IC-Optimal Schedules that Accommodate Heterogeneous Clients

Mark Sims
University of Massachusetts
Amherst, MA, USA

Gennaro Cordasco
Universita di Salerno
Fisciano, ITALY

Arnold L. Rosenberg
Univ. Massachusetts and Colorado State Univ.
Amherst, MA, USA Ft. Collins, CO, USA
A New Modality of Collaborative Computing: Internet-Based Computing (IC)

- The owner of a massive job enlists the aid of remote clients to compute the job’s (compute-intensive) tasks.
- The owner (server) allocates tasks to clients, one at a time.
- A client receives its \((k + 1)\)th task after returning the results from its \(k\)th task.
Challenges in Internet-Based Computing

When jobs have *intertask dependencies* (modeled as *dags*)—

temporal unpredictability complicates scheduling of tasks.
When jobs have **intertask dependencies** (modeled as *dags*)—

temporal unpredictability complicates scheduling of tasks:

- *Clients become available at unpredictable times.*
When jobs have *intertask dependencies* (modeled as *dags*)—

temporal unpredictability complicates scheduling of tasks:

- *Clients become available at unpredictable times.*
- *Clients can be unexpectedly slow:*
 - *They are not dedicated.*
When jobs have **intertask dependencies** (modeled as *dags*)—

temporal unpredictability complicates scheduling of tasks:

- Clients **become available at unpredictable times.**
- Clients **can be unexpectedly slow:**
 - *They are not dedicated.*
 - *They communicate over the Internet.*
Our Overall Goal

Determine how to schedule a *dag of tasks* in a way that—

Informally:

- *lessens the danger of a computation’s stalling*
- *enhances the utilization of client resources*
Our Overall Goal

Determine how to schedule a \textit{dag of tasks} in a way that—

Informally:
- lessens the danger of a computation’s stalling
- enhances the utilization of client resources

Formally:
- maximizes the number of tasks that are eligible for allocation at every step of the computation
Formalizing the Theory’s Framework/Goal
• The job is represented by a (finite or infinite) dag G:
The Internet-Computing (IC) Scenario

- The job is represented by a (finite or infinite) dag G:
 - Each node of G represents a task.
The job is represented by a (finite or infinite) dag G:

- Each node of G represents a task.
- Arc $(u \rightarrow v)$ of G represents an intertask dependency:
 task v cannot be executed until its parent task u is.
The job is represented by a (finite or infinite) dag G:

- Each node of G represents a task.
- Arc $(u \rightarrow v)$ of G represents an intertask dependency:
 → task v cannot be executed until its parent task u is.
- Task v is ELIGIBLE (to be executed) when all of its parents have been executed.
 → source (= parentless) tasks are ELIGIBLE immediately.
IC Quality/Optimality of a Schedule

The **IC quality** of a schedule for a dag:
— the rate of producing **ELIGIBLE** nodes — *the larger, the better.*

Schedule \(\Sigma \) is **IC optimal**:
— It *maximizes* the number of **ELIGIBLE** nodes *for all steps* \(t \).
How Important is IC Quality/Optimality?

\uparrow Roughly \sqrt{T} ELIGIBLE nodes at step $T \uparrow$
How Important is IC Quality/Optimality?

↑ Roughly \sqrt{T} ELIGIBLE nodes at step T ↑

↓ Never more than 3 ELIGIBLE nodes ↓
Progress Thus Far

1. A formal framework for studying scheduling for IC
Progress Thus Far

1. A formal framework for studying scheduling for IC

2. Under idealized assumptions:

 (a) optimal scheduling strategies for familiar classes of dags:

 • 2-D evolving meshes
 • (binary) reduction-trees
 • (2-D) reduction-meshes
 • butterfly dags
Progress Thus Far

1. A formal framework for studying scheduling for IC

2. Under idealized assumptions:
 (a) optimal scheduling strategies for familiar classes of
 dags:
 • 2-D evolving meshes
 • (binary) reduction-trees
 computations:
 • convolutions (FFT)
 • matrix multiplication
 • (2-D) reduction-meshes
 • butterfly dags
 • Discrete Laplace Transform
 • numerical integration
Progress Thus Far

1. A formal framework for studying scheduling for IC

2. Under idealized assumptions:

 (a) optimal scheduling strategies for familiar classes of dags and computations

 (b) a foundation for an algorithmic scheduling theory
 (schedules “well-structured” dags optimally)
Progress Thus Far

1. A formal framework for studying scheduling for IC

2. Under idealized assumptions:
 (a) optimal scheduling strategies for familiar classes of dags and computations
 (b) a foundation for an algorithmic scheduling theory
 (schedules “well-structured” dags optimally)

3. Initial—positive—simulation-based assessment of computational impact
An Initial Assessment of the Theory’s Impact

A Makespan-Based Experiment

• Generate random dags that admit IC-optimal schedules.
A Makespan-Based Experiment

- Generate random dags that admit IC-optimal schedules.
- For each dag, generate 50 random arrival patterns of Clients.
A Makespan-Based Experiment

- Generate random dags that admit IC-optimal schedules.
- For each dag, generate 50 random arrival patterns of Clients.
- Compare Makespan of IC-optimal schedule against:
 - the **FIFO scheduler**, which inserts new **ELIGIBLE** tasks on a FIFO queue, ordered by out-degree
A Makespan-Based Experiment

- Generate random dags that admit IC-optimal schedules.
- For each dag, generate 50 random arrival patterns of Clients.
- Compare Makespan of IC-optimal schedule against:
 - the **FIFO scheduler**, which inserts new **ELIGIBLE** tasks on a FIFO queue, ordered by out-degree
 - the **LIFO scheduler**, which inserts new **ELIGIBLE** tasks on a stack, ordered by out-degree
A Makespan-Based Experiment

- Generate random dags that admit IC-optimal schedules.
- For each dag, generate 50 random arrival patterns of Clients.
- Compare Makespan of IC-optimal schedule against:
 - the FIFO scheduler, which inserts new ELIGIBLE tasks on a FIFO queue, ordered by out-degree
 - the LIFO scheduler, which inserts new ELIGIBLE tasks on a stack, ordered by out-degree
 - the GREEDY scheduler, which inserts new ELIGIBLE tasks on a MAX-priority queue, ordered by out-degree.
A Makespan-Based Experiment

- Generate random dags that admit IC-optimal schedules.
- For each dag, generate 50 random arrival patterns of Clients.
- Compare Makespan of IC-optimal schedule against:
 - the **FIFO** scheduler, which inserts new **ELIGIBLE** tasks on a FIFO queue, ordered by out-degree
 - the **LIFO** scheduler, which inserts new **ELIGIBLE** tasks on a stack, ordered by out-degree
 - the **GREEDY** scheduler, which inserts new **ELIGIBLE** tasks on a MAX-priority queue, ordered by out-degree.

Task execution times distributed normally: mean $= 1$; std.dev $= 0.1$
Mkspn-Based *Ratios*: Mks(heuristic) ÷ Mks(ICO)

Two different expansive dags:

Two different reductive dags:
Mkspn-Based *Ratios*: $\text{Mks(heuristic)} \div \text{Mks(ICO)}$

Two different clique-based dags (cycle-based are similar):

Two different expansive-reductive dags:
Progress Thus Far

1. A formal framework for studying scheduling for IC

2. Under idealized assumptions:
 (a) optimal scheduling strategies for familiar classes of dags and computations
 (b) a foundation for an algorithmic scheduling theory (schedules “well-structured” dags optimally)

3. Initial—positive—simulation-based assessment of computational impact

BUT—

THE THEORY TREATS ALL DAG NODES AS EQUIVALENT!
Progress Thus Far

1. A formal framework for studying scheduling for IC

2. Under idealized assumptions:

 (a) optimal scheduling strategies for familiar classes of dags and computations

 (b) a foundation for an algorithmic scheduling theory
 (schedules “well-structured” dags optimally)

3. Initial—positive—simulation-based assessment of computational impact

HOW CAN WE DEAL WITH THE HETEROGENEITY OF REMOTE CLIENTS?
Toward a Decomposition-Based Scheduling Theory:
1. Select a Set of “Building Block” Dags

Start with bipartite “building block” dags that we know how to schedule optimally. A small sampler:

EXPANSIVE: ![Expansive Graph]

REDUCTIVE: ![Reductive Graph]

CYCLIC: ![Cyclic Graph]

CLIQUE: ![Clique Graph]

Edges represent upward arcs
2. Establish “Priorities” among the Building Blocks

Say that \(\begin{cases} \mathcal{G}_1 \text{ admits an IC-optimal schedule } \Sigma_1 \\ \mathcal{G}_2 \text{ admits an IC-optimal schedule } \Sigma_2 \end{cases} \)

\(\mathcal{G}_1 \succ \mathcal{G}_2 \) means:

To execute both \(\mathcal{G}_1 \) and \(\mathcal{G}_2 \), the following schedule is IC optimal:

1. Follow \(\Sigma_1 \) on \(\mathcal{G}_1 \)
2. Follow \(\Sigma_2 \) on \(\mathcal{G}_2 \)
2. Establish “Priorities” among the Building Blocks

Say that \[\begin{cases} G_1 \text{ admits an IC-optimal schedule } \Sigma_1 \\ G_2 \text{ admits an IC-optimal schedule } \Sigma_2 \end{cases} \]

\(G_1 \triangleright G_2 \) means:
To execute both \(G_1 \) and \(G_2 \), the following schedule is IC optimal:

1. Follow \(\Sigma_1 \) on \(G_1 \)
2. Follow \(\Sigma_2 \) on \(G_2 \)

The relation \(\triangleright \) is: • transitive • easily tested.
Compose G_1 with G_2:

Merge/Identify some k sources of G_2 with some k sinks of G_1.

The dag obtained is composite of type $G_1 \uparrow G_2$.

Example: $G_1 \uparrow G_2 \uparrow G_3$ \hspace{1cm} (Composition is associative.)
Familiar Dags as Compositions of Building Blocks
Theorem.

IF:
- the dag G is composite of type $G_1 \uparrow G_2 \uparrow \cdots \uparrow G_n$
- each G_i admits the IC-optimal schedule Σ_i
- $G_1 \triangleright G_2 \triangleright \cdots \triangleright G_n$

THEN: the following schedule for G is IC optimal:

Execute G by executing each G_i (using Σ_i) in \triangleright-order.
Theorem.

IF:
- the dag G is composite of type $G_1 \uparrow G_2 \uparrow \cdots \uparrow G_n$
- each G_i admits the IC-optimal schedule Σ_i
- $G_1 \triangleright G_2 \triangleright \cdots \triangleright G_n$

THEN: the following schedule for G is IC optimal:

Execute G by executing each G_i (using Σ_i) in \triangleright-order.

≈≈≈≈≈≈≈≈≈

• Parsing G into G_1, \ldots, G_n
• Testing \triangleright-priorities

are computationally efficient.
Why “Composition” and “Priority” Are Important

Theorem.

IF:
- the dag G is composite of type $G_1 \uparrow G_2 \uparrow \cdots \uparrow G_n$
- each G_i admits the IC-optimal schedule Σ_i
- $G_1 \triangleright G_2 \triangleright \cdots \triangleright G_n$

THEN: the following schedule for G is IC optimal:

Execute G by executing each G_i (using Σ_i) in \triangleright-order.

≈≈≈≈≈≈≈≈≈

EFFICIENT ALGORITHMS IMPLEMENT THIS THEOREM ON A LARGE CLASS OF “WELL-STRUCTURED” DAGS
Even if $G_1 \triangleright G_2 \triangleright \cdots \triangleright G_n$, the composition G can be very nonlinear:

The building-block butterfly B has “self \triangleright-priority,” so that—

$$B \triangleright B \triangleright B$$
Clarification 2

Composite dags that admit IC-optimal schedules can be very nonuniform in structure:
Clarification 3

We have other systematic ways of crafting IC-optimal schedules
We have other systematic ways of crafting IC-optimal schedules, —but the “≻-priority chain” method has many benefits
We have other systematic ways of crafting IC-optimal schedules, —but the “⊳-priority chain” method has many benefits —including “perturbability.”
Task Clustering that Preserves IC Optimality
Two Ad Hoc Task-Clusterings (for intuition)

A Divide-and-Conquer Computation:
Two Ad Hoc Task-Clusterings (for intuition)

A Divide-and-Conquer Computation:

A Wavefront Computation:
A fattened task F in dag \mathcal{G}.

A *self-contained* set of nodes of \mathcal{G}:

- Every node $v \in F$ is **Eligible** — OR
- All of v’s parents are also in F.

A fattened task F in dag \mathcal{G}.

A self-contained set of nodes of \mathcal{G}:

- Every node $v \in F$ is \textbf{eligible} — OR
- All of v’s parents are also in F.

[WE WANT FATTENED TASKS OF MANY SIZES]
A fattened task F in dag G.

A *self-contained* set of nodes of G:

- Every node $v \in F$ is **ELIGIBLE** — OR
- All of v’s parents are also in F.

The residual dag $G^{(F)}$ when F is removed from G
A fattened task F in dag G.

A *self-contained* set of nodes of G:

- Every node $v \in F$ is **eligible** — OR
- All of v’s parents are also in F.

The residual dag $G^{(F)}$ when F is removed from G

WHEN G *ADMITS AN IC-OPTIMAL SCHEDULE WE WANT TO ENSURE THAT $G^{(F)}$ DOES, TOO*
One can view a schedule Σ for dag G as an \textit{injection}

\[
\Sigma : \mathcal{N}(G) \longrightarrow \{1, 2, \ldots, |\mathcal{N}(G)|\}
\]
The *Direct* Task-Clustering Strategy

One can view a schedule Σ for dag G as an *injection*

$$\Sigma : \mathcal{N}(G) \rightarrow \{1, 2, \ldots, |\mathcal{N}(G)|\}$$

For a k-node fattened task F, choose

$$\{\Sigma^{-1}(1), \Sigma^{-1}(2), \ldots, \Sigma^{-1}(k)\}$$

IF G *ADmits an IC-OPTIMAL Schedule* \[\text{THEN } G^{(F)} \text{ DOES ALSO}\]
The Direct Task-Clustering Strategy

One can view a schedule Σ for dag G as an injection

$$\Sigma : \mathcal{N}(G) \rightarrow \{1, 2, \ldots, |\mathcal{N}(G)|\}$$

For a k-node fattened task F, choose

$$\{\Sigma^{-1}(1), \Sigma^{-1}(2), \ldots, \Sigma^{-1}(k)\}$$

IF G **ADmits an IC-OPTIMAL Schedule**

THEN $G^{(F)}$ **DOES ALSO**

THIS WORKS FOR ANY k
The *Direct* Task-Clustering Strategy—*and Competitors*

WAIT!! THE STORY IS NOT OVER!!
Different IC-optimal schedules lead to very different residual dags
The Direct Task-Clustering Strategy—and Competitors

THE STORY IS *REALLY* NOT OVER!

(A) original dag G

(B)

(C)
THE STORY IS **REALLY NOT OVER!**

(A) original dag G

(B) • F_1 is a 6-node fattened task via IC-optimal schedule
 • residual dag $G^{(F_1)}$ admits IC-optimal schedule
 • 8 arcs “cut” when removing F_1 from G
The Direct Task-Clustering Strategy—and Competitors

THE STORY IS REALLY NOT OVER!

(A) original dag G

(B) • F_1 is a 6-node fattened task via IC-optimal schedule
 • residual dag $G^{(F_1)}$ admits IC-optimal schedule
 • 8 arcs “cut” when removing F_1 from G

(C) • F_2 is a 6-node fattened task — not via IC-optimal schedule
 • residual dag $G^{(F_2)}$ admits IC-optimal schedule
 • 6 arcs “cut” when removing F_2 from G
The Direct Task-Clustering Strategy—and Competitors

THE STORY IS **REALLY NOT OVER!**

(A) original dag G

(B) • F_1 is a 6-node fattened task via IC-optimal schedule
 • residual dag $G^{(F_1)}$ admits IC-optimal schedule
 • 8 arcs “cut” when removing F_1 from G

(C) • F_2 is a 6-node fattened task — *not* via IC-optimal schedule
 • residual dag $G^{(F_2)}$ admits IC-optimal schedule
 • 6 arcs “cut” when removing F_2 from G

"**CUT ARCS** are results from client to server"

—So direct task-clusterings need not minimize communication cost!
Where Did the Competitors Come From?

Say that

- \mathcal{G} is composite of type $\mathcal{G}_1 \uparrow \mathcal{G}_2 \uparrow \cdots \uparrow \mathcal{G}_n$
 each \mathcal{G}_i admits an IC-optimal schedule

- $\mathcal{G}_1 \triangleright \mathcal{G}_2 \triangleright \cdots \triangleright \mathcal{G}_n$

—so \mathcal{G} admits an IC-optimal schedule.

Construct a fattened task by selecting any sequence of dags \mathcal{G}_i:

$$\mathcal{G}_{i_1} \triangleright \mathcal{G}_{i_2} \triangleright \cdots \triangleright \mathcal{G}_{i_k} \text{ where } i_1 < i_2 < \cdots < i_k$$

such that

the set F of all sources of the selected $\{\mathcal{G}_{i_j}\}_{j=1}^k$ is self-contained.
Where Did the Competitors Come From?

Say that

- \mathcal{G} is composite of type $\mathcal{G}_1 \uparrow \mathcal{G}_2 \uparrow \cdots \uparrow \mathcal{G}_n$
 each \mathcal{G}_i admits an IC-optimal schedule

- $\mathcal{G}_1 \triangleright \mathcal{G}_2 \triangleright \cdots \triangleright \mathcal{G}_n$

—so \mathcal{G} admits an IC-optimal schedule.

Construct a fattened task by selecting any sequence of dags \mathcal{G}_i:

$\mathcal{G}_{i_1} \triangleright \mathcal{G}_{i_2} \triangleright \cdots \triangleright \mathcal{G}_{i_k}$ where $i_1 < i_2 < \cdots < i_k$

such that

the set F of all sources of the selected $\{\mathcal{G}_{i_j}\}_{j=1}^{k}$ is self-contained.

THEN $\mathcal{G}^{(F)}$ ADMITS AN IC-OPTIMAL SCHEDULE.
Where Did the Competitors Come From?

Say that

- \(G \) is composite of type \(G_1 \uparrow G_2 \uparrow \cdots \uparrow G_n \)
 each \(G_i \) admits an IC-optimal schedule
- \(G_1 \triangleright G_2 \triangleright \cdots \triangleright G_n \)

—so \(G \) admits an IC-optimal schedule.

Construct a fattened task by selecting any sequence of dags \(G_i \):

\[
G_{i_1} \triangleright G_{i_2} \triangleright \cdots \triangleright G_{i_k} \quad \text{where} \quad i_1 < i_2 < \cdots < i_k
\]

such that

the set \(F \) of all sources of the selected \(\{G_{ij}\}_{j=1}^k \) is self-contained.

Then \(G^{(F)} \) **admits an IC-optimal schedule.**

This follows from the transitivity of \(\triangleright \).
Where Did the Competitors Come From?

Say that

- \mathcal{G} is composite of type $\mathcal{G}_1 \uparrow \mathcal{G}_2 \uparrow \cdots \uparrow \mathcal{G}_n$

 each \mathcal{G}_i admits an IC-optimal schedule

- $\mathcal{G}_1 \triangleright \mathcal{G}_2 \triangleright \cdots \triangleright \mathcal{G}_n$

—so \mathcal{G} admits an IC-optimal schedule.

Construct a fattened task by selecting any sequence of dags \mathcal{G}_i:

$\mathcal{G}_{i_1} \triangleright \mathcal{G}_{i_2} \triangleright \cdots \triangleright \mathcal{G}_{i_k}$ where $i_1 < i_2 < \cdots < i_k$

such that

the set F of all sources of the selected $\{\mathcal{G}_{i_j}\}_{j=1}^k$ is self-contained.

\[\text{THEN } \mathcal{G}^{(F)} \text{ ADMITS AN IC-OPTIMAL SCHEDULE.}\]

THIS ALLOWS US TO OPTIMIZE OTHER CRITERIA ALSO, E.G., COMMUNICATION
We have identified several large families of dags that are *universal donors*

For every fattened task F, $\mathcal{G}^{(F)}$ admits an IC-optimal schedule.
Stronger, but More Limited Clustering

We have identified several large families of dags that are universal donors.

For every fattened task F, $G^{(F)}$ admits an IC-optimal schedule.

SOME EXAMPLES: