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A New Modality of Collaborative Computing:
Internet-Based Computing (IC)

e The owner of a massive job enlists the aid of remote clients to
compute the job's (compute-intensive) tasks.

e The owner (server) allocates tasks to clients, one at a time.

e A client receives its (k + 1)th task after returning the results
from its £th task.
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When jobs have intertask dependencies (modeled as dags)—

temporal unpredictability complicates scheduling of tasks.
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Challenges in Internet-Based Computing

When jobs have intertask dependencies (modeled as dags)—

temporal unpredictability complicates scheduling of tasks:

e (lients become available at unpredictable times.

e Clients can be unexpectedly slow:

— They are not dedicated.

— They communicate over the Internet.




Our Overall Goal

Determine how to schedule a dag of tasks in a way that—

Informally:
e lessens the danger of a computation’s stalling

e enhances the utilization of client resources




Our Overall Goal

Determine how to schedule a dag of tasks in a way that—

Informally:
e lessens the danger of a computation’s stalling

e enhances the utilization of client resources

Formally:
e maximizes the number of tasks that are eligible for allocation

at every step of the computation




Formalizing the Theory’s Framework/Goal
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The Internet-Computing (IC) Scenario

e The job is represented by a (finite or infinite) dag G:
— Each node of G represents a task.

— Arc (u — v) of G represents an intertask dependency:

—task v cannot be executed until its parent task u is.

— Task v is ELIGIBLE (to be executed) when all of its parents
have been executed.

—source (= parentless) tasks are ELIGIBLE immediately.



IC Quality /Optimality of a Schedule

The IC quality of a schedule for a dag:

—the rate of producing ELIGIBLE nodes — the larger, the better.

Schedule X is IC optimal:

—It maximizes the number of ELIGIBLE nodes for all steps t.
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How Important is IC Quality /Optimality?

f+ Roughly v/T ELIGIBLE nodes at step 7" {}

|l Never more than 3 ELIGIBLE nodes |}
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1. A formal framework for studying scheduling for IC

2. Under idealized assumptions:

(a) optimal scheduling strategies for familiar classes of

dags:

e 2-D evolving meshes e (2-D) reduction-meshes

e (binary) reduction-trees e butterfly dags
computations:

e convolutions (FFT) e Discrete Laplace Transform
e matrix multiplication e numerical integration
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A Makespan-Based Experiment

e Generate random dags that admit I1C-optimal schedules.
e For each dag, generate 50 random arrival patterns of Clients.
e Compare Makespan of IC-optimal schedule against:

— the FIFO scheduler, which inserts new ELIGIBLE tasks on
a FIFO queue, ordered by out-degree

— the LIFO scheduler, which inserts new ELIGIBLE tasks on
a stack, ordered by out-degree

— the GREEDY scheduler, which inserts new ELIGIBLE tasks
on a MAX-priority queue, ordered by out-degree.

Task execution times distributed normally: mean= 1, std dev= 0.1



Mkspn-Based Ratios: Mks(heuristic) — Mks(ICO)

Two different expansive dags:

Phase ratio

Phase ratio

Phase Ratio for an W dag of 947 vertices

Phase Ratio for an W dag of 1815 vertices
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Mkspn-Based Ratios: Mks(heuristic) -

Mks(ICO)

Two different clique-based dags (cycle-based are similar):

Phase ratio

Phase Ratio for a Clique dag of 339 vertices
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Two different expansive-reductive dags:

Phase ratio

Phase Ratio for a Composite W-N-M-dag of 1165 vertices
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1. A formal framework for studying scheduling for IC

2. Under idealized assumptions:

(a) optimal scheduling strategies for familiar classes of dags and
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(b) a foundation for an algorithmic scheduling theory
(schedules “well-structured” dags optimally)

3. Initial—positive—simulation-based assessment of computational
Impact

BUT—
THE THEORY TREATS ALL DAG NODES AS EQUIVALENT!



Progress Thus Far

1. A formal framework for studying scheduling for IC

2. Under idealized assumptions:

(a) optimal scheduling strategies for familiar classes of dags and
computations

(b) a foundation for an algorithmic scheduling theory
(schedules “well-structured” dags optimally)

3. Initial—positive—simulation-based assessment of computational
Impact

HOW CAN WE DEAL WITH THE HETEROGENEITY OF
REMOTE CLIENTS?




Toward a Decomposition-Based Scheduling Theory:




1. Select a Set of “Building Block” Dags

Start with bipartite “building block” dags that we know how to
schedule optimally. A small sampler:

EXPANSIVE: : E ; ; : : ; ; : E ; : REDUCTIVE: /N M

‘ Edges represent upward arcs ‘




2. Establish “Priorities” among the Building Blocks

G1 admits an |C-optimal schedule >4

Say that { G5 admits an 1C-optimal schedule Y,

g1 > G, means:

To execute both G and G, the following schedule is IC optimal:

1. Follow X1 on G, 2. Follow X5 on G,



2. Establish “Priorities” among the Building Blocks

G1 admits an |C-optimal schedule >4

Say that { G5 admits an 1C-optimal schedule Y,

g1 > G, means:

To execute both G and G, the following schedule is IC optimal:

1. Follow X1 on G, 2. Follow X5 on G,

N N N N N N N N N
e a Vie Wie Wi Wie Uie Ve W]

The relation 1> is: e |transitive| e |easily tested|.




Complex Dags via “Composition”

Compose G with G5:

Merge/Identify some k sources of Go with some k sinks of G;.
The dag obtained is composite of type G1 1) Gs.

Example: G1 1} G2 1t G3 (Composition is associative.)
777777 T”””"”‘:: —
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Familiar Dags as Compositions of Building Blocks
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Why “Composition” and “Priority” Are Important

Theorem.

IF: e the dag G is composite of type G1 M Go -+ - 1 G,
e cach G, admits the IC-optimal schedule 3,

oG >G> D> Gy

THEN: the following schedule for G is IC optimal:

Execute G by executing each G, (using 33;) in >>-order.
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e Parsing G into G4,...,G,
e Testing [>-priorities

} are computationally efficient.



Why “Composition” and “Priority” Are Important

Theorem.

IF: e the dag G is composite of type G1 M Go -+ - 1 G,
e cach G, admits the IC-optimal schedule 3,

oG >G> D> Gy

THEN: the following schedule for G is IC optimal:

Execute G by executing each G, (using 33;) in >>-order.

N N N N N N N N N
e a Vie Wie Wi Wie Uie Vie W]

EFFICIENT ALGORITHMS IMPLEMENT THIS THEOREM
ON A LARGE CLASS OF "WELL-STRUCTURED" DAGS




Clarification 1

Even if Gi>Gy>- - ->G,,, the composition G can be very nonlinear:

The building-block butterfly B has “self >>-priority,” so that—

B>B>B>B>B>BB>B>B>B>B>B



Clarification 2

Composite dags that admit IC-optimal schedules can be very
nonuniform in structure:
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Clarification 3

We have other systematic ways of crafting |C-optimal schedules,
—but the “I>-priority chain” method has many benefits
—including “perturbability.”



Task Clustering that Preserves IC Optimality




Two Ad Hoc Task-Clusterings (for intuition)

A Divide-and-Conquer Computation:

i




Two Ad Hoc Task-Clusterings (for intuition)

A Divide-and-Conquer Computation:

» &l ~

A Wavefront Computation:
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Toward Formal Task-Clusterings

A fattened task F'in dag G.

A self~-contained set of nodes of G:

e Every node v € F' is ELIGIBLE — OR

e All of v's parents are also in F.
The residual dag Q(F) when F' is removed from G
A AN
W Ny
W“

WHEN G ADMITS AN IC-OPTIMAL SCHEDULE
WE WANT TO ENSURE THAT ¢\¥) DOES, TOO
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The Direct Task-Clustering Strategy

One can view a schedule X for dag G as an injection

YNNG — {1,2,...,|IN(G)]}

For a k-node fattened task F', choose

(741, 272),..., 37(k)}

IF G ADMITS AN IC-OPTIMAL SCHEDULE
THEN ¢¥) DOES ALSO

THIS WORKS FOR ANY k




The Direct Task-Clustering Strategy—and Competitors

WAIT!!I THE STORY IS NOT OVER!




The Direct Task-Clustering Strategy—and Competitors

THE STORY IS NOT OVER!

Different 1C-optimal schedules lead to very different residual dags
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THE STORY IS REALLY NOT OVER!
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e residual dag G2 admits |C-optimal schedule

e |G arcs “cut’ | when removing F; from G




The Direct Task-Clustering Strategy—and Competitors

THE STORY IS REALLY NOT OVER!

AANY N
G ey

(A) (8) ©

(A) original dag G
F is a 6-node fattened task via |C-optimal schedule

residual dag G admits |C-optimal schedule

8 arcs “cut” | when removing I} from G
F5 is a 6-node fattened task — not via |C-optimal schedule

residual dag G2 admits |C-optimal schedule

G
e 6 o o o o

6 arcs “cut” | when removing F; from G

“CUT ARCS” ARE RESULTS FROM CLIENT TO SERVER

—So direct task-clusterings need not minimize communication cost!
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Say that

e ( is composite of type G1 1 Go It -+ - 1 G,

each G, admits an |C-optimal schedule
¢ Gi>Go>--->G,

—so0 G admits an |C-optimal schedule.

Construct a fattened task by selecting any sequence of dags G;:

Q“DQZ-QD---DQ% where 11 < 1y < - -+ < 1}

such that

the set I of all sources of the selected {Qij ?:1 is self~contained.

THEN G¥) ADMITS AN IC-OPTIMAL SCHEDULE.

THIS FOLLOWS FROM THE TRANSITIVITY OF .



Where Did the Competitors Come From?

Say that

e G is composite of type G1 1 Go M - -+ 11 Go

each G, admits an |C-optimal schedule

e Gi>Go> > G,

—so0 G admits an |C-optimal schedule.

Construct a fattened task by selecting any sequence of dags G;:

Qilbgizb---bgik where 11 < 1y < -+ < 1
such that

the set I of all sources of the selected {G; ?':1 is self-contained.

THEN G¥) ADMITS AN IC-OPTIMAL SCHEDULE.

THIS ALLOWS US TO OPTIMIZE OTHER CRITERIA ALSO,
E.G., COMMUNICATION
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For every fattened task F', G (F) admits an IC-optimal schedule.




Stronger, but More Limited Clustering

We have identified several large families of dags that are universal
donors

For every fattened task F', G (F) admits an IC-optimal schedule.

SOME EXAMPLES:
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