# TP 1 de Réseaux: Assemblage et configuration d'un réseau sous Linux

#### **Objectifs**

- répartition des adresses IP à partir d'un schéma de câblage physique
- manipulation du matériel (câbles croisés ou non, hubs, switch)
- configuration des machines (nom, adresses IP, interfaces, ...)
- utilisation d'outils standard (ifconfig, ping)
- contrôler le bon fonctionnement du réseau
- savoir monter un petit réseau local sous Linux

#### Pré-requis

Minimum Unix (shell, vi, ...)

#### NB

Prenez d'abord le temps d'examiner le matériel et de repérer les caractéristiques de chaque objet. N'hésitez pas à expérimenter et à aller au delà des questions proposées si vous le souhaitez.

## 1. Introduction (pour vous aider !)

## 1.1. Le matériel

- Des cartes réseau (2 par machine) :
- 1 hub
- 1 commutateur (documentation disponible)
- Des câbles

## 1.2.L'adressage IP

A chaque périphérique réseau physique ou logique correspond une adresse IP, une machine routeur a donc en général plusieurs adresses IP. D'autre part à chaque réseau physique ou logique correspond une adresse de sous-réseau, un ``masque'' et une adresse de diffusion.

Une adresse IP (32bits pour IPv4) se décompose en une adresse de réseau dans les bits de poids forts (dont le nombre est à fixer par l'administrateur), les bits de poids faibles donnent l'adresse locale (ou adresse de machine). Il y a 4 classes d'adresse utilisées, de A à D, qui instaurent une certaine hiérarchie. Les adresses de réseaux sont affectées par un organisme international à but non lucratif : ICANN (*Internet Corporation for Assigned Names and Numbers*). Les adresses de classe A sont maintenant très convoitées et il n'en reste que peu. Elles ne sont par ailleurs que très rarement affectées.

|                            | ◄ 32 bits ►                              |      |                        |                   |                 |       |                |                                      |
|----------------------------|------------------------------------------|------|------------------------|-------------------|-----------------|-------|----------------|--------------------------------------|
| Classe                     | se                                       |      |                        |                   |                 |       |                | Plage des<br>adresses d'hôtes        |
| A                          | 0                                        | Rés  | eau                    | Hôte              |                 |       |                | 1.0.0.0 a<br>  127.255.255.255       |
| В                          | 10 Ré                                    |      |                        | seau Hĉ           |                 | ôte   |                | 128.0.0.0 à<br>191.255.255.255       |
| С                          | 110                                      |      |                        | Réseau            |                 | Hôte  |                | ] 192.0.0.0 à<br>] 223.255.255.255   |
| D                          | 1110                                     |      |                        | Adresse multicast |                 |       |                | 224.0.0.0 à<br>239.255.255.255       |
| E                          | 1111 Réservé pour une utilisation future |      |                        |                   |                 |       |                | 240.0.0.0 à<br>255.255.255.255       |
| © Pearson Education France |                                          |      |                        |                   |                 |       |                |                                      |
| 000                        | 000                                      | 000  | 0000                   | 00000000          | 0 0 0 0 0 0 0 0 | 00000 | Cet            | hôte                                 |
| 0 0                        |                                          |      | 0 0                    |                   | Hôte            |       | Un ł           | nôte sur ce réseau                   |
| 111                        | 111                                      | 1 1  | 1111                   | 1111111           | 11111111        | 11111 | Diffu<br>sur l | ision broadcast<br>e réseau local    |
|                            | Rés                                      | seau |                        | 11111 1111 Di     |                 |       | Diffu<br>sur u | usion broadcast<br>un réseau distant |
| 127                        |                                          |      | (Valeur quelconque) Bo |                   |                 |       | Bou            | clage                                |
|                            |                                          |      |                        |                   |                 |       |                |                                      |

Les adresses réseaux étant fixées, la partie affectée aux institutions (compagnies, universités...) peut être gérée localement par l'administrateur. Celui-ci peut par exemple définir des sous-réseaux en prenant une partie des bits réservés aux adresses de machines. Ensuite, pour les adresses de machines, on évite les adresses ayant tous les bits à 0 ou à 1. Par convention, ces adresses sont utilisées pour le *broadcast* (diffusion) et la désignation du réseau.

## 1.3. Commandes et fichiers à utiliser

#### PENSER A UTILISER LES PAGES MANUELLES DE LINUX :

man <nom de la commande>

- ifconfig <interface> <adresse> netmask <adresse du mask> broadcast <adresse broadcast>
- ping

<sup>©</sup> Pearson Education France

## 2. Remise à zéro de la configuration réseau des machines

La configuration des machines peut être modifiée par n'importe qui, n'importe quand puisque tout le monde a un accès <root>. Désactivez les interfaces eth0 et eth1 puis « nettoyez » les fichiers de configuration

- /etc/hosts
- /etc/network/interfaces

## 3. Un premier réseau

## 3.1. Raccordement matériel

#### Manipulation

Pour cela connectez physiquement les stations à l'aide d'un mini-hub, comme le montre le schéma ci-dessous.

Vous utilisez l'interface eth0 de chaque machine.



#### Question

Quel type de câble faut-il utiliser pour raccorder les machines au Hub ?

## 3.2.Choix des adresses INTERNET des machines

#### Manipulation

Choisissez une classe d'adresses IP pour configurer votre réseau local. Dans cette classe, choisissez une adresse pour votre réseau. Enfin, choisissez une adresse pour chaque station. Notez les adresses choisies sur le schéma précédant. Il est bien entendu conseillé de vous concerter avec chaque représentant de votre réseau.

#### Question

Quel est le masque de votre sous réseau ?

#### Remarque

Si nous vous laissons choisir librement l'adresse des machines, c'est uniquement parce que celles-ci ne seront par raccordées à l'INTERNET. Si tel était le cas, il faudrait formuler une demande auprès d'un organisme international qui distribue de façon unique les adresses du monde entier ou bien demander aux administrateurs locaux une plage d'adresses non utilisées.

## 3.3.Configuration manuelle des machines

Votre réseau est prêt. Il faut maintenant configurer les stations au niveau logiciel afin qu'elles se reconnaissent et qu'elles puissent dialoguer. Il y a deux façons de rendre opérationnel votre réseau : soit en modifiant des fichiers de configuration précis et en relançant les couches réseau (ou en redémarrant la machine) pour que les modifications prennent effet, soit en lançant manuellement les commandes qui permettent de configurer immédiatement les machines. C'est cette deuxième méthode qui est choisie ici pour plus de simplicité mais il est évident que dans une situation réelle (permanente), la première solution serait plus adaptée.

#### Manipulation

Utilisez la commande ifconfig pour configurer les interfaces Ethernet.

A chaque carte Ethernet est associé au moins une interface dont le nom est sous la forme <eth><numéro>. Vous utiliserez ici l'interface eth0 qui correspond à la première carte Ethernet de la machine. Pour configurer une interface, il faut lui fournir un certain nombre de renseignements : nom de l'interface, adresse IP, masque du réseau, adresse de *broadcast*. Utilisez les paramètres définis précédemment pour configurer votre interface.

#### Manipulation

Vérifiez la configuration de l'interface à l'aide de la commande *ifconfig* avec pour seul argument le nom de l'interface. Quelles sont les informations affichées ?

Désormais, votre machine peut dialoguer sur le câble Ethernet.

## 3.4.Identification des machines par un nom symbolique

Pour l'instant, votre machine est connue sur le réseau par sa seule adresse IP. On vous propose de lui associer un nom plus parlant.

#### Manipulation

Modifiez sur chacune des machines de votre réseau le fichier /etc/hosts afin de donner un nom symbolique à chacune des machines. Utilisez, par exemple, vos noms.

## 3.5.Contrôle du réseau

Il faut maintenant vérifier que les machines sont bien interconnectées et bien configurées. L'outil standard ping permet de vérifier qu'une machine distante répond bien quand on l'appelle.

#### Manipulation

Utilisez ping en lui fournissant le nom d'une machine distante à contacter et vérifiez que celle-ci répond bien.

Si elle ne répond pas, refaire la manipulation en fournissant l'adresse IP de la machine distante. Si elle répond, c'est que l'association adresse IP/nom symbolique n'a pas fonctionné. Si elle ne répond toujours pas, vérifiez la configuration de chaque machine.

#### Question

Combien de commandes ping faut-il exécuter pour vérifier l'ensemble des connexions du réseau ? Réalisez cette manipulation pour vous assurer que chacune des personnes qui vous sont associées a bien fait son travail ! Qu'affiche la commande ping ?

Exécutez la commande ping avec comme argument l'adresse de broadcast. Que se passe til ? Commentez les résultats obtenus.

La commande rlogin permet à un utilisateur de se connecter sur une machine distante. Une fois la connexion créée, les commandes que vous tapez sur la machine locale sont exécutées sur la machine distante. Les résultats obtenus sur celle-ci seront également transférés à travers cette même connexion pour être affichés sur l'écran de la station locale. Pour que rlogin fonctionne, il est possible qu'il faille autoriser le service dans /etc/hosts.allow).

Manipulation Utilisez cette commande pour vérifier la configuration des interfaces de vos voisins.

## 3.6.Performance du réseau

#### 3.6.1. Transférer des paquets de 60Ko

#### Manipulation

Quelle commande ping faut-il exécuter pour transférer des paquets de taille 60 Ko à tous les membres du réseau (man ping) ? Utilisez cette commande et en déduire le débit utile pour atteindre chaque machine du réseau (notez les valeurs sur le schéma) ? Quel est selon vous le débit théorique du lien ? D'où provient cet écart ?

#### Remarque

Pour répondre aux questions précédentes, on vous suggère de lancer la commande chacun votre tour pour ne pas fausser les mesures ! Par ailleurs, notons que ping n'est pas le meilleur outil pour faire des mesures de performance !

#### Question

Exécutez la commande dmesg / grep eth

Qu'est-ce que les informations affichées permettent de confirmer ? Que signifie « autonegotiated » ? Qu'en concluez-vous sur les caractéristiques du hub auquel vous êtes raccordés ?

#### 3.6.2. Du hub au switch

#### Manipulation

*Remplacez votre hub par le mini-switch et répondez de nouveau aux questions du paragraphe précédent. Expliquez !* 

## 4. Une deuxième carte Ethernet

#### 4.1. Caractéristiques de la carte

Nous avons perdu malencontreusement les caractéristiques de la deuxième carte Ethernet (interface eth1) présente sur votre machine. On aimerait savoir s'il s'agit d'une carte 10BaseT ou 10/100BaseT. Pouvez-vous nous aider ?

#### Manipulation

Par défaut, le pilote pour cette deuxième carte est chargé sous Linux. Utilisez maintenant le matériel à votre disposition pour déterminer les caractéristiques de la carte. Quel type de câble utilisez-vous ?

#### Remarque

Vous pouvez par exemple, faire une connexion directe entre 2 machines voisines. N'oubliez pas de désactiver l'autre interface (ifconfig eth0 down).

#### Question

S'agit-il d'une carte FastEthernet ? Supporte t-elle le full-duplex ?

#### 4.2.Utilisation de plusieurs interfaces

#### Manipulation

Réalisez un câblage équivalent au schéma suivant (l'idée est d'avoir un lien qui passe par le hub et l'autre en direct).

Activez et désactivez tour à tour l'une des deux interfaces et vérifier que le comportement est correct.



On souhaite maintenant utiliser simultanément les 2 interfaces.

#### Question

Quelle interface est utilisée lors d'un ping si les deux interfaces utilisent la même adresse IP ? Deux adresses IP différentes dans le même sous-réseau (adresses de réseau et netmask identiques) ? Deux adresses IP différentes avec des netmasks différents ? Testez plusieurs configurations et amusez-vous ! Tirez des conclusions de ces tests.

#### Remarque

Vous pouvez utiliser la commande ip route get <adresse> pour savoir quelle interface est utilisée. Essayez aussi les commandes ip link show up, ... Une documentation sur ces commandes est disponible dans la salle de Tp.

## 4.3.Renégociation des adresses IP

Tout est dans le titre ! Notez les nouvelles adresses sur le schéma précédent.

#### Question

Si le netmask utilisé est 255.255.255.0, est-il possible de donner l'adresse 132.227.71.10 à une machine et 132.227.70.11 à une autre ? Pourquoi ? Est-ce que cela fonctionnerait si le netmask était 255.255.0.0 ?

## 4.4.Configuration des machines par modification des fichiers de configuration

On souhaite maintenant mettre en place une configuration permanente du réseau qui demeure en cas de redémarrage des machines.

#### **Manipulation**

Regardez le contenu du fichier /etc/network/interfaces. Expliquez à quoi correspond chacune des lignes et modifiez le selon la nouvelle configuration choisie.

Une fois ce fichier modifié, pour que la nouvelle configuration soit prise en compte, il faut soit redémarrer la machine, soit exécuter la commande /etc/init.d/networking restart. Essayez l'une ou l'autre des méthodes pour que la nouvelle configuration soit activée.

## 4.5.Contrôle du réseau et utilisation de l'utilitaire ping

#### 4.5.1. Vérifier l'état du réseau

Manipulation

Vérifiez le bon état de fonctionnement de l'ensemble du réseau en utilisant l'adresse de broadcast et ping.

#### 4.5.2. Transférer des paquets de 60Ko

#### Manipulation

Déterminez le débit utile pour atteindre chaque machine du réseau (notez les valeurs sur le schéma) ? Pourquoi le débit est-il plus faible pour atteindre certaines machines ?

#### Remarque

Pour répondre aux questions précédentes, on vous suggère de lancer la commande chacun votre tour pour ne pas fausser les mesures !

#### 4.5.3. Que se passe t-il ?!

#### Manipulation

Ajoutez l'option -f à la commande ping de la question précédente et regardez les lumières sur le hub. Que constatez vous ? Appuyez sur <ctrl-C> et regardez les statistiques. Après avoir consulté la page man, expliquez ce qui s'est passé.

#### 4.5.4. Topologie

#### Question

Est-il préférable de mettre les hubs en cascade ou en ligne ? Testez expérimentalement.