
Multi-users, multi-organizations,
multi-objectives : a single approach

Denis Trystram (Grenoble University and INRIA)

Collection of results of 3 papers with:
Pierre-François Dutot (Grenoble University)
Krzysztof Rzadca (Polish-Japanese computing school, Warsaw)
Fanny Pascual (LIP6, Paris)
Erik Saule (Grenoble university)

Aussois, may 19, 2008

Goal

The evolution of high-performance execution
platforms leads to physical or logical distributed
entities (organizations) which have their own
« local » rules, each organization is composed of
multiple users that compete for the resources,
and they aim to optimize their own objectives…

Construct a framework for studying such
problems.

Work partially supported by the Coregrid Network of Excellence of the EC.

content
Brief review of basic (computational) models

Multi-users scheduling (1 resource)

Multi-users scheduling (m resources)

Multi-organizations scheduling (1 objective)

Multi-organizations with mixed objectives

Computational model

A set of users have some (parallel) applications
to execute on a (parallel) machine.

The « machine » belongs or not to multiple
organizations.

The objectives of the users are not always the
same.

Multi-users optimization

Let us start by a simple case : several users compete
for resources belonging to the same organization.

System centered problems (Cmax, load-balancing)
Users centered (minsum, maxstretch, flowtime)

Motivation:
Take the diversity of users’ wishes/needs into account

A simple example
Blue (4 tasks duration 3,4,4 and 5) has a program to compile (Cmax)

Red (3 tasks duration 1,3 and 6) is running experiments (ΣCi)

m=3 (machines)

Global LPT schedule
Cmax = 9

ΣCi = 6+8+9 = 23

A simple example
Blue (4 tasks duration 3,4,4 and 5) has a program to compile (Cmax)

Red (3 tasks duration 1,3 and 6) is running experiments (ΣCi)

m=3 (machines)

Global LPT schedule
Cmax = 9

ΣCi = 6+8+9 = 23

SPT schedule for red
Cmax = 8

ΣCi = 1+3+11 = 15

Description of the problem

Instance: k users, user u submit n(u) tasks,
processing time of task i belonging to u: pi(u)
Completion time: Ci(u)
Each user can choose his-her objective among:
Cmax(u) = max (Ci(u)) or ΣCi(u) weighted or not

Multi-user scheduling problem:
MUSP(k’:ΣCi;k’’:Cmax) where k’+k’’=k

Complexity

[Agnetis et al. 2004], case m=1
MUSP(2:ΣCi) is NP-hard in the ordinary sense
MUSP(2:Cmax) and MUSP(1:ΣCi;1:Cmax) are
polynomial

Thus, on m machines, all variants of this problem
are NP-hard
We are looking for approximation (multi-objective)

MUSP(k:Cmax)

Inapproximability:
no algorithm better than (1,2,…,k)

Proof: consider the instance where each user has
one unit task (pi(u)=1) on one machine (m=1).
Cmax*(u) = 1 and there is no other choice than:

 . . .

MUSP(k:Cmax)

Inapproximability:
no algorithm better than (1,2,…,k)

Proof: consider the instance where each user has
one unit task (pi(u)=1) on one machine.
Cmax*(u) = 1 and there is no other choice than:

 . . .

Thus, there exists a user u whose Cmax(u) = k

MUSP(k:Cmax)

Algorithm (multiCmax):
Given a ρ-approximation schedule σ for each user
Cmax(u) ≤ ρCmax*(u)
Sort the users by increasing values of Cmax(u)

Analysis:
multiCmax is a (ρ,2ρ, …, kρ)-approximation.

MUSP(k:ΣCi)
Inapproximability: no algorithm better than
((k+1)/2,(k+2)/2,…,k)

Proof: consider the instance where each user has x
Tasks pi(u) = 2i-1.
Optimal schedule: ΣCi* = 2x+1 - (x+2)
SPT is Pareto Optimal (3 users blue, green and red):

 . . .

For all u, ΣCi
SPT(u) = k(2x -(x+1)) + (2x -1) u

Ratio to the optimal = (k+u)/2 for large x

MUSP(k:ΣCi)

Algorithm (single machine) Aggreg:
Let σ(u) be the schedule for user u.
Construct a schedule by increasing order of ΣCi(σ(u))
(global SPT)

MUSP(k:ΣCi)

Algorithm (single machine) Aggreg:
Let σ(u) be the schedule for user u.
Construct a schedule by increasing order of ΣCi(σ(u))
(global SPT)

MUSP(k:ΣCi)

Algorithm (single machine) Aggreg:
Let σ(u) be the schedule for user u.
Construct a schedule by increasing order of ΣCi(σ(u))
(global SPT)

MUSP(k:ΣCi)

Algorithm (single machine) Aggreg:
Let σ(u) be the schedule for user u.
Construct a schedule by increasing order of ΣCi(σ(u))
(global SPT)

MUSP(k:ΣCi)

Algorithm (single machine) Aggreg:
Let σ(u) be the schedule for user u.
Construct a schedule by increasing order of ΣCi(σ(u))
(global SPT)

MUSP(k:ΣCi)

Algorithm (single machine) Aggreg:
Let σ(u) be the schedule for user u.
Construct a schedule by increasing order of ΣCi(σ(u))
(global SPT)

MUSP(k:ΣCi)

Algorithm (single machine) Aggreg:
Let σ(u) be the schedule for user u.
Construct a schedule by increasing order of ΣCi(σ(u))
(global SPT)

MUSP(k:ΣCi)

Algorithm (single machine) Aggreg:
Let σ(u) be the schedule for user u.
Construct a schedule by increasing order of ΣCi(σ(u))
(global SPT)

MUSP(k:ΣCi)

Algorithm (single machine) Aggreg:
Let σ(u) be the schedule for user u.
Construct a schedule by increasing order of ΣCi(σ(u))
(global SPT)

MUSP(k:ΣCi)

Algorithm (single machine) Aggreg:
Let σ(u) be the schedule for user u.
Construct a schedule by increasing order of ΣCi(σ(u))
(global SPT)

MUSP(k:ΣCi)

Algorithm (single machine) Aggreg:
Let σ(u) be the schedule for user u.
Construct a schedule by increasing order of ΣCi(σ(u))
(global SPT)

Analysis: Aggreg is (k,k,…,k)-approximation

MUSP(k:ΣCi)

Algorithm (extension to m machines):
The previous property still holds on each machine
(using SPT individually on each machine)

Local SPT

Merge on each machine

MUSP(k:ΣCi)

Algorithm (extension to m machines):
The previous property still holds on each machine
(using SPT individually on each machine)

Analysis:
we obtain the same bound as before.

Mixed case
MUSP(k’:ΣCi;(k-k’):Cmax)

A similar analysis can be done, see the paper with
Erik Saule for more details

Complicating the model:
Multi-organizations

Context: computational grids

Collection of independent clusters managed locally
by an « organization ».

…

…

……

…

…
Organization O2

Organization O3

Organization O1

m2 machines

m1 machines

m3 machines

Preliminary:
single resource: cluster

Independent applications are submitted locally
on a cluster. The are represented by a
precedence task graph.

An application is viewed as a usual sequential
task or as a parallel rigid job (see [Feitelson and
Rudolph] for more details and classification).

Cluster

J1J2J3… …

…

Local queue of submitted jobs

Job

overhead
Computational area

Rigid jobs: the number of processors is fixed.

#of required processors qi

Runtime pi

#of required processors qi

Runtime pi

Useful definitions:
high jobs (those which require more than m/2 processors)
low jobs (the others).

Scheduling rigid jobs:
Packing algorithms (batch)

Scheduling independent rigid jobs may be solved as a 2D packing
Problem (strip packing).

m

Cluster

J1J2J3… …

…

Multi-organizations

Organization k

n organizations.

m processorsk

…

…

……

…

…

users submit their jobs locally

O2

O1

O3

…

…

……

…

…

The organizations can cooperate

O1

O2

O3

Constraints
Cmax(O3)

Cmax(O2)

O1

O2

O3

Cmax(Ok) : maximum finishing time of jobs belonging to Ok.
Each organization aims at minimizing its own makespan.

Cmax(O1)
O1

O2

O3

Cmaxloc(O1)

Local schedules:

Problem statement

MOSP: minimization of the « global » makespan under
the constraint that no local schedule is increased.

Consequence: taking the restricted instance n=1 (one
organization) and m=2 with sequential jobs, the
problem is the classical 2 machines problem which is NP-
hard. Thus, MOSP is NP-hard.

Multi-organizations

Motivation:
A non-cooperative solution is that all the organizations compute
their local jobs (« my job first » policy).
However, such a solution is arbitrarly far from the global optimal
(it grows to infinity with the number of organizations n).
See next example with n=3 for jobs of unit length.

no cooperation with cooperation
 (optimal)

O1

O2

O3

O1

O2

O3

no cooperation with cooperation

O1

O2

O1

O2

More sophisticated algorithms than the simple load
balancing are possible: matching certain types of jobs
may lead to bilaterally profitable solutions.
However, it is a hard combitanorial problem

Preliminary results

• List-scheduling: (2-1/m) approximation ratio for the
variant with resource constraint [Garey-Graham 1975].

• HF: Highest First schedules (sort the jobs by decreasing
number of required processors). Same theoretical guaranty
but perform better from the practical point of view.

Analysis of HF (single cluster)

 high utilization zone (I)
(more than 50% of processors are busy)

low utilization zone (II)

Proposition. All HF schedules have the same structure which consists
in two consecutive zones of high (I) and low (II) utilization.

Proof. (2 steps)
By contracdiction, no high job appears after zone (II) starts

If we can not worsen any local makespan,
the global optimum can not be reached.

1

2

1

2 2

1

2

1

2

2
local globally optimal

O1

O2

O1

O2

If we can not worsen any local makespan,
the global optimum can not be reached.

1

2

1

2 2

1

2

1

2

2

1

2

1

2

2

local globally optimal

best solution that does not
increase Cmax(O1)

O1

O2

O1

O2

O1

O2

If we can not worsen any local makespan,
the global optimum can not be reached.

Lower bound on approximation ratio greater than 3/2.

1

2

1

2 2

1

2

1

2

2

1

2

1

2

2
best solution that does not
increase Cmax(O1)

O1

O2

O1

O2

O1

O2

Using Game Theory?

We propose here a standard approach using Combinatorial
Optimization.

Cooperative Game Theory may also be usefull, but it
assumes that players (organizations) can communicate
and form coalitions. The members of the coalitions split
the sum of their playoff after the end of the game.
We assume here a centralized mechanism and no
communication between organizations.

Multi-Organization Load-Balancing

1 Each cluster is running local jobs with Highest First
 LB = max (pmax,W/nm)
2. Unschedule all jobs that finish after 3LB.
3. Divide them into 2 sets (Ljobs and Hjobs)
4. Sort each set according to the Highest first order
5. Schedule the jobs of Hjobs backwards from 3LB

on all possible clusters
6. Then, fill the gaps with Ljobs in a greedy manner

 let consider a cluster whose last job finishes before 3LB

3LB

Ljob
Hjob

3LB

Ljob
Hjob

3LB

Ljob
Hjob

3LB

Ljob
Hjob

3LB

Ljob

3LB

Ljob

Feasibility (insight)

Zone (I)

3LB

Zone (I)Zone (II)

Sketch of analysis

Case 1: x is a small job.
Global surface argument

Case 2: x is a high job.
Much more complicated,
see the paper for technical details

Proof by contradiction:
let us assume that it is not feasible,
and call x the first job that does not fit in a cluster.

Guaranty
Proposition:
1. The previous algorithm is a 3-approximation
(by construction)
2. The bound is tight (asymptotically)

Consider the following instance:
m clusters, each with 2m-1 processors
The first organization has m short jobs requiring each
the full machine (duration ε) plus m jobs of unit length
requiring m processors
All the m-1 others own m sequential jobs of unit length

Local HF schedules

Optimal (global) schedule: Cmax* = 1+ε

Multi-organization load-balancing: Cmax=3

Improvement

Local
schedules

Multi-org LB

load balance

O3

O1
O2

O4O5

O3

O1
O2

O4O5

O3

O1
O2

O4
O5

We add an extra load-balancing procedure

O3

O1
O2

O4
O5

Compact

Some experiments

Link with Game Theory?
We propose an approach based on combinatorial optimization

Can we use Game theory?
players : organizations or users
objective: makespan, minsum, mixed

Cooperative game theory: assume that players communicate
and form coalitions.

Non cooperative game theory: key concept is Nash equilibrium
which is the situation where the players donot have interest
to change their strategy…

Price of stability: best Nash equilibrium over the opt. solution
stratégie : collaborer ou non; obj. global : min makespan

Conclusion

Single unified approach based on multi-objective
optimization for taking into account the users’ need
or wishes.

MOSP - good guaranty for Cmax, ΣCi and mixed case
remains to be studied
MUSP - « bad » guaranty but we can not obtain
better with mow cost algorithms

Thanks for attention
Do you have any questions?

