IC-Optimal Schedules that Accommodate Heterogeneous Clients

Mark Sims

University of Massachusetts Amherst, MA, USA

Gennaro Cordasco

Universita di Salerno Fisciano, ITALY

Arnold L. Rosenberg

Univ. Massachusetts and Colorado State Univ. Amherst, MA, USA Ft. Collins, CO, USA

A New Modality of *Collaborative Computing:* Internet-Based Computing (IC)

- The *owner* of a massive job enlists the aid of remote *clients* to compute the job's (compute-intensive) tasks.
- The owner (server) allocates tasks to clients, one at a time.
- ullet A client receives its (k+1)th task after returning the results from its kth task.

When jobs have <u>intertask dependencies</u> (modeled as *dags*)— temporal unpredictability complicates scheduling of tasks.

When jobs have <u>intertask dependencies</u> (modeled as *dags*)—

<u>temporal unpredictability</u> complicates scheduling of tasks:

• Clients become available at unpredictable times.

When jobs have <u>intertask dependencies</u> (modeled as *dags*)—

<u>temporal unpredictability</u> complicates scheduling of tasks:

- Clients become available at unpredictable times.
- Clients can be unexpectedly slow:
 - —They are <u>not dedicated</u>.

When jobs have <u>intertask dependencies</u> (modeled as *dags*)— temporal unpredictability complicates scheduling of tasks:

- Clients become available at unpredictable times.
- Clients can be unexpectedly slow:
 - —They are <u>not dedicated</u>.
 - —They <u>communicate over the Internet</u>.

Our Overall Goal

Determine how to schedule a dag of tasks in a way that—

Informally:

- lessens the danger of a computation's stalling
- <u>enhances the utilization of client resources</u>

Our Overall Goal

Determine how to schedule a dag of tasks in a way that—

Informally:

- lessens the danger of a computation's stalling
- enhances the utilization of client resources

Formally:

• maximizes the number of tasks that are eligible for allocation at every step of the computation

Formalizing the Theory's Framework/Goal

ullet The $\underline{\it job}$ is represented by a (finite or infinite) dag ${\cal G}$:

- ullet The job is represented by a (finite or infinite) dag ${\cal G}$:
 - Each node of \mathcal{G} represents a <u>task</u>.

- ullet The *job* is represented by a (finite or infinite) dag \mathcal{G} :
 - Each node of \mathcal{G} represents a <u>task</u>.
 - Arc $(u \rightarrow v)$ of ${\cal G}$ represents an intertask dependency:
 - \rightarrow task v cannot be *executed* until its *parent* task u is.

- The *job* is represented by a (finite or infinite) dag G:
 - Each node of \mathcal{G} represents a <u>task</u>.
 - Arc $(u \rightarrow v)$ of \mathcal{G} represents an intertask dependency:
 - \rightarrow task v cannot be *executed* until its *parent* task u is.
 - Task v is <u>ELIGIBLE</u> (to be executed) when all of its parents have been executed.
 - \rightarrow source (= parentless) tasks are ELIGIBLE immediately.

IC Quality/Optimality of a Schedule

The IC quality of a schedule for a dag:

—the rate of producing ELIGIBLE nodes — the larger, the better.

Schedule Σ is IC optimal:

—It maximizes the number of <code>ELIGIBLE</code> nodes for all steps t.

How Important is IC Quality/Optimality?

 \Uparrow Roughly \sqrt{T} Eligible nodes at step T \Uparrow

How Important is IC Quality/Optimality?

- $\uparrow \!\!\!\uparrow \mbox{Roughly } \sqrt{T} \mbox{ ELIGIBLE nodes at step } T \uparrow \!\!\!\!\uparrow$
 - \Downarrow Never more than $3 \ \mathrm{ELIGIBLE}$ nodes \Downarrow

1. A $\underline{\text{formal framework}}$ for studying scheduling for IC

- 1. A formal framework for studying scheduling for IC
- 2. Under idealized assumptions:
 - (a) optimal scheduling strategies for familiar classes of dags:

 - 2-D evolving meshes (2-D) reduction-meshes
 - (binary) reduction-trees butterfly dags

- 1. A formal framework for studying scheduling for IC
- 2. Under idealized assumptions:
 - (a) optimal scheduling strategies for familiar classes of dags:

 - (binary) reduction-trees butterfly dags computations:

 - matrix multiplication

- 2-D evolving meshes (2-D) reduction-meshes
- convolutions (FFT) Discrete Laplace Transform
 - numerical integration

- 1. A <u>formal framework</u> for studying scheduling for IC
- 2. Under idealized assumptions:
 - (a) optimal scheduling strategies for familiar classes of dags and computations
 - (b) a foundation for an algorithmic scheduling theory (schedules "well-structured" dags optimally)

- 1. A formal framework for studying scheduling for IC
- 2. Under idealized assumptions:
 - (a) optimal scheduling strategies for familiar classes of dags and computations
 - (b) a foundation for an algorithmic scheduling theory (schedules "well-structured" dags optimally)
- 3. Initial—positive—simulation-based assessment of computational impact

An Initial Assessment of the Theory's Impact

A Makespan-Based Experiment

• Generate random dags that admit IC-optimal schedules.

- Generate random dags that admit IC-optimal schedules.
- For each dag, generate 50 random arrival patterns of Clients.

- Generate random dags that admit IC-optimal schedules.
- For each dag, generate 50 random arrival patterns of Clients.
- Compare Makespan of IC-optimal schedule against:
 - the <u>FIFO scheduler</u>, which inserts new ELIGIBLE tasks on a FIFO queue, ordered by out-degree

- Generate random dags that admit IC-optimal schedules.
- For each dag, generate 50 random arrival patterns of Clients.
- Compare Makespan of IC-optimal schedule against:
 - the <u>FIFO scheduler</u>, which inserts new ELIGIBLE tasks on a FIFO queue, ordered by out-degree
 - the $\underline{\sf LIFO}$ scheduler, which inserts new $\underline{\sf ELIGIBLE}$ tasks on a stack, ordered by out-degree

- Generate random dags that admit IC-optimal schedules.
- For each dag, generate 50 random arrival patterns of Clients.
- Compare Makespan of IC-optimal schedule against:
 - the <u>FIFO scheduler</u>, which inserts new ELIGIBLE tasks on a FIFO queue, ordered by out-degree
 - the <u>LIFO scheduler</u>, which inserts new ELIGIBLE tasks on a stack, ordered by out-degree
 - the <u>GREEDY scheduler</u>, which inserts new ELIGIBLE tasks on a MAX-priority queue, ordered by out-degree.

- Generate random dags that admit IC-optimal schedules.
- For each dag, generate 50 random arrival patterns of Clients.
- Compare Makespan of IC-optimal schedule against:
 - the <u>FIFO scheduler</u>, which inserts new ELIGIBLE tasks on a FIFO queue, ordered by out-degree
 - the <u>LIFO scheduler</u>, which inserts new <u>ELIGIBLE</u> tasks on a stack, ordered by out-degree
 - the <u>GREEDY scheduler</u>, which inserts new ELIGIBLE tasks on a MAX-priority queue, ordered by out-degree.

Task execution times distributed normally: mean= 1; std_dev= 0.1

Mkspn-Based Ratios: Mks(heuristic) \div Mks(ICO)

Two different expansive dags:

Two different reductive dags:

Mkspn-Based Ratios: Mks(heuristic) \div Mks(ICO)

Two different clique-based dags (cycle-based are similar):

Two different expansive-reductive dags:

- 1. A formal framework for studying scheduling for IC
- 2. Under idealized assumptions:
 - (a) optimal scheduling strategies for familiar classes of dags and computations
 - (b) a foundation for an algorithmic scheduling theory (schedules "well-structured" dags optimally)
- 3. Initial—positive—simulation-based assessment of computational impact

BUT—

THE THEORY TREATS ALL DAG NODES AS EQUIVALENT!

- 1. A formal framework for studying scheduling for IC
- 2. Under idealized assumptions:
 - (a) optimal scheduling strategies for familiar classes of dags and computations
 - (b) a foundation for an algorithmic scheduling theory (schedules "well-structured" dags optimally)
- 3. Initial—positive—simulation-based assessment of computational impact

HOW CAN WE DEAL WITH THE HETEROGENEITY OF REMOTE CLIENTS?

Toward a Decomposition-Based Scheduling Theory:

1. Select a Set of "Building Block" Dags

Start with *bipartite "building block" dags* that we know how to schedule optimally. A small sampler:

2. Establish "Priorities" among the Building Blocks

 $\underline{\mathcal{G}_1} \rhd \underline{\mathcal{G}_2}$ means:

To execute both \mathcal{G}_1 and \mathcal{G}_2 , the following schedule is IC optimal:

- 1. Follow Σ_1 on \mathcal{G}_1 2. Follow Σ_2 on \mathcal{G}_2

2. Establish "Priorities" among the Building Blocks

Say that $\left\{ egin{array}{l} \mathcal{G}_1 \ \mbox{admits an IC-optimal schedule } \Sigma_1 \ \mathcal{G}_2 \ \mbox{admits an IC-optimal schedule } \Sigma_2 \ \end{array}
ight.$

 $\underline{\mathcal{G}_1} \rhd \underline{\mathcal{G}_2}$ means:

To execute both \mathcal{G}_1 and \mathcal{G}_2 , the following schedule is IC optimal:

- 1. Follow Σ_1 on \mathcal{G}_1 2. Follow Σ_2 on \mathcal{G}_2

The relation \triangleright is: • transitive

• easily tested

Complex Dags via "Composition"

Compose \mathcal{G}_1 with \mathcal{G}_2 :

Merge/Identify some k sources of \mathcal{G}_2 with some k sinks of \mathcal{G}_1 .

The dag obtained is *composite of type* $\mathcal{G}_1 \uparrow \mathcal{G}_2$.

Example: $\mathcal{G}_1 \uparrow \mathcal{G}_2 \uparrow \mathcal{G}_3$

(Composition is associative.)

Familiar Dags as Compositions of Building Blocks

$\approx\approx\approx\approx\approx\approx$

Why "Composition" and "Priority" Are Important

Theorem.

IF:

- the dag \mathcal{G} is composite of type $\mathcal{G}_1 \Uparrow \mathcal{G}_2 \Uparrow \cdots \Uparrow \mathcal{G}_n$
- ullet each ${\cal G}_i$ admits the IC-optimal schedule Σ_i
- $\mathcal{G}_1 \rhd \mathcal{G}_2 \rhd \cdots \rhd \mathcal{G}_n$

THEN: the following schedule for G is IC optimal:

Execute \mathcal{G} by executing each \mathcal{G}_i (using Σ_i) in \triangleright -order.

Why "Composition" and "Priority" Are Important

Theorem.

IF:

- the dag \mathcal{G} is composite of type $\mathcal{G}_1 \Uparrow \mathcal{G}_2 \Uparrow \cdots \Uparrow \mathcal{G}_n$
- ullet each ${\cal G}_i$ admits the IC-optimal schedule Σ_i
- $\mathcal{G}_1 \triangleright \mathcal{G}_2 \triangleright \cdots \triangleright \mathcal{G}_n$

THEN: the following schedule for G is IC optimal:

Execute \mathcal{G} by executing each \mathcal{G}_i (using Σ_i) in \triangleright -order.

$$\approx\approx\approx\approx\approx\approx\approx$$

 $\begin{array}{l} \bullet \ \mathsf{Parsing} \ \mathcal{G} \ \mathsf{into} \ \mathcal{G}_1, \dots, \mathcal{G}_n \\ \bullet \ \mathsf{Testing} \ \rhd\!\mathsf{-priorities} \end{array} \right\} \ \mathsf{are} \ \underline{\mathit{computationally efficient}}.$

Why "Composition" and "Priority" Are Important

Theorem.

IF:

- the dag \mathcal{G} is composite of type $\mathcal{G}_1 \Uparrow \mathcal{G}_2 \Uparrow \cdots \Uparrow \mathcal{G}_n$
- ullet each ${\cal G}_i$ admits the IC-optimal schedule Σ_i
- $\mathcal{G}_1 \rhd \mathcal{G}_2 \rhd \cdots \rhd \mathcal{G}_n$

THEN: the following schedule for G is IC optimal:

Execute \mathcal{G} by executing each \mathcal{G}_i (using Σ_i) in \triangleright -order.

 $\approx\approx\approx\approx\approx\approx\approx$

EFFICIENT ALGORITHMS IMPLEMENT THIS THEOREM ON A LARGE CLASS OF "WELL-STRUCTURED" DAGS

Even if $\mathcal{G}_1 \triangleright \mathcal{G}_2 \triangleright \cdots \triangleright \mathcal{G}_n$, the composition \mathcal{G} can be *very* nonlinear:

The building-block butterfly ${\mathcal B}$ has "self \rhd -priority," so that—

$$\mathcal{B} \rhd \mathcal{B} \rangle \mathcal{B} \rangle$$

Composite dags that admit IC-optimal schedules can be <u>very</u> nonuniform in structure:

We have other systematic ways of crafting IC-optimal schedules

We have other systematic ways of crafting IC-optimal schedules,

—but the "⊳-priority chain" method has many benefits

We have other systematic ways of crafting IC-optimal schedules,

- —but the "⊳-priority chain" method has many benefits
- —including "perturbability."

Task Clustering that Preserves IC Optimality

Two Ad Hoc Task-Clusterings (for intuition)

A Divide-and-Conquer Computation:

Two Ad Hoc Task-Clusterings (for intuition)

A Divide-and-Conquer Computation:

A Wavefront Computation:

A fattened task F in dag \mathcal{G} .

A $\underline{\textit{self-contained}}$ set of nodes of \mathcal{G} :

- ullet Every node $v \in F$ is <code>ELIGIBLE</code> OR
- ullet All of v's parents are also in F.

A fattened task F in dag \mathcal{G} .

A <u>self-contained</u> set of nodes of G:

- ullet Every node $v \in F$ is <code>ELIGIBLE</code> OR
- ullet All of v's parents are also in F.

WE WANT FATTENED TASKS OF MANY SIZES

A fattened task F in dag G.

A *self-contained* set of nodes of G:

- ullet Every node $v \in F$ is <code>ELIGIBLE</code> OR
- ullet All of v's parents are also in F.

The residual dag $\mathcal{G}^{(F)}$ when F is removed from \mathcal{G}

A fattened task F in dag G.

A *self-contained* set of nodes of G:

- ullet Every node $v \in F$ is $\operatorname{ELIGIBLE}$ OR
- ullet All of v's parents are also in F.

The residual dag $\mathcal{G}^{(F)}$ when F is removed from \mathcal{G}

WHEN $\mathcal G$ ADMITS AN IC-OPTIMAL SCHEDULE WE WANT TO ENSURE THAT $\mathcal G^{(F)}$ DOES, TOO

The *Direct* Task-Clustering Strategy

One can view a schedule Σ for dag ${\cal G}$ as an $\it injection$

$$\Sigma: \mathcal{N}(\mathcal{G}) \longrightarrow \{1, 2, \dots, |\mathcal{N}(\mathcal{G})|\}$$

The *Direct* Task-Clustering Strategy

One can view a schedule Σ for dag ${\cal G}$ as an $\it injection$

$$\Sigma: \mathcal{N}(\mathcal{G}) \longrightarrow \{1, 2, \dots, |\mathcal{N}(\mathcal{G})|\}$$

For a k-node fattened task F, choose

$$\{\Sigma^{-1}(1), \ \Sigma^{-1}(2), \dots, \ \Sigma^{-1}(k)\}$$

IF $\mathcal G$ ADMITS AN IC-OPTIMAL SCHEDULE THEN $\mathcal G^{(F)}$ DOES ALSO

The *Direct* Task-Clustering Strategy

One can view a schedule Σ for dag ${\cal G}$ as an $\it injection$

$$\Sigma: \mathcal{N}(\mathcal{G}) \longrightarrow \{1, 2, \dots, |\mathcal{N}(\mathcal{G})|\}$$

For a k-node fattened task F, choose

$$\{\Sigma^{-1}(1), \ \Sigma^{-1}(2), \dots, \ \Sigma^{-1}(k)\}$$

IF ${\mathcal G}$ ADMITS AN IC-OPTIMAL SCHEDULE THEN ${\mathcal G}^{(F)}$ DOES ALSO

THIS WORKS FOR ANY k

WAIT!! THE STORY IS NOT OVER!

THE STORY IS NOT OVER!

Different IC-optimal schedules lead to very different residual dags

THE STORY IS <u>REALLY</u> NOT OVER!

(A) original dag $\mathcal G$

THE STORY IS <u>REALLY</u> NOT OVER!

- (A) original dag \mathcal{G}
- (B) F_1 is a 6-node fattened task via IC-optimal schedule
 - ullet residual dag $\mathcal{G}^{(F_1)}$ admits IC-optimal schedule
 - ullet 8 arcs "cut" when removing F_1 from ${\cal G}$

THE STORY IS *REALLY* NOT OVER!

- (A) original dag \mathcal{G}
- (B) F_1 is a 6-node fattened task via IC-optimal schedule
 - ullet residual dag $\mathcal{G}^{(F_1)}$ admits IC-optimal schedule
 - ullet 8 arcs "cut" when removing F_1 from ${\cal G}$
- (C) F_2 is a 6-node fattened task not via IC-optimal schedule
 - ullet residual dag $\mathcal{G}^{(F_2)}$ admits IC-optimal schedule
 - ullet 6 arcs "cut" when removing F_2 from ${\cal G}$

THE STORY IS *REALLY* NOT OVER!

- (A) original dag \mathcal{G}
- (B) F_1 is a 6-node fattened task via IC-optimal schedule
 - ullet residual dag $\mathcal{G}^{(F_1)}$ admits IC-optimal schedule
 - 8 arcs "cut" when removing F_1 from \mathcal{G}
- (C) F_2 is a 6-node fattened task not via IC-optimal schedule
 - ullet residual dag $\mathcal{G}^{(F_2)}$ admits IC-optimal schedule
 - ullet 6 arcs "cut" when removing F_2 from ${\cal G}$

"CUT ARCS" ARE RESULTS FROM CLIENT TO SERVER

—So direct task-clusterings need not minimize communication cost!

Say that

- \mathcal{G} is composite of type $\mathcal{G}_1 \Uparrow \mathcal{G}_2 \Uparrow \cdots \Uparrow \mathcal{G}_n$ each \mathcal{G}_i admits an IC-optimal schedule
- $\mathcal{G}_1 \triangleright \mathcal{G}_2 \triangleright \cdots \triangleright \mathcal{G}_n$

—so ${\cal G}$ admits an IC-optimal schedule.

Construct a fattened task by selecting any sequence of dags G_i :

$$\mathcal{G}_{i_1} \rhd \mathcal{G}_{i_2} \rhd \cdots \rhd \mathcal{G}_{i_k}$$
 where $i_1 < i_2 < \cdots < i_k$

such that

the set F of all sources of the selected $\{\mathcal{G}_{i_j}\}_{j=1}^k$ is self-contained.

Say that

- \mathcal{G} is composite of type $\mathcal{G}_1 \Uparrow \mathcal{G}_2 \Uparrow \cdots \Uparrow \mathcal{G}_n$ each \mathcal{G}_i admits an IC-optimal schedule
- $\mathcal{G}_1 \triangleright \mathcal{G}_2 \triangleright \cdots \triangleright \mathcal{G}_n$

—so ${\cal G}$ admits an IC-optimal schedule.

Construct a fattened task by selecting any sequence of dags G_i :

$$\mathcal{G}_{i_1} \rhd \mathcal{G}_{i_2} \rhd \cdots \rhd \mathcal{G}_{i_k}$$
 where $i_1 < i_2 < \cdots < i_k$

such that

the set F of all sources of the selected $\{\mathcal{G}_{i_j}\}_{j=1}^k$ is self-contained.

THEN $\mathcal{G}^{(F)}$ ADMITS AN IC-OPTIMAL SCHEDULE.

Say that

- \mathcal{G} is composite of type $\mathcal{G}_1 \Uparrow \mathcal{G}_2 \Uparrow \cdots \Uparrow \mathcal{G}_n$ each \mathcal{G}_i admits an IC-optimal schedule
- $\mathcal{G}_1 \triangleright \mathcal{G}_2 \triangleright \cdots \triangleright \mathcal{G}_n$

—so \mathcal{G} admits an IC-optimal schedule.

Construct a fattened task by selecting any sequence of dags G_i :

$$\mathcal{G}_{i_1} \rhd \mathcal{G}_{i_2} \rhd \cdots \rhd \mathcal{G}_{i_k}$$
 where $i_1 < i_2 < \cdots < i_k$

such that

the set F of all sources of the selected $\{\mathcal{G}_{i_j}\}_{j=1}^k$ is self-contained.

THEN $\mathcal{G}^{(F)}$ ADMITS AN IC-OPTIMAL SCHEDULE.

THIS FOLLOWS FROM THE TRANSITIVITY OF ▷.

Say that

- \mathcal{G} is composite of type $\mathcal{G}_1 \Uparrow \mathcal{G}_2 \Uparrow \cdots \Uparrow \mathcal{G}_n$ each \mathcal{G}_i admits an IC-optimal schedule
- $\mathcal{G}_1 \rhd \mathcal{G}_2 \rhd \cdots \rhd \mathcal{G}_n$

—so \mathcal{G} admits an IC-optimal schedule.

Construct a fattened task by selecting any sequence of dags G_i :

$$\mathcal{G}_{i_1} \rhd \mathcal{G}_{i_2} \rhd \cdots \rhd \mathcal{G}_{i_k}$$
 where $i_1 < i_2 < \cdots < i_k$

such that

the set F of all sources of the selected $\{\mathcal{G}_{i_j}\}_{j=1}^k$ is self-contained.

THEN
$$\mathcal{G}^{(F)}$$
 ADMITS AN IC-OPTIMAL SCHEDULE.

THIS ALLOWS US TO OPTIMIZE OTHER CRITERIA ALSO, E.G., COMMUNICATION

Stronger, but More Limited Clustering

We have identified several large families of dags that are *universal* donors

For every fattened task F, $\mathcal{G}^{(F)}$ admits an IC-optimal schedule.

Stronger, but More Limited Clustering

We have identified several large families of dags that are *universal* donors

For every fattened task F, $\mathcal{G}^{(F)}$ admits an IC-optimal schedule.

SOME EXAMPLES:

