN, but older tasks
may be migrated as well as preempted
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MCB Heuristics

Connection to multi-capacity bin packing

For each discrete scheduling event:

m problem similar to multi-capacity (vector) bin packing, but
has optimization target and variable CPU allocations

m can formulate as an MILP [Stillwell et al., 2009]
(NP-complete)

m relaxed LP heuristics slow, give low quality solutions
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MCB Heuristics

Applying MCB heuristics

m yield is continuous, so choose a granularity (0.01)
m perform a binary search on yield, seeking to maximize

m for each fixed yield, set CPU requirement and apply
heuristic

m found yield is the maximized minimum, leftover CPU used
to improve average

m if a solution cannot be found at any yield, remove the
lowest priority job and try again
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MCB Heuristics

McB8 Heuristic

Based on [Leinberger et al., 1999], simplified to 2-dimensional
case:

Put job tasks in two lists: CPU-intensive and
memory-intensive
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MCB Heuristics

McB8 Heuristic

Based on [Leinberger et al., 1999], simplified to 2-dimensional
case:

Put job tasks in two lists: CPU-intensive and
memory-intensive

Sort lists by “some criterion”. (McB8: descending order by
maximum)

M Stillwell, F Vivien, H Casanova UH Manoa ICS, INRIA

Dynamic Fractional Resource Schedulingfor HPC Workloads



Heuristics

[e]e] o]
MCB Heuristics

McB8 Heuristic

Based on [Leinberger et al., 1999], simplified to 2-dimensional
case:
Put job tasks in two lists: CPU-intensive and
memory-intensive
Sort lists by “some criterion”. (McB8: descending order by
maximum)

Starting with the first host, pick tasks that fit in order from
the list that goes against the current imbalance. Example:
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MCB Heuristics

McB8 Heuristic

Based on [Leinberger et al., 1999], simplified to 2-dimensional
case:
Put job tasks in two lists: CPU-intensive and
memory-intensive
Sort lists by “some criterion”. (McB8: descending order by
maximum)

Starting with the first host, pick tasks that fit in order from
the list that goes against the current imbalance. Example:
m current host tasks total 50% CPU and 60% memory
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MCB Heuristics

McB8 Heuristic

Based on [Leinberger et al., 1999], simplified to 2-dimensional
case:
Put job tasks in two lists: CPU-intensive and
memory-intensive
Sort lists by “some criterion”. (McB8: descending order by
maximum)
Starting with the first host, pick tasks that fit in order from
the list that goes against the current imbalance. Example:
m current host tasks total 50% CPU and 60% memory
m Assign the next task that fits from the list of CPU-intensive
jobs.
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MCB Heuristics

McB8 Heuristic

Based on [Leinberger et al., 1999], simplified to 2-dimensional
case:
Put job tasks in two lists: CPU-intensive and
memory-intensive
Sort lists by “some criterion”. (McB8: descending order by
maximum)

Starting with the first host, pick tasks that fit in order from
the list that goes against the current imbalance. Example:

m current host tasks total 50% CPU and 60% memory
m Assign the next task that fits from the list of CPU-intensive
jobs.

When no tasks can fit on a host, go to the next host.
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MCB Heuristics

McB8 Heuristic

Based on [Leinberger et al., 1999], simplified to 2-dimensional
case:
Put job tasks in two lists: CPU-intensive and
memory-intensive
Sort lists by “some criterion”. (McB8: descending order by
maximum)

Starting with the first host, pick tasks that fit in order from
the list that goes against the current imbalance. Example:

m current host tasks total 50% CPU and 60% memory
m Assign the next task that fits from the list of CPU-intensive
jobs.

When no tasks can fit on a host, go to the next host.
If all tasks can be placed, then success, otherwise failure.
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MCB Heuristics

McB8 Scheduling Heuristics

m DYNMcB8- Apply heuristic on every event
m DYNMcB8-PER- Apply heuristic periodically

m DYNMcB8-ASAP-PER- like DYNMCB8-PER, but try to
greedily schedule incoming jobs

m DYNMcCB8-STRETCH-PER- like DYNMCBS8-PER, but try to
optimize worst-case max stretch
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Methodology

Methodology

m discrete event simulator takes list of jobs and returns
stretch values

m workloads based on synthetic and real traces

m synthetic workload arrival times scaled to show
performance on different load conditions

m algorithms evaluated by per-trace degredation factor

m experiment with “free” preemption/migration and
experiment where preemption/migration costs job a
constant amount of wall clock time.
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Results
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Results

Comparison of Synthetic vs. Real workload results

Scaled synth. | Unscaled synth. | Real-world
Algs Deg. factor Deg. factor Deg. factor

avg. max | avg. max | avg. | max
EASY 167 560 | 139 443 | 94 | 1476
FCFS 186 569 | 154 476 | 118 | 2219
greedy 294 1093 | 249 1050 | 153 | 1527
greedyp 441 875 35 785 9| 147
greedypm 62 835 | 37 773 17 | 759
mcb 32 162 | 11 162 | 11| 231
mcbp 1 12 2 21 3 20
gmcbp 1 9 2 22 2 20
mcbsp 1 12 2 21 3 23
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Results

Computation Times

m Most scheduling events involve 10 or fewer jobs and
require negligible time for all schedulers.

m Even when there are about 100 jobs, the time for MCB8 is
under 5 seconds on a 3.2Ghz machine
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m Greedy approaches use significantly less bandwidth than
MCB approaches (<1GB/s in the worst case)

m MCB approaches cause jobs to be preempted around 5
times on average.

m DYNMcB8 uses 1.3GB/s on average, 5.1GB/s maximum

m periodic algorithms 0.6GB/s on average, 2.1GB/s
maximum
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Conclusions

m DFRS potentially much better than batch scheduling

m multi-capacity bin packing heuristics perform best

m targeting yield does as well as targeting worst case max
stretch

m periodic MCB approaches perform nearly as well as
aggressive ones when there is no migration cost and much
better when there is a fixed migration cost

m adding an opportunistic greedy scheduling heuristic to
DYNMCB8-PER gives no real benefit to max stretch

m MCB approaches can calculate resource allocations
reasonably quickly

m MCB approaches need to try to mitigate
migration/preemptions costs
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