IC-Optimal Schedules that Accommodate
Heterogeneous Clients

Mark Sims
University of Massachusetts

Ambherst, MA, USA

Gennaro Cordasco
Universita di Salerno

Fisciano, ITALY

Arnold L. Rosenberg

Univ. Massachusetts and Colorado State Univ.
Ambherst, MA, USA Ft. Collins, CO, USA

A New Modality of Collaborative Computing:
Internet-Based Computing (IC)

e The owner of a massive job enlists the aid of remote clients to
compute the job's (compute-intensive) tasks.

e The owner (server) allocates tasks to clients, one at a time.

e A client receives its (k + 1)th task after returning the results
from its £th task.

Challenges in Internet-Based Computing

When jobs have intertask dependencies (modeled as dags)—

temporal unpredictability complicates scheduling of tasks.

Challenges in Internet-Based Computing

When jobs have intertask dependencies (modeled as dags)—

temporal unpredictability complicates scheduling of tasks:

e (lients become available at unpredictable times.

Challenges in Internet-Based Computing

When jobs have intertask dependencies (modeled as dags)—

temporal unpredictability complicates scheduling of tasks:

e (lients become available at unpredictable times.

e Clients can be unexpectedly slow:

— They are not dedicated.

Challenges in Internet-Based Computing

When jobs have intertask dependencies (modeled as dags)—

temporal unpredictability complicates scheduling of tasks:

e (lients become available at unpredictable times.

e Clients can be unexpectedly slow:

— They are not dedicated.

— They communicate over the Internet.

Our Overall Goal

Determine how to schedule a dag of tasks in a way that—

Informally:
e lessens the danger of a computation’s stalling

e enhances the utilization of client resources

Our Overall Goal

Determine how to schedule a dag of tasks in a way that—

Informally:
e lessens the danger of a computation’s stalling

e enhances the utilization of client resources

Formally:
e maximizes the number of tasks that are eligible for allocation

at every step of the computation

Formalizing the Theory’s Framework/Goal

The Internet-Computing (IC) Scenario

e The job is represented by a (finite or infinite) dag G:

The Internet-Computing (IC) Scenario

e The job is represented by a (finite or infinite) dag G:

— Each node of G represents a task.

The Internet-Computing (IC) Scenario

e The job is represented by a (finite or infinite) dag G:
— Each node of G represents a task.

— Arc (u — v) of G represents an intertask dependency:

—task v cannot be executed until its parent task u is.

The Internet-Computing (IC) Scenario

e The job is represented by a (finite or infinite) dag G:
— Each node of G represents a task.

— Arc (u — v) of G represents an intertask dependency:

—task v cannot be executed until its parent task u is.

— Task v is ELIGIBLE (to be executed) when all of its parents
have been executed.

—source (= parentless) tasks are ELIGIBLE immediately.

IC Quality /Optimality of a Schedule

The IC quality of a schedule for a dag:

—the rate of producing ELIGIBLE nodes — the larger, the better.

Schedule X is IC optimal:

—It maximizes the number of ELIGIBLE nodes for all steps t.

How Important is IC Quality /Optimality?

f+ Roughly v/T ELIGIBLE nodes at step 7" {}

How Important is IC Quality /Optimality?

f+ Roughly v/T ELIGIBLE nodes at step 7" {}

|l Never more than 3 ELIGIBLE nodes |}

Progress Thus Far

1. A formal framework for studying scheduling for IC

Progress Thus Far

1. A formal framework for studying scheduling for IC

2. Under idealized assumptions:

(a) optimal scheduling strategies for familiar classes of

dags:
e 2-D evolving meshes e (2-D) reduction-meshes
e (binary) reduction-trees e butterfly dags

Progress Thus Far

1. A formal framework for studying scheduling for IC

2. Under idealized assumptions:

(a) optimal scheduling strategies for familiar classes of

dags:

e 2-D evolving meshes e (2-D) reduction-meshes

e (binary) reduction-trees e butterfly dags
computations:

e convolutions (FFT) e Discrete Laplace Transform
e matrix multiplication e numerical integration

Progress Thus Far

1. A formal framework for studying scheduling for IC

2. Under idealized assumptions:

(a) optimal scheduling strategies for familiar classes of

dags and computations

(b) a foundation for an algorithmic scheduling theory

(schedules “well-structured” dags optimally)

Progress Thus Far

1. A formal framework for studying scheduling for IC

2. Under idealized assumptions:

(a) optimal scheduling strategies for familiar classes of dags and
computations

(b) a foundation for an algorithmic scheduling theory
(schedules “well-structured” dags optimally)

3. Initial—positive—simulation-based assessment of computational
Impact

An Initial Assessment of the Theory’s Impact

A Makespan-Based Experiment

e Generate random dags that admit IC-optimal schedules.

A Makespan-Based Experiment

e Generate random dags that admit I1C-optimal schedules.

e For each dag, generate 50 random arrival patterns of Clients.

A Makespan-Based Experiment

e Generate random dags that admit I1C-optimal schedules.
e For each dag, generate 50 random arrival patterns of Clients.
e Compare Makespan of IC-optimal schedule against:

— the FIFO scheduler, which inserts new ELIGIBLE tasks on
a FIFO queue, ordered by out-degree

A Makespan-Based Experiment

e Generate random dags that admit I1C-optimal schedules.
e For each dag, generate 50 random arrival patterns of Clients.
e Compare Makespan of IC-optimal schedule against:

— the FIFO scheduler, which inserts new ELIGIBLE tasks on
a FIFO queue, ordered by out-degree

— the LIFO scheduler, which inserts new ELIGIBLE tasks on
a stack, ordered by out-degree

A Makespan-Based Experiment

e Generate random dags that admit I1C-optimal schedules.
e For each dag, generate 50 random arrival patterns of Clients.
e Compare Makespan of IC-optimal schedule against:

— the FIFO scheduler, which inserts new ELIGIBLE tasks on
a FIFO queue, ordered by out-degree

— the LIFO scheduler, which inserts new ELIGIBLE tasks on
a stack, ordered by out-degree

— the GREEDY scheduler, which inserts new ELIGIBLE tasks
on a MAX-priority queue, ordered by out-degree.

A Makespan-Based Experiment

e Generate random dags that admit I1C-optimal schedules.
e For each dag, generate 50 random arrival patterns of Clients.
e Compare Makespan of IC-optimal schedule against:

— the FIFO scheduler, which inserts new ELIGIBLE tasks on
a FIFO queue, ordered by out-degree

— the LIFO scheduler, which inserts new ELIGIBLE tasks on
a stack, ordered by out-degree

— the GREEDY scheduler, which inserts new ELIGIBLE tasks
on a MAX-priority queue, ordered by out-degree.

Task execution times distributed normally: mean= 1, std dev= 0.1

Mkspn-Based Ratios: Mks(heuristic) — Mks(ICO)

Two different expansive dags:

Phase ratio

Phase ratio

Phase Ratio for an W dag of 947 vertices

Phase Ratio for an W dag of 1815 vertices

Mean arrival rate

T T T T
F 4 13+ 4
2
1 8
L ; 4 g 12| PO 4
@ -
£ -
o 1 [
L T g 11 T . 7
£ oxox o ox * ¥ X % x4 1+ x ox x x x ¥ X o« x A
1 1 1 1 0.9 1 1 1 1
10 100 1000 10000 10 100 1000 10000
Mean arrival rate Mean arrival rate
Phase Ratio for an M dag of 331 vertices Phase Ratio for an M dag of 2128 vertices
p— T T T T
LIFO &--x--+
[GREEDY * 4 4
+ g 13 | g
=]
® 1
£ I
& H
- - 11 | N | B
£ox % ¥ * % PR 1% % % x x % % £ x
1 1 1 1 0.9 1 1 1 1
10 100 1000 10000 10 100 1000 10000

Mean arrival rate

Mkspn-Based Ratios: Mks(heuristic) -

Mks(ICO)

Two different clique-based dags (cycle-based are similar):

Phase ratio

Phase Ratio for a Clique dag of 339 vertices

FIFO ~—— ' '
LIFQ t-x—1t
GREEDY -]

10 100
Mean arrival rate

1000

Phase ratio

0.9

Phase Ratio for a Clique dag of 1079 vertices

L

10 100 1000
Mean arrival rate

Two different expansive-reductive dags:

Phase ratio

Phase Ratio for a Composite W-N-M-dag of 1165 vertices

FIFO ——— ' ' '
LIFQ -
GREEDY - 4
|
L i 4
b oxox ox ox % t ¥ 3
. . . .
10 100 1000 10000

Mean arrival rate

Phase ratio

0.9

Phase Ratio for a Composite W-N-M-dag of 2447 vertices

J——

LIFO
GREEDY :--%---

:

¥ oy 3

10 100 1000
Mean arrival rate

Progress Thus Far

1. A formal framework for studying scheduling for IC

2. Under idealized assumptions:

(a) optimal scheduling strategies for familiar classes of dags and
computations

(b) a foundation for an algorithmic scheduling theory
(schedules “well-structured” dags optimally)

3. Initial—positive—simulation-based assessment of computational
Impact

BUT—
THE THEORY TREATS ALL DAG NODES AS EQUIVALENT!

Progress Thus Far

1. A formal framework for studying scheduling for IC

2. Under idealized assumptions:

(a) optimal scheduling strategies for familiar classes of dags and
computations

(b) a foundation for an algorithmic scheduling theory
(schedules “well-structured” dags optimally)

3. Initial—positive—simulation-based assessment of computational
Impact

HOW CAN WE DEAL WITH THE HETEROGENEITY OF
REMOTE CLIENTS?

Toward a Decomposition-Based Scheduling Theory:

1. Select a Set of “Building Block” Dags

Start with bipartite “building block” dags that we know how to
schedule optimally. A small sampler:

EXPANSIVE: : E ; ; : : ; ; : E ; : REDUCTIVE: /N M

‘ Edges represent upward arcs ‘

2. Establish “Priorities” among the Building Blocks

G1 admits an |C-optimal schedule >4

Say that { G5 admits an 1C-optimal schedule Y,

g1 > G, means:

To execute both G and G, the following schedule is IC optimal:

1. Follow X1 on G, 2. Follow X5 on G,

2. Establish “Priorities” among the Building Blocks

G1 admits an |C-optimal schedule >4

Say that { G5 admits an 1C-optimal schedule Y,

g1 > G, means:

To execute both G and G, the following schedule is IC optimal:

1. Follow X1 on G, 2. Follow X5 on G,

N N N N N N N N N
e a Vie Wie Wi Wie Uie Ve W]

The relation 1> is: e |transitive| e |easily tested|.

Complex Dags via “Composition”

Compose G with G5:

Merge/Identify some k sources of Go with some k sinks of G;.
The dag obtained is composite of type G1 1) Gs.

Example: G1 1} G2 1t G3 (Composition is associative.)
777777 T”””"”‘:: —

,,,,,,,,,,,,,,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Familiar Dags as Compositions of Building Blocks

100]
0]
o)

0
T
EEP%E
ﬂﬂﬂ” o] |

[000]
00
[000]

Why “Composition” and “Priority” Are Important

Theorem.

IF: e the dag G is composite of type G1 M Go -+ - 1 G,
e cach G, admits the IC-optimal schedule 3,

oG >G> D> Gy

THEN: the following schedule for G is IC optimal:

Execute G by executing each G, (using 33;) in >>-order.

Why “Composition” and “Priority” Are Important

Theorem.

IF: e the dag G is composite of type G1 M Go -+ - 1 G,
e cach G, admits the IC-optimal schedule 3,

oG >G> D> Gy

THEN: the following schedule for G is IC optimal:

Execute G by executing each G, (using 33;) in >>-order.

N N N N N N N N N
e a Vie Wie Wi Wie Uie Vie W]

e Parsing G into G4,...,G,
e Testing [>-priorities

} are computationally efficient.

Why “Composition” and “Priority” Are Important

Theorem.

IF: e the dag G is composite of type G1 M Go -+ - 1 G,
e cach G, admits the IC-optimal schedule 3,

oG >G> D> Gy

THEN: the following schedule for G is IC optimal:

Execute G by executing each G, (using 33;) in >>-order.

N N N N N N N N N
e a Vie Wie Wi Wie Uie Vie W]

EFFICIENT ALGORITHMS IMPLEMENT THIS THEOREM
ON A LARGE CLASS OF "WELL-STRUCTURED" DAGS

Clarification 1

Even if Gi>Gy>- - ->G,,, the composition G can be very nonlinear:

The building-block butterfly B has “self >>-priority,” so that—

B>B>B>B>B>BB>B>B>B>B>B

Clarification 2

Composite dags that admit IC-optimal schedules can be very
nonuniform in structure:

Clarification 3

We have other systematic ways of crafting |C-optimal schedules

Clarification 3

We have other systematic ways of crafting |C-optimal schedules,

—but the “I>-priority chain” method has many benefits

Clarification 3

We have other systematic ways of crafting |C-optimal schedules,
—but the “I>-priority chain” method has many benefits
—including “perturbability.”

Task Clustering that Preserves IC Optimality

Two Ad Hoc Task-Clusterings (for intuition)

A Divide-and-Conquer Computation:

i

Two Ad Hoc Task-Clusterings (for intuition)

A Divide-and-Conquer Computation:

» &l ~

A Wavefront Computation:

Toward Formal Task-Clusterings

A fattened task F'in dag G.

A self-contained set of nodes of G:

e Every node v € F'is ELIGIBLE — OR

e All of v's parents are also in F'.

Toward Formal Task-Clusterings

A fattened task F'in dag G.

A self-contained set of nodes of G:

e Every node v € F'is ELIGIBLE — OR

e All of v's parents are also in F'.

WE WANT FATTENED TASKS OF MANY SIZES

Toward Formal Task-Clusterings

A fattened task F'in dag G.

A self-contained set of nodes of G:

e Every node v € F'is ELIGIBLE — OR

e All of v's parents are also in F'.

The residual dag Q(F> when F'is removed from G

vV >_f

WA

Toward Formal Task-Clusterings

A fattened task F'in dag G.

A self~-contained set of nodes of G:

e Every node v € F' is ELIGIBLE — OR

e All of v's parents are also in F.
The residual dag Q(F) when F' is removed from G
A AN
W Ny
W“

WHEN G ADMITS AN IC-OPTIMAL SCHEDULE
WE WANT TO ENSURE THAT ¢\¥) DOES, TOO

The Direct Task-Clustering Strategy

One can view a schedule X for dag G as an injection

YNNG — {1,2,...,|IN(G)]}

The Direct Task-Clustering Strategy

One can view a schedule X for dag G as an injection

YNNG — {1,2,...,|IN(G)]}

For a k-node fattened task F', choose

(741, 272),..., 37(k)}

IF G ADMITS AN IC-OPTIMAL SCHEDULE
THEN G¥) DOES ALSO

The Direct Task-Clustering Strategy

One can view a schedule X for dag G as an injection

YNNG — {1,2,...,|IN(G)]}

For a k-node fattened task F', choose

(741, 272),..., 37(k)}

IF G ADMITS AN IC-OPTIMAL SCHEDULE
THEN ¢¥) DOES ALSO

THIS WORKS FOR ANY k

The Direct Task-Clustering Strategy—and Competitors

WAIT!!I THE STORY IS NOT OVER!

The Direct Task-Clustering Strategy—and Competitors

THE STORY IS NOT OVER!

Different 1C-optimal schedules lead to very different residual dags

The Direct Task-Clustering Strategy—and Competitors

THE STORY IS REALLY NOT OVER!

AANY N
ey

(A) (8) ©

(A) original dag G

The Direct Task-Clustering Strategy—and Competitors

THE STORY IS REALLY NOT OVER!

AANY N
ey

(A) (8) ©

(A) original dag G

(B) e F} is a 6-node fattened task via IC-optimal schedule
e residual dag GV admits |C-optimal schedule

e |8 arcs “cut” | when removing F} from G

The Direct Task-Clustering Strategy—and Competitors

THE STORY IS REALLY NOT OVER!

fmfx\gx\f QU QY

///

(A) (8) ©

(A) original dag G

(B) e F} is a 6-node fattened task via IC-optimal schedule
e residual dag Q(Fl) admits |C-optimal schedule
e |8 arcs “cut” | when removing Fi from G

(C) e F;is a G-node fattened task — not via |C-optimal schedule
e residual dag G2 admits |C-optimal schedule

e |G arcs “cut’ | when removing F; from G

The Direct Task-Clustering Strategy—and Competitors

THE STORY IS REALLY NOT OVER!

AANY N
G ey

(A) (8) ©

(A) original dag G
F is a 6-node fattened task via |C-optimal schedule

residual dag G admits |C-optimal schedule

8 arcs “cut” | when removing I} from G
F5 is a 6-node fattened task — not via |C-optimal schedule

residual dag G2 admits |C-optimal schedule

G
e 6 o o o o

6 arcs “cut” | when removing F; from G

“CUT ARCS” ARE RESULTS FROM CLIENT TO SERVER

—So direct task-clusterings need not minimize communication cost!

Where Did the Competitors Come From?

Say that

e G is composite of type G1 1 Go It - - 1 G,

each G, admits an |C-optimal schedule
¢ Gi>G>--->G,

—so0 G admits an |C-optimal schedule.

Construct a fattened task by selecting any sequence of dags G;:

QZ-IDQQD---DQ% where 11 < 1y < -+ < 1

such that

the set I of all sources of the selected {G; ?':1 is self-contained.

Where Did the Competitors Come From?

Say that

e G is composite of type G1 1 Go It - - 1 G,

each G, admits an |C-optimal schedule

e Gi>G> - >G,

—so0 G admits an |C-optimal schedule.

Construct a fattened task by selecting any sequence of dags G;:

QZ-IDQQD---DQ% where 11 < 1y < -+ < 1

such that

the set I of all sources of the selected {G; ?':1 is self-contained.

THEN G¥) ADMITS AN IC-OPTIMAL SCHEDULE.

Where Did the Competitors Come From?

Say that

e (is composite of type G1 1 Go It -+ - 1 G,

each G, admits an |C-optimal schedule
¢ Gi>Go>--->G,

—so0 G admits an |C-optimal schedule.

Construct a fattened task by selecting any sequence of dags G;:

Q“DQZ-QD---DQ% where 11 < 1y < - -+ < 1}

such that

the set I of all sources of the selected {Qij ?:1 is self~contained.

THEN G¥) ADMITS AN IC-OPTIMAL SCHEDULE.

THIS FOLLOWS FROM THE TRANSITIVITY OF .

Where Did the Competitors Come From?

Say that

e G is composite of type G1 1 Go M - -+ 11 Go

each G, admits an |C-optimal schedule

e Gi>Go> > G,

—so0 G admits an |C-optimal schedule.

Construct a fattened task by selecting any sequence of dags G;:

Qilbgizb---bgik where 11 < 1y < -+ < 1
such that

the set I of all sources of the selected {G; ?':1 is self-contained.

THEN G¥) ADMITS AN IC-OPTIMAL SCHEDULE.

THIS ALLOWS US TO OPTIMIZE OTHER CRITERIA ALSO,
E.G., COMMUNICATION

Stronger, but More Limited Clustering

We have identified several large families of dags that are universal
donors

For every fattened task F', G (F) admits an IC-optimal schedule.

Stronger, but More Limited Clustering

We have identified several large families of dags that are universal
donors

For every fattened task F', G (F) admits an IC-optimal schedule.

SOME EXAMPLES:

l\ | |
ANZAN AN
NN
\I

