Scheduling unreliable jobs on parallel machines

Alessandro Agnetis, Paolo Detti, Marco Pranzo
Università di Siena

Manbir S. Sodhi
University of Rhode Island

Assois, May 18-21, 2008
Overview

• The Unreliable Jobs Scheduling Problem
• Related problems and applications
• Complexity analysis
• Approximation analysis
• Computational results
Stochastic activities

• There are a number of activities (projects, jobs) to execute, and there is a probability \(p_i \) to successfully carry out activity \(i \)

• Upon failure of a job, the unit (\textit{machine}) currently in charge of its execution can’t perform any other activity
The problem

- The problem is to arrange the jobs in an order that maximizes an utility index, accounting for the possibility of machine breakdowns (due to job failure)
Application context: Unsupervised systems

- In certain highly automated systems, production (at least during the night shift) is unattended.
- When planning unattended activities, the chances of failures leading to machine breakdown should be taken into account.
- If a machine stops, no immediate intervention is possible.
The Unreliable Jobs Scheduling Problem (UJSP)

We are given:

- $J = \{1, \ldots, n\}$ job set
- a single machine or a set of m identical parallel machines
- p_i success probability of job i
- r_i reward for job i, if completed
• Single machine case

Let σ be a schedule of the n jobs on the machine, and $\sigma(j)$ be the job in j-th position

the total expected reward is

$$ER(\sigma) = p_{\sigma(1)} r_{\sigma(1)} + p_{\sigma(1)} p_{\sigma(2)} r_{\sigma(2)} + \ldots + p_{\sigma(1)} p_{\sigma(2)} \ldots p_{\sigma(n-1)} p_{\sigma(n)} r_{\sigma(n)}$$
UJSP

- Parallel machine case

Let $\phi=\{\sigma_1, \ldots, \sigma_m\}$ be a schedule of the n jobs on a
the m machines, where σ_k is the schedule of the jobs assigned to the k-th machine

the total expected reward is

$$ER(\phi) = ER(\sigma_1) + ER(\sigma_2) + \ldots + ER(\sigma_m)$$
A related problem

Total Weighted Discounted Completion Time (TWDCT)

\[\text{P/} \sum w_i e^{-rC_i} \]

- \(n \) jobs must be scheduled on \(m \) parallel machines
- \(t_i \) processing time of job \(i \)
- \(w_i \) reward of job \(i \)
- \(r > 0 \) a fixed discount rate
- \(w_i e^{-rt} \) reward of job \(i \) if completed at time \(t \)
- \(C_i \) completion time of job \(i \) in some schedule \(\phi \)

The present value of the total reward (to maximize) is

\[\text{PV}(\phi) = \sum w_i e^{-rC_i} \]
Equivalence between TWDCT and UJSP

Given an instance of TWDCT with \(n \) jobs and \(m \) parallel machines

we build an instance of UJSP with jobs \(n \) and \(m \) machines setting:

\[
p_i = e^{-r_i}
\]

\[
r_i = w_i
\]

The expected reward to maximize is

\[
ER(\phi) = \sum_{k=1}^{m} ER(\sigma_k) = PV(\phi)
\]
The Weighted Sum Completion Time (WSCT)

\[P | \mid \sum_i w_i C_i \]

\(n \) jobs must be scheduled on \(m \) parallel machines
\(t_i \) processing time of job \(i \)
\(w_i \) weight of job \(i \)
\(C_i \) completion time of job \(i \) in some schedule \(\phi \)

The function to minimize is

\[WC(\phi) = \sum_i w_i C_i \]
WSCT is a special case of TWDCT

\[
\left(P \mid \mid \sum_i w_i C_i \right) \quad \left(P \mid \mid \sum_i w_i e^{-rC_i} \right)
\]

When \(r \ll 1 \) we have

\[
e^{-rC_i} = 1 - rC_i + \frac{(rC_i)^2}{2!} - \frac{(rC_i)^3}{3!} + \frac{(rC_i)^4}{4!} + ... \approx 1 - rC_i
\]

Hence

\[
\max PV(\phi) \approx \max \sum_i w_i (1 - C_i) \equiv \sum_i w_i - \min \sum_i w_i C_i \equiv \min WC(\phi)
\]
Single machine case

UJSP, TWDCT and WSCT problems can be optimally solved by the following ordering rules

<table>
<thead>
<tr>
<th>Problem</th>
<th>Index</th>
<th>Ordering</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>UJSP</td>
<td>$Z_i = \frac{p_i r_i}{1 - p_i}$</td>
<td>nonincreasing</td>
<td>Mitten 1960</td>
</tr>
<tr>
<td>TWDCT</td>
<td>$w_i \frac{1}{1 - e^{-rt_i}}$</td>
<td>nondecreasing</td>
<td>Rothkopf 1966</td>
</tr>
<tr>
<td>WSCT</td>
<td>$\frac{w_i}{t_i}$</td>
<td>nonincreasing</td>
<td>Smith 1956</td>
</tr>
</tbody>
</table>
Related problems and application contexts (single machine case)

• Component testing (Monma and Sidney, 1979)
• Data acquisition and processing problems in sensor networks (Srivastava et al., 2005).
• Management of queries in databases (Hellerstein and Stonebraker, 1993)
UJSP with identical parallel machines

UJSP with 2 parallel machine is strongly NP-hard

Approximation results for two simple heuristics when \(m=2 \):

- Round Robin heuristic (RR)
- “Highest probability” heuristic (HP)
Round robin heuristic (RR)

- Order the jobs according to the ratio: \(Z_i = \frac{p_i r_i}{1 - p_i} \)

- Assign jobs to the machines in a round robin way: To machine \(h \) are assigned jobs \(i < n \)

\[
i = m \times k + h \quad \text{for} \quad k = 0, 1, \ldots, \left\lfloor \frac{n}{m} \right\rfloor
\]
Highest probability heuristic (HP)

- Order the jobs according to the ratio $Z_i = \frac{p_i r_i}{1 - p_i}$ if jobs have the same Z-ratio sequence first the job with the smallest success probability

- Assign the next job to the machine having the highest cumulative probability, i.e., the highest product of the probabilities of the jobs already assigned to it.
HP heuristic

jobs

machines

\[
\begin{align*}
p_1 &= 0.9 & r_1 &= 20 \\
p_2 &= 0.8 & r_2 &= 10 \\
p_3 &= 0.7 & r_3 &= 15 \\
p_4 &= 0.9 & r_4 &= 30 \\
p_5 &= 0.8 & r_5 &= 40 \\
\end{align*}
\]

\[
\begin{align*}
Z_{t_1} &= 180 & Z_{t_2} &= 180 & Z_3 &= 160 \\
Z_{t_2} &= 270 & Z_3 &= 160
\end{align*}
\]

Cumulative Probability

- \(\text{M}_1 \) 0.881
- \(\text{M}_2 \) 0.8
- \(\text{M}_3 \) 0.7

- 4
- 2
- 3
- 1
- 5
An approximation result

In problem **UJSP** with \(m \) parallel machines, any schedule \(\phi \) in which the jobs are sequenced according to the ratios on each machine is at least \(\frac{1}{m} \)-approximate.

\[
Z_i = \frac{p_i r_i}{1 - p_i}
\]

\[
\frac{ER(\phi)}{ER^*} \geq \frac{1}{m}
\]
How bad is RR heuristic?

A 3-job 2-machine instance

<table>
<thead>
<tr>
<th></th>
<th>p_i</th>
<th>r_i</th>
<th>Z_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ε</td>
<td>$1/\varepsilon$</td>
<td>$1/(1-\varepsilon)$</td>
</tr>
<tr>
<td>2</td>
<td>$1-\varepsilon$</td>
<td>$\varepsilon/(1-\varepsilon)$</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>ε</td>
<td>$(1-\varepsilon)/\varepsilon$</td>
<td>1</td>
</tr>
</tbody>
</table>
Round robin solution

<table>
<thead>
<tr>
<th>1</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

\[
ER(\sigma_1^{RR}) = p_1 r_1 + p_1 p_3 r_3 = 1 + \varepsilon (1 - \varepsilon) = 1 + \varepsilon - \varepsilon \\
ER(\sigma_2^{RR}) = p_2 r_2 = \varepsilon \\
\]

\[
ER^{RR} = ER(\sigma_1^{RR}) + ER(\sigma_2^{RR}) = 1 + 2\varepsilon - \varepsilon^2
\]
Optimal solution

\[ER(\sigma_1^*) = p_1 r_1 = 1 \]

\[ER(\sigma_2^*) = p_2 r_2 + p_2 p_3 r_3 = \varepsilon + (1 - \varepsilon)^2 = \]

\[= \varepsilon + 1 + \varepsilon^2 - 2\varepsilon \]

\[ER^* = ER(\sigma_1^*) + ER(\sigma_2^*) = 2 - \varepsilon + \varepsilon^2 \]
Approximation ratio

\[\frac{ER^{RR}}{ER^*} = \frac{1 + 2\varepsilon - \varepsilon^2}{2 - \varepsilon + \varepsilon^2} \rightarrow 0.5 \]

RR is 1/2-approximate.
How bad is HP heuristic?

When $m=2$ HP is 0.81-approximate

$$\frac{ER_{HP}}{ER^*} \geq 0.81$$

A first (high multiplicity) upper bound for UJSP

- A special case is when there exist several identical jobs of few different types
- If exactly m copies exist of each job, then the optimal solution consists in assigning one job of each type on each of the m machines, and sequencing according to the Z-ratio
A first (high multiplicity) upper bound for UJSP

- The HM case can be exploited to devise an upper bound for the general case
- Given an instance of UJSP, replace each job \(i \) with \(m \) identical jobs \(k \):

\[
p_k = m\sqrt{p_i} \quad \quad \quad r_k = \frac{(1 - m\sqrt{p_i})p_i}{(1 - p_i)^m\sqrt{p_i}}r_i
\]

\[
UB_{HM} = m\sum_{i=1}^{n} \frac{1 - m\sqrt{p_i}}{1 - p_i} p_i r_i \sqrt{i-1} \prod_{k=1}^{i} p_k
\]
A first lower bound for UJSP

- The HP heuristic schedules at each step a job on the machine having the maximum cumulative probability. It can be proved that in HP the contribution of the i-th job is at least

$$p_i r_i^m \sqrt{\prod_{k=1}^{i-1} p_k}$$

- A lower bound for HP solution is then

$$LB_1 = \sum_{i=1}^{n} p_i r_i^m \sqrt{\prod_{k=1}^{i-1} p_k}$$
A first ratio

• W.l.o.g. let 1 be the job with the smallest probability \(p_1 \), we have

\[
\frac{ER_{HP}}{ER^*} \geq \frac{LB_1}{UB_{HM}} = \frac{\sum_{i=1}^{n} p_i r_i m \prod_{k=1}^{i-1} p_k}{m \sum_{i=1}^{n} \frac{1 - m \sqrt{p_i}}{1 - p_i} p_i r_i m \prod_{k=1}^{i-1} p_k} \geq \frac{1}{m(1 - m \sqrt{p_i})} \cdot \frac{1}{1 - p_1}
\]
New upper and lower bounds when all jobs have the same Z-ratio and $m=2$

- Consider a UJSP instance in which all jobs have the same ratio Z
- Let S_k be the set of jobs scheduled on machine k
- The expected reward on machine k is then

$$ER_k = Z(1 - \prod_{i \in S_k} p_i)$$
Expected reward of a schedule \((m=2) \)
(all jobs have the same ratio \(Z \))

- Given a schedule \(\phi=\{\sigma_1, \sigma_2\} \) for \(m=2 \), w.l.o.g. suppose that job 1 (with the smallest probability) is assigned to machine 1.
- Let \(p_1 P_A \) and \(P_B \) be the cumulative probabilities of jobs assigned to machine 1 and 2, respectively.
- If all jobs have the same ratio \(Z \), the total expected reward of \(\phi \) is

\[
ER(\phi) = Z(1-p_1 P_A) + Z(1-P_B)
\]
A second lower bound \((m=2)\) (all jobs have the same ratio \(Z\))

- Consider the schedule \(\phi' = \{\sigma_1, \sigma_2\}\) in which job 1 is assigned to machine 1 and all other jobs are assigned to machine 2.
- Let \(P'_B\) the product of the probabilities of all other jobs (assigned to machine 2). Hence, \(P'_B = P_A P_B\)
- Note that the HP heuristic produces a schedule not worse than \(\phi'\) (\(\phi'\) provides a lower bound to HP sol.)
- If all jobs have the same ratio \(Z\), a lower bound to the solution provided by HP is

\[LB_2 = Z(1 - p_1) + Z(1 - P'_B) \]
A second ratio \(m=2 \)

- By definition \(P'_B=P_A P_B \), hence we have:

\[
\frac{ER_{HP}}{ER^*} \geq \frac{LB_2}{ER(\phi)} \geq \frac{Z(1-p_1)+Z(1-P_A P_B)}{Z(1-p_1 P_A)+Z(1-P_B)}
\]

- Which is minimized when \(P_A=P_B=0 \)

- Hence

\[
\frac{ER_{HP}}{ER^*} \geq \frac{LB2}{ER(\phi)} \geq 1-p_1/2
\]

This result holds even when jobs have different \(Z \)-values
An approximation result for HP when m=2

- The minimum of maximum between

\[
\frac{ER_{HP}}{ER^*} \geq \frac{LB1}{UB_{HM}} \geq \frac{1 - p_1}{2(1 - \sqrt{p_1})}
\]

and

\[
\frac{ER_{HP}}{ER^*} \geq \frac{LB2}{ER^*} \geq 1 - p_1 / 2
\]

is about 0.81 (for \(p_1=0.37\))

HP is 0.81-approximate
Experimental results

- $n = 50, 100, 500$
- $m = 2, 5, 10, 20$
- $p_i \sim U[0.7, 0.99]$
- $p_i \sim U[0.3, 0.99]$
- $p_i \sim U[0.3, 0.7]$
- $r_i \sim U[10, 40]$
- 100 randomly generated instances for each setting
Average gap of RR \[
100 \times \frac{UB_{HM} - ER_{RR}}{UB_{HM}}
\]

<table>
<thead>
<tr>
<th>Machines</th>
<th>(U[0.7, 0.99])</th>
<th>(U[0.3, 0.99])</th>
<th>(U[0.3, 0.7])</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(n=50)</td>
<td>(n=100)</td>
<td>(n=500)</td>
</tr>
<tr>
<td>2</td>
<td>0.126</td>
<td>0.072</td>
<td>0.027</td>
</tr>
<tr>
<td>5</td>
<td>0.428</td>
<td>0.235</td>
<td>0.074</td>
</tr>
<tr>
<td>10</td>
<td>0.760</td>
<td>0.457</td>
<td>0.123</td>
</tr>
<tr>
<td>20</td>
<td>1.362</td>
<td>0.801</td>
<td>0.215</td>
</tr>
</tbody>
</table>
Average gap of HP

\[\text{Average gap of HP} = 100 \times \frac{UB_{HM} - ER_{HP}}{UB_{HM}} \]

<table>
<thead>
<tr>
<th>Machines</th>
<th>jobs</th>
<th>(U[0.7,0.99])</th>
<th>(U[0.3,0.99])</th>
<th>(U[0.3,0.7])</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n=50</td>
<td>n=100</td>
<td>n=500</td>
<td>n=50</td>
</tr>
<tr>
<td>2</td>
<td>0.069</td>
<td>0.034</td>
<td>0.007</td>
<td>0.162</td>
</tr>
<tr>
<td>5</td>
<td>0.251</td>
<td>0.114</td>
<td>0.022</td>
<td>0.557</td>
</tr>
<tr>
<td>10</td>
<td>0.547</td>
<td>0.256</td>
<td>0.045</td>
<td>1.272</td>
</tr>
<tr>
<td>20</td>
<td>1.133</td>
<td>0.552</td>
<td>0.091</td>
<td>2.904</td>
</tr>
</tbody>
</table>