Optimizing the steady-state throughput of scatter and reduce operations on heterogeneous platforms

Arnaud Legrand, Loris Marchal, Yves Robert

Laboratoire de l'Informatique du Parallélisme École Normale Supérieure de Lyon, France

APDCM workshop - April 2004

◆□▶ ◆□▶ ◆目▶ ◆目▶ 三目 - のなべ

Introduction

Two Problems of Collective Communication Platform Model Framework

Series of Scatter

Steady-state constraints Toy Example Building a schedule Asymptotic optimality

Series of Reduce

Introduction to reduction trees

Linear Program

Periodic schedule - Asymptotic optimality

Toy Example for Series of Reduce

Approximation for a fixed period

Conclusion

Loris Marchal

Introduction

Two Problems of Collective Communication Platform Model Framework

Series of Scatter

Steady-state constraints Toy Example Building a schedule Asymptotic optimality

Series of Reduce

Introduction to reduction trees Linear Program Periodic schedule - Asymptotic optimality Toy Example for Series of Reduce

Approximation for a fixed period

Conclusion

Loris Marchal

Introduction

Two Problems of Collective Communication Platform Model Framework

Series of Scatter

Steady-state constraints Toy Example Building a schedule Asymptotic optimality

Series of Reduce

Introduction to reduction trees Linear Program Periodic schedule - Asymptotic optimality Toy Example for Series of Reduce

Approximation for a fixed period

Conclusion

Introduction

Two Problems of Collective Communication Platform Model Framework

Series of Scatter

Steady-state constraints Toy Example Building a schedule Asymptotic optimality

Series of Reduce

Introduction to reduction trees Linear Program Periodic schedule - Asymptotic optimality Toy Example for Series of Reduce

Approximation for a fixed period

Conclusion

<u>Outline</u>

Introduction

Two Problems of Collective Communication Platform Model Framework

Series of Scatter

Steady-state constraints Toy Example Building a schedule Asymptotic optimality

Series of Reduce

Introduction to reduction trees Linear Program Periodic schedule - Asymptotic optimality Toy Example for Series of Reduce

Approximation for a fixed period

Conclusion

Loris Marchal

Introduction

Two Problems of Collective Communication Platform Model Framework

Series of Scatter

Steady-state constraints Toy Example Building a schedule Asymptotic optimality

Series of Reduce

Introduction to reduction trees Linear Program Periodic schedule - Asymptotic optimality Toy Example for Series of Reduce

Approximation for a fixed period

Conclusion

Loris Marchal

Complex applications on grid environment require collective communication schemes:

one to all Broadcast, Multicast, Scatter all to one Reduce all to all Gossip, All-to-All

- Numerous studies of a single communication scheme, mainly about one single broadcast
- Pipelining communications:
 - data parallelism involves a large amount of data
 - not a single communication, but series of same communication schemes (e.g. series of broadcasts from same source)
 - maximize throughput of steady-state operation

イロト 不同下 イヨト イヨト ヨー ろくや

 Complex applications on grid environment require collective communication schemes:

one to all Broadcast, Multicast, Scatter all to one Reduce

all to all Gossip, All-to-All

- Numerous studies of a single communication scheme, mainly about one single broadcast
- Pipelining communications:
 - data parallelism involves a large amount of data
 - not a single communication, but series of same communication schemes (e.g. series of broadcasts from same source)
 - maximize throughput of steady-state operation

(ロ) (同) (三) (三) (三) (○)

 Complex applications on grid environment require collective communication schemes: one to all Broadcast, Multicast, Scatter all to one Reduce

all to all Gossip, All-to-All

- Numerous studies of a single communication scheme, mainly about one single broadcast
- Pipelining communications:
 - data parallelism involves a large amount of data
 - not a single communication, but series of same communication schemes (e.g. series of broadcasts from same source)
 - maximize throughput of steady-state operation

 Complex applications on grid environment require collective communication schemes:
 one to all Broadcast, Multicast, Scatter all to one Reduce all to all Gossip, All-to-All

- Numerous studies of a single communication scheme, mainly about one single broadcast
- Pipelining communications:
 - data parallelism involves a large amount of data
 - not a single communication, but series of same communication schemes (e.g. series of broadcasts from same source)
 - maximize throughput of steady-state operation

イロト 不得下 不良下 不良下 ほう

 Complex applications on grid environment require collective communication schemes: one to all Broadcast, Multicast, Scatter

all to one Reduce all to all Gossip, All-to-All

- Numerous studies of a single communication scheme, mainly about one single broadcast
- Pipelining communications:
 - data parallelism involves a large amount of data
 - not a single communication, but series of same communication schemes (e.g. series of broadcasts from same source)
 - maximize throughput of steady-state operation

Complex applications on grid environment require collective communication schemes:

one to all Broadcast, Multicast, Scatter all to one Reduce all to all Gossip, All-to-All

- Numerous studies of a single communication scheme, mainly about one single broadcast
- Pipelining communications:
 - data parallelism involves a large amount of data
 - not a single communication, but series of same communication schemes (e.g. series of broadcasts from same source)
 - maximize throughput of steady-state operation

Complex applications on grid environment require collective communication schemes:

one to all Broadcast, Multicast, Scatter all to one Reduce all to all Gossip, All-to-All

- Numerous studies of a single communication scheme, mainly about one single broadcast
- Pipelining communications:
 - data parallelism involves a large amount of data
 - not a single communication, but series of same communication schemes (e.g. series of broadcasts from same source)
 - maximize throughput of steady-state operation

Complex applications on grid environment require collective communication schemes:

one to all Broadcast, Multicast, Scatter all to one Reduce all to all Gossip, All-to-All

- Numerous studies of a single communication scheme, mainly about one single broadcast
- Pipelining communications:
 - data parallelism involves a large amount of data
 - not a single communication, but series of same communication schemes (e.g. series of broadcasts from same source)
 - maximize throughput of steady-state operation

Complex applications on grid environment require collective communication schemes:

one to all Broadcast, Multicast, Scatter all to one Reduce all to all Gossip, All-to-All

- Numerous studies of a single communication scheme, mainly about one single broadcast
- Pipelining communications:
 - data parallelism involves a large amount of data
 - not a single communication, but series of same communication schemes (e.g. series of broadcasts from same source)
 - maximize throughput of steady-state operation

Scatter one processor P_{source} sends distinct messages to target processors ($\{P_{t_0}, \dots, P_{t_N}\}$)

- Series of Scatter P_{source} sends consecutively a large number of distinct messages to all targets
- Reduce Each of the participating processor P_{r_i} in P_{r_0}, \ldots, P_{r_N} owns a value v_i
 - \Rightarrow compute $V = v_1 \oplus v_2 \oplus \cdots \oplus v_N$ (\oplus is associative, non commutative)
 - Series of Reduce several consecutive reduce operations from the same set P_{r0},..., P_{rN} to the same target P_{target}.

Scatter one processor P_{source} sends distinct messages to target processors ($\{P_{t_0}, \dots, P_{t_N}\}$)

- Series of Scatter P_{source} sends consecutively a large number of distinct messages to all targets
- Reduce Each of the participating processor P_{r_i} in P_{r_0}, \ldots, P_{r_N} owns a value v_i
 - \Rightarrow compute $V = v_1 \oplus v_2 \oplus \cdots \oplus v_N$ (\oplus is associative, non commutative)
 - ► Series of Reduce several consecutive reduce operations from the same set P_{r0},..., P_{rN} to the same target P_{target}.

Scatter one processor P_{source} sends distinct messages to target processors ($\{P_{t_0}, \dots, P_{t_N}\}$)

- Series of Scatter P_{source} sends consecutively a large number of distinct messages to all targets
- Reduce Each of the participating processor P_{r_i} in P_{r_0}, \ldots, P_{r_N} owns a value v_i

 \Rightarrow compute $V = v_1 \oplus v_2 \oplus \cdots \oplus v_N$ (\oplus is associative, non commutative)

► Series of Reduce several consecutive reduce operations from the same set P_{r0},..., P_{rN} to the same target P_{target}.

Scatter one processor P_{source} sends distinct messages to target processors ($\{P_{t_0}, \ldots, P_{t_N}\}$)

- Series of Scatter P_{source} sends consecutively a large number of distinct messages to all targets
- Reduce Each of the participating processor P_{r_i} in P_{r_0}, \ldots, P_{r_N} owns a value v_i

 \Rightarrow compute $V = v_1 \oplus v_2 \oplus \cdots \oplus v_N$ (\oplus is associative, non commutative)

▶ Series of Reduce several consecutive reduce operations from the same set P_{r_0}, \ldots, P_{r_N} to the same target P_{target} .

- $\blacktriangleright \ G = (V, E, c)$
- P_1, P_2, \ldots, P_n : processors
- $(j,k) \in E$: communication link between P_i and P_j
- ▶ c(j, k): time to transfer one unit message from P_j to P_k
- one-port for incoming communications
- one-port for outgoing communications

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Steady state collective communications

- $\blacktriangleright \ G = (V, E, c)$
- P_1, P_2, \ldots, P_n : processors
- ► (j, k) ∈ E: communication link between P_i and P_j
- ► c(j, k): time to transfer one unit message from P_j to P_k
- one-port for incoming communications
- one-port for outgoing communications

▲□▶ ▲□▶ ★ □▶ ★ □▶ - □ - のへで

Steady state collective communications

- $\blacktriangleright \ G = (V, E, c)$
- P_1, P_2, \ldots, P_n : processors
- ► $(j,k) \in E$: communication link between P_i and P_j
- ► c(j, k): time to transfer one unit message from P_j to P_k
- one-port for incoming communications
- one-port for outgoing communications

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Steady state collective communications

- $\blacktriangleright \ G = (V, E, c)$
- P_1, P_2, \ldots, P_n : processors
- ► $(j,k) \in E$: communication link between P_i and P_j
- ► c(j, k): time to transfer one unit message from P_j to P_k
- one-port for incoming communications
- one-port for outgoing communications

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Steady state collective communications

- $\blacktriangleright \ G = (V, E, c)$
- P_1, P_2, \ldots, P_n : processors
- (j,k) ∈ E: communication link between P_i and P_j
- ► c(j, k): time to transfer one unit message from P_j to P_k
- one-port for incoming communications
- one-port for outgoing communications

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Steady state collective communications

- $\blacktriangleright \ G = (V, E, c)$
- P_1, P_2, \ldots, P_n : processors
- (j,k) ∈ E: communication link between P_i and P_j
- ► c(j, k): time to transfer one unit message from P_j to P_k
- one-port for incoming communications
- one-port for outgoing communications

イロト イヨト イヨト ニヨー つくつ

- $\blacktriangleright \ G = (V, E, c)$
- P_1, P_2, \ldots, P_n : processors
- (j,k) ∈ E: communication link between P_i and P_j
- ► c(j, k): time to transfer one unit message from P_j to P_k
- one-port for incoming communications
- one-port for outgoing communications

イロト 不同下 イヨト イヨト ヨー ろくや

- $\blacktriangleright \ G = (V, E, c)$
- P_1, P_2, \ldots, P_n : processors
- (j,k) ∈ E: communication link between P_i and P_j
- ► c(j,k): time to transfer one unit message from P_j to P_k
- one-port for incoming communications
- one-port for outgoing communications

イロト 不同下 イヨト イヨト ヨー ろくや

Framework

- express optimization problem as set of linear constraints (variables = fraction of time a processor spends sending to one of its neighbors)
- 2. solve linear program (in rational numbers)
- 3. use solution to build periodic schedule reaching best throughput

Framework

- express optimization problem as set of linear constraints (variables = fraction of time a processor spends sending to one of its neighbors)
- 2. solve linear program (in rational numbers)
- use solution to build periodic schedule reaching best throughput

◆□▶ ◆□▶ ◆目▶ ◆目▶ 三目 - のなべ

- express optimization problem as set of linear constraints (variables = fraction of time a processor spends sending to one of its neighbors)
- 2. solve linear program (in rational numbers)
- use solution to build periodic schedule reaching best throughput

◆□▶ ◆□▶ ◆目▶ ◆目▶ 三目 - のなべ

Introduction

Two Problems of Collective Communication Platform Model Framework

Series of Scatter

Steady-state constraints Toy Example Building a schedule Asymptotic optimality

Series of Reduce

Introduction to reduction trees Linear Program Periodic schedule - Asymptotic optimality Toy Example for Series of Reduce

Approximation for a fixed period

Conclusion

Loris Marchal

• m_k : types of the messages with destination P_k

▶ $s(P_i \rightarrow P_j, m_k)$: fractional number of messages of type m_k sent on the edge $P_i \rightarrow P_j$ within on time unit

► t(P_i → P_j): fractional time spent by processor P_i to send data to its neighbor P_j within one time unit

bound for this activity:

$$\forall P_i, P_j, \quad 0 \leqslant t(P_i \to P_j) \leqslant 1$$

• on a link $P_i \rightarrow P_i$ during one time-unit:

$$t(P_i \to P_j) = \sum_k s(P_i \to P_j, m_k)$$

Loris Marchal

Steady state collective communications

9/27

- ▶ m_k: types of the messages with destination P_k
- ► $s(P_i \rightarrow P_j, m_k)$: fractional number of messages of type m_k sent on the edge $P_i \rightarrow P_j$ within on time unit
- ▶ $t(P_i \rightarrow P_j)$: fractional time spent by processor P_i to send data to its neighbor P_j within one time unit

bound for this activity:

$$\forall P_i, P_j, \quad 0 \leqslant t(P_i \to P_j) \leqslant 1$$

• on a link $P_i \rightarrow P_j$ during one time-unit:

$$t(P_i \to P_j) = \sum_k s(P_i \to P_j, m_k)$$

Loris Marchal

Steady state collective communications

9/27

イロト 不同下 イヨト イヨト ヨー ろくや

- ▶ m_k: types of the messages with destination P_k
- ► $s(P_i \rightarrow P_j, m_k)$: fractional number of messages of type m_k sent on the edge $P_i \rightarrow P_j$ within on time unit
- t(P_i → P_j): fractional time spent by processor P_i to send data to its neighbor P_j within one time unit

bound for this activity:

$$\forall P_i, P_j, \quad 0 \leqslant t(P_i \to P_j) \leqslant 1$$

• on a link $P_i \rightarrow P_j$ during one time-unit:

$$t(P_i \to P_j) = \sum_k s(P_i \to P_j, m_k)$$

Loris Marchal

Steady state collective communications

9/27

(ロ) (同) (三) (三) (三) (○)

- m_k : types of the messages with destination P_k
- ► $s(P_i \rightarrow P_j, m_k)$: fractional number of messages of type m_k sent on the edge $P_i \rightarrow P_j$ within on time unit
- t(P_i → P_j): fractional time spent by processor P_i to send data to its neighbor P_j within one time unit
- bound for this activity:

$$\forall P_i, P_j, \quad 0 \leqslant t(P_i \to P_j) \leqslant 1$$

• on a link $P_i \rightarrow P_j$ during one time-unit:

$$t(P_i \to P_j) = \sum_k s(P_i \to P_j, m_k)$$

Loris Marchal

Steady state collective communications

9/27

◆□▶ ◆□▶ ◆目▶ ◆目▶ ● ● ● ●

Series of Scatter

- m_k : types of the messages with destination P_k
- ► $s(P_i \rightarrow P_j, m_k)$: fractional number of messages of type m_k sent on the edge $P_i \rightarrow P_j$ within on time unit
- t(P_i → P_j): fractional time spent by processor P_i to send data to its neighbor P_j within one time unit
- bound for this activity:

$$\forall P_i, P_j, \quad 0 \leqslant t(P_i \to P_j) \leqslant 1$$

• on a link $P_i \rightarrow P_j$ during one time-unit:

$$t(P_i \to P_j) = \sum_k s(P_i \to P_j, m_k)$$

Loris Marchal

Steady state collective communications

9/27

イロト 不得下 イヨト イヨト ヨー うらつ

one port constraints for outgoing messages in P_i:

Loris Marchal

Steady state collective communications

10/27

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

• one port constraints for outgoing messages in P_i :

$$\forall P_i, \quad \sum_{P_i \to P_j} t(P_i \to P_j) \leqslant 1$$

▶ one port constraints for incoming messages in *P_i*:

• conservation law in node P_i for message m_k $(k \neq i)$:

Steady state collective communications

10/27

・ロト ・同ト ・ヨト ・ヨト ・ヨー うくや

• one port constraints for outgoing messages in P_i :

$$\forall P_i, \quad \sum_{P_i \to P_j} t(P_i \to P_j) \leqslant 1$$

▶ one port constraints for incoming messages in *P_i*:

Steady state collective communications

10/27

◆□▶ ◆□▶ ◆目▶ ◆目▶ ● = - のへの

one port constraints for outgoing messages in P_i:

$$\forall P_i, \quad \sum_{P_i \to P_j} t(P_i \to P_j) \leqslant 1$$

one port constraints for incoming messages in P_i:

$$\forall P_i, \quad \sum_{P_j \to P_i} t(P_j \to P_i) \leqslant 1$$

• conservation law in node P_i for message m_k $(k \neq i)$:

Steady state collective communications

one port constraints for outgoing messages in P_i:

$$\forall P_i, \quad \sum_{P_i \to P_j} t(P_i \to P_j) \leqslant 1$$

one port constraints for incoming messages in P_i:

$$\forall P_i, \quad \sum_{P_j \to P_i} t(P_j \to P_i) \leqslant 1$$

• conservation law in node P_i for message m_k $(k \neq i)$:

Loris Marchal

Steady state collective communications

one port constraints for outgoing messages in P_i:

$$\forall P_i, \quad \sum_{P_i \to P_j} t(P_i \to P_j) \leqslant 1$$

one port constraints for incoming messages in P_i:

$$\forall P_i, \quad \sum_{P_j \to P_i} t(P_j \to P_i) \leqslant 1$$

• conservation law in node P_i for message m_k $(k \neq i)$:

Loris Marchal

Steady state collective communications

Throughput and Linear Program

• throughput: total number of messages m_k received in P_k

$$TP = \sum_{P_j \to P_k} s(P_j \to P_k, m_k)$$

(same throughput for every target node P_k)

 summarize this constraints in a linear program: STEADY-STATE SCATTER PROBLEM ON A GRAPH SSSP(G) Maximize TP,

subject to

$$\begin{array}{l} \forall P_i, \forall P_j, 0 \leqslant s(P_i \rightarrow P_j) \leqslant 1 \\ \forall P_i, \sum_{P_j, (i,j) \in E} s(P_i \rightarrow P_j) \leqslant 1 \\ \forall P_i, \sum_{P_j, (j,i) \in E} s(P_j \rightarrow P_i) \leqslant 1 \\ \forall P_i, P_j, s(P_i \rightarrow P_j) = \sum_{m_k} send(P_i \rightarrow P_j, m_k) \times c(i,j) \\ \forall P_i, \forall m_k, k \neq i, \sum_{P_j, (j,i) \in E} send(P_j \rightarrow P_i, m_k) \\ = \sum_{P_j, (i,j) \in E} send(P_i \rightarrow P_j, m_k) \\ \forall P_k, k \in T \sum_{P_i, (i,k) \in E} send(P_i \rightarrow P_k, m_k) = \text{TP} \end{array}$$

Loris Marchal

Steady state collective communications

・ロト ・同ト ・ヨト ・ヨト ・ ショー うらぐ

Throughput and Linear Program

• throughput: total number of messages m_k received in P_k

$$TP = \sum_{P_j \to P_k} s(P_j \to P_k, m_k)$$

(same throughput for every target node P_k)

 summarize this constraints in a linear program: STEADY-STATE SCATTER PROBLEM ON A GRAPH SSSP(G) Maximize TP,

subject to

$$\begin{array}{l} \langle \forall P_i, \forall P_j, 0 \leqslant s(P_i \rightarrow P_j) \leqslant 1 \\ \forall P_i, \sum_{P_j, (i,j) \in E} s(P_i \rightarrow P_j) \leqslant 1 \\ \forall P_i, \sum_{P_j, (j,i) \in E} s(P_j \rightarrow P_i) \leqslant 1 \\ \forall P_i, P_j, s(P_i \rightarrow P_j) = \sum_{m_k} send(P_i \rightarrow P_j, m_k) \times c(i,j) \\ \forall P_i, \forall m_k, k \neq i, \sum_{P_j, (j,i) \in E} send(P_j \rightarrow P_i, m_k) \\ = \sum_{P_j, (i,j) \in E} send(P_i \rightarrow P_j, m_k) \\ \langle \forall P_k, k \in T \sum_{P_i, (i,k) \in E} send(P_i \rightarrow P_k, m_k) = \text{TP} \end{array}$$

Loris Marchal

Steady state collective communications

・ロト ・同ト ・ヨト ・ヨト ・ヨー うくや

Series of Scatter - Toy Example

Steady state collective communications

◆ロト ◆母 ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへで

Series of Scatter - Toy Example

value of $s(P_i \rightarrow P_j, m_k)$ in the solution of the linear program

Loris Marchal

Steady state collective communications

12/27

・ロ> <回> <目> <目> <目> <日> <回> <

Series of Scatter - Toy Example

Steady state collective communications

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ―臣 … のへで

- consider the time needed for all transfers
- build a bipartite graph by splitting all nodes
- extract matchings, using the weighted-edge coloring algorithm

Steady state collective communications

- consider the time needed for all transfers
- build a bipartite graph by splitting all nodes
- extract matchings, using the weighted-edge coloring algorithm

Steady state collective communications

- consider the time needed for all transfers
- build a bipartite graph by splitting all nodes
- extract matchings, using the weighted-edge coloring algorithm

Steady state collective communications

- consider the time needed for all transfers
- build a bipartite graph by splitting all nodes
- extract matchings, using the weighted-edge coloring algorithm

Steady state collective communications

(日) (得) (日) (日) (日) (日)

- consider the time needed for all transfers
- build a bipartite graph by splitting all nodes
- extract matchings, using the weighted-edge coloring algorithm

Steady state collective communications

- consider the time needed for all transfers
- build a bipartite graph by splitting all nodes
- extract matchings, using the weighted-edge coloring algorithm

Steady state collective communications

イロト イポト イヨト イヨト 三日

least common multiple T = lcm{b_i} where a_i/b_i denotes the number of messages transferred in each matching

► ⇒ periodic schedule of period T with atomic transfers of messages

Loris Marchal

Steady state collective communications

14/27

▶ least common multiple T = lcm{b_i} where b_i/b_i denotes the number of messages transfered in each matching

► ⇒ periodic schedule of period T with atomic transfers of messages

Loris Marchal

Steady state collective communications

▶ least common multiple T = lcm{b_i} where ^{w_i}/_{b_i} denotes the number of messages transfered in each matching

► ⇒ periodic schedule of period T with atomic transfers of messages

Loris Marchal

Steady state collective communications

14/27

(日) (得) (日) (日) (日) (日)

► ⇒ periodic schedule of period T with atomic transfers of messages

Loris Marchal

Steady state collective communications

14/27

least common multiple T = lcm{b_i} where a_i/b_i denotes the number of messages transfered in each matching

► ⇒ periodic schedule of period T with atomic transfers of messages

Loris Marchal

Steady state collective communications

14/27

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のなべ

► least common multiple T = lcm{b_i} where a_i/b_i denotes the number of messages transfered in each matching

► ⇒ periodic schedule of period T with atomic transfers of messages

Steady state collective communications

14/27

◆□▶ ◆□▶ ◆目▶ ◆目▶ 三目 - のなべ

- ▶ least common multiple T = lcm{b_i} where a_i/b_i denotes the number of messages transfered in each matching
- ► ⇒ periodic schedule of period T with atomic transfers of messages

▶ No schedule can perform more tasks than the steady-state:

Lemma.

$opt(G, K) \leq TP(G) \times K$

• periodic schedule \Rightarrow schedule:

3. clean-up phase (empty buffers)

Steady state collective communications

イロト 不同下 イヨト イヨト ヨー ろくや

▶ No schedule can perform more tasks than the steady-state:

Lemma.

```
opt(G, K) \leq TP(G) \times K
```

```
• periodic schedule \Rightarrow schedule:
```

- initialization phase (fill buffers of messages)
- r periods of duration T (steady-state)
- clean-up phase (empty buffers)

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のなべ

No schedule can perform more tasks than the steady-state:

Lemma.

$opt(G, K) \leq TP(G) \times K$

▶ periodic schedule ⇒ schedule:

- 1. initialization phase (fill buffers of messages)
- 2. r periods of duration T (steady-state)
- 3. clean-up phase (empty buffers)

_emma.

the previous algorithm is asymptotically optimal:

 $\lim_{K \to +\infty} \frac{steady(G, K)}{opt(G, K)} = 1$

Loris Marchal

Steady state collective communications

15/27

▶ No schedule can perform more tasks than the steady-state:

Lemma.

$opt(G, K) \leqslant \operatorname{TP}(G) \times K$

- ▶ periodic schedule ⇒ schedule:
 - 1. initialization phase (fill buffers of messages)
 - 2. r periods of duration T (steady-state)
 - 3. clean-up phase (empty buffers)

_emma

the previous algorithm is asymptotically optimal:

 $\lim_{K \to +\infty} \frac{steady(G, K)}{opt(G, K)} = 1$

Loris Marchal

Steady state collective communications

15/27

▶ No schedule can perform more tasks than the steady-state:

Lemma.

$opt(G, K) \leq TP(G) \times K$

- ▶ periodic schedule ⇒ schedule:
 - 1. initialization phase (fill buffers of messages)
 - 2. r periods of duration T (steady-state)
 - 3. clean-up phase (empty buffers)

_emma.

the previous algorithm is asymptotically optimal:

$$\lim_{K \to +\infty} \frac{steady(G, K)}{opt(G, K)} = 1$$

Loris Marchal

Steady state collective communications

15/27

▶ No schedule can perform more tasks than the steady-state:

Lemma.

$opt(G, K) \leq TP(G) \times K$

- ▶ periodic schedule ⇒ schedule:
 - 1. initialization phase (fill buffers of messages)
 - 2. r periods of duration T (steady-state)
 - 3. clean-up phase (empty buffers)

_emma.

the previous algorithm is asymptotically optimal:

$$\lim_{K \to +\infty} \frac{steady(G, K)}{opt(G, K)} = 1$$

Loris Marchal

Steady state collective communications

15/27

▶ No schedule can perform more tasks than the steady-state:

Lemma.

$opt(G, K) \leq TP(G) \times K$

- ▶ periodic schedule ⇒ schedule:
 - 1. initialization phase (fill buffers of messages)
 - 2. r periods of duration T (steady-state)
 - 3. clean-up phase (empty buffers)

Lemma.

the previous algorithm is asymptotically optimal:

$$\lim_{K \to +\infty} \frac{steady(G, K)}{opt(G, K)} = 1$$

Loris Marchal

Steady state collective communications

15/27

<u>Outline</u>

Introduction

Two Problems of Collective Communication Platform Model Framework

Series of Scatter

Steady-state constraints Toy Example Building a schedule Asymptotic optimality

Series of Reduce

Introduction to reduction trees Linear Program Periodic schedule - Asymptotic optimality Toy Example for Series of Reduce

Approximation for a fixed period

Conclusion

Reduce - Reduction trees

Reduce:

▶ each processor P_{ri} owns a value v_i

• compute $V = v_1 \oplus v_2 \oplus \cdots \oplus v_N$ (\oplus associative, non commutative)

 partial result of the Reduce operation:

 $v_{[k,m]} = v_k \oplus v_2 \oplus \cdots \oplus v_m$

► two partial results can be merged v_[k,m] = v_[k,l] ⊕ v_[l+1,m] (computational tack T

(computational task $T_{k,l,m}$)

◆□▶ ◆□▶ ◆目▶ ◆目▶ ● 目 ● のへの

17/27

Reduce - Reduction trees

Reduce:

► each processor P_{ri} owns a value v_i

• compute $V = v_1 \oplus v_2 \oplus \cdots \oplus v_N$ (\oplus associative, non commutative)

 partial result of the Reduce operation:

 $v_{[k,m]} = v_k \oplus v_2 \oplus \dots \oplus v_m$

► two partial results can be merged v_[k,m] = v_[k,l] ⊕ v_[l+1,m] (computational task T_{k,l,m})

(ロ) (同) (三) (三) (三) (○)

Reduce - Reduction trees

Reduce:

• each processor P_{r_i} owns a value v_i

- compute $V = v_1 \oplus v_2 \oplus \cdots \oplus v_N$ (\oplus associative, non commutative)
- partial result of the Reduce operation:

 $v_{[k,m]} = v_k \oplus v_2 \oplus \cdots \oplus v_m$

▶ two partial results can be merged: $v_{[k,m]} = v_{[k,l]} \oplus v_{[l+1,m]}$ (computational task $T_{k,l,m}$)

◆□▶ ◆□▶ ◆目▶ ◆目▶ 三目 - のなべ

Reduce:

• each processor P_{r_i} owns a value v_i

- compute $V = v_1 \oplus v_2 \oplus \cdots \oplus v_N$ (\oplus associative, non commutative)
- partial result of the Reduce operation:

 $v_{[k,m]} = v_k \oplus v_2 \oplus \cdots \oplus v_m$

▶ two partial results can be merged: $v_{[k,m]} = v_{[k,l]} \oplus v_{[l+1,m]}$ (computational task $T_{k,l,m}$)

(ロ) (同) (三) (三) (三) (○)

Reduce:

• each processor P_{r_i} owns a value v_i

- compute $V = v_1 \oplus v_2 \oplus \cdots \oplus v_N$ (\oplus associative, non commutative)
- partial result of the Reduce operation:

 $v_{[k,m]} = v_k \oplus v_2 \oplus \cdots \oplus v_m$

two partial results can be merged:

 $v_{[k,m]} = v_{[k,l]} \oplus v_{[l+1,m]}$ (computational task $T_{k,l,m}$)

- ▶ each processor P_{ri} owns a value v_i
- ▶ compute V = v₁ ⊕ v₂ ⊕ · · · ⊕ v_N (⊕ associative, non commutative)
- partial result of the Reduce operation:

 $v_{[k,m]} = v_k \oplus v_2 \oplus \cdots \oplus v_m$

two partial results can be merged:

 $v_{[k,m]} = v_{[k,l]} \oplus v_{[l+1,m]}$ (computational task $T_{k,l,m}$)

- ► Reduce:
 - ► each processor P_{ri} owns a value v_i
 - compute $V = v_1 \oplus v_2 \oplus \cdots \oplus v_N$ (\oplus associative, non commutative)
- partial result of the Reduce operation:

 $v_{[k,m]} = v_k \oplus v_2 \oplus \cdots \oplus v_m$

two partial results can be merged:

 $v_{[k,m]} = v_{[k,l]} \oplus v_{[l+1,m]}$ (computational task $T_{k,l,m}$)

・ロト ・ 同ト ・ ヨト ・ ヨト ・ シック

- Reduce:
 - ► each processor P_{ri} owns a value v_i
 - compute $V = v_1 \oplus v_2 \oplus \cdots \oplus v_N$ (\oplus associative, non commutative)
- partial result of the Reduce operation:

 $v_{[k,m]} = v_k \oplus v_2 \oplus \cdots \oplus v_m$

two partial results can be merged:

 $v_{[k,m]} = v_{[k,l]} \oplus v_{[l+1,m]}$ (computational task $T_{k,l,m}$)

Reduce:

- ► each processor P_{ri} owns a value v_i
- compute $V = v_1 \oplus v_2 \oplus \cdots \oplus v_N$ (\oplus associative, non commutative)
- partial result of the Reduce operation:

 $v_{[k,m]} = v_k \oplus v_2 \oplus \cdots \oplus v_m$

two partial results can be merged:

 $v_{[k,m]} = v_{[k,l]} \oplus v_{[l+1,m]}$ (computational task $T_{k,l,m}$)

Reduce:

- ► each processor P_{ri} owns a value v_i
- compute $V = v_1 \oplus v_2 \oplus \cdots \oplus v_N$ (\oplus associative, non commutative)
- partial result of the Reduce operation:

 $v_{[k,m]} = v_k \oplus v_2 \oplus \cdots \oplus v_m$

two partial results can be merged:

 $v_{[k,m]} = v_{[k,l]} \oplus v_{[l+1,m]}$ (computational task $T_{k,l,m}$)

Loris Marchal

Steady state collective communications

17/27

Reduce:

- ► each processor P_{ri} owns a value v_i
- compute $V = v_1 \oplus v_2 \oplus \cdots \oplus v_N$ (\oplus associative, non commutative)
- partial result of the Reduce operation:

 $v_{[k,m]} = v_k \oplus v_2 \oplus \cdots \oplus v_m$

• two partial results can be merged: $v_{[k,m]} = v_{[k,l]} \oplus v_{[l+1,m]}$ (computational task $T_{k,l,m}$)

- ▶ each processor P_{r_i} owns a set of values v_i^t (e.g. produced at different time-steps t)
- \blacktriangleright perform a Reduce operation on each set $\{v_1^t,\ldots,v_N^t\}$ to compute V^t
- each reduction uses a reduction tree
- two reductions $(t_1 \text{ and } t_2)$ may use different trees

(ロ) (同) (三) (三) (三) (○)

▶ $s(P_i \rightarrow P_j, v_{[k,l]})$: fractional number of values $v_{[k,l]}$ sent on link $P_i \rightarrow P_j$ within one time-unit

▶ $t(P_i \rightarrow P_j)$ fractional occupation time of link $P_i \rightarrow P_j$ within one time-unit:

 $0 \leqslant t(P_i \to P_j) \leqslant 1$

► cons(P_i, T_{k,l,m}): fractional number of tasks T_{k,l,m} computed on processor P_i within one time-unit

α(P_i) time spent by processor P_i computing tasks within one time-unit:

 $0 \leqslant \alpha(P_i) \leqslant 1$

size(v_[k,m]) size of a message containing a value v^t_[k,m]
 w(P_i, T_{k,l,m}) time needed by processor P_i to compute one task T_{k,l,m}

Loris Marchal

Steady state collective communications

- ▶ $s(P_i \rightarrow P_j, v_{[k,l]})$: fractional number of values $v_{[k,l]}$ sent on link $P_i \rightarrow P_j$ within one time-unit
- ▶ $t(P_i \rightarrow P_j)$ fractional occupation time of link $P_i \rightarrow P_j$ within one time-unit:

$$0 \leqslant t(P_i \to P_j) \leqslant 1$$

- ► cons(P_i, T_{k,l,m}): fractional number of tasks T_{k,l,m} computed on processor P_i within one time-unit
- α(P_i) time spent by processor P_i computing tasks within one time-unit:

 $0 \leqslant \alpha(P_i) \leqslant 1$

size(v_[k,m]) size of a message containing a value v^t_[k,m]
 w(P_i, T_{k,l,m}) time needed by processor P_i to compute one task T_{k,l,m}

Loris Marchal

Steady state collective communications

- ▶ $s(P_i \rightarrow P_j, v_{[k,l]})$: fractional number of values $v_{[k,l]}$ sent on link $P_i \rightarrow P_j$ within one time-unit
- ▶ $t(P_i \rightarrow P_j)$ fractional occupation time of link $P_i \rightarrow P_j$ within one time-unit:

$$0 \leqslant t(P_i \to P_j) \leqslant 1$$

- ► cons(P_i, T_{k,l,m}): fractional number of tasks T_{k,l,m} computed on processor P_i within one time-unit
- α(P_i) time spent by processor P_i computing tasks within one time-unit:

 $0 \leqslant \alpha(P_i) \leqslant 1$

size(v_[k,m]) size of a message containing a value v^t_[k,m]
 w(P_i, T_{k,l,m}) time needed by processor P_i to compute one task T_{k,l,m}

Loris Marchal

Steady state collective communications

- ▶ $s(P_i \rightarrow P_j, v_{[k,l]})$: fractional number of values $v_{[k,l]}$ sent on link $P_i \rightarrow P_j$ within one time-unit
- ▶ $t(P_i \rightarrow P_j)$ fractional occupation time of link $P_i \rightarrow P_j$ within one time-unit:

$$0 \leqslant t(P_i \to P_j) \leqslant 1$$

- ► cons(P_i, T_{k,l,m}): fractional number of tasks T_{k,l,m} computed on processor P_i within one time-unit
- α(P_i) time spent by processor P_i computing tasks within one time-unit:

$$0 \leqslant \alpha(P_i) \leqslant 1$$

size(v_[k,m]) size of a message containing a value v^t_[k,m]
 w(P_i, T_{k,l,m}) time needed by processor P_i to compute one task T_{k,l,m}

Loris Marchal

Steady state collective communications

- ▶ $s(P_i \rightarrow P_j, v_{[k,l]})$: fractional number of values $v_{[k,l]}$ sent on link $P_i \rightarrow P_j$ within one time-unit
- ▶ $t(P_i \rightarrow P_j)$ fractional occupation time of link $P_i \rightarrow P_j$ within one time-unit:

$$0 \leqslant t(P_i \to P_j) \leqslant 1$$

- ► cons(P_i, T_{k,l,m}): fractional number of tasks T_{k,l,m} computed on processor P_i within one time-unit
- α(P_i) time spent by processor P_i computing tasks within one time-unit:

$$0 \leqslant \alpha(P_i) \leqslant 1$$

► $size(v_{[k,m]})$ size of a message containing a value $v_{[k,m]}^t$

▶ $w(P_i, T_{k,l,m})$ time needed by processor P_i to compute one task $T_{k,l,m}$

Loris Marchal

Steady state collective communications

- ▶ $s(P_i \rightarrow P_j, v_{[k,l]})$: fractional number of values $v_{[k,l]}$ sent on link $P_i \rightarrow P_j$ within one time-unit
- ▶ $t(P_i \rightarrow P_j)$ fractional occupation time of link $P_i \rightarrow P_j$ within one time-unit:

$$0 \leqslant t(P_i \to P_j) \leqslant 1$$

- ► cons(P_i, T_{k,l,m}): fractional number of tasks T_{k,l,m} computed on processor P_i within one time-unit
- α(P_i) time spent by processor P_i computing tasks within one time-unit:

$$0 \leqslant \alpha(P_i) \leqslant 1$$

- ▶ $size(v_{[k,m]})$ size of a message containing a value $v_{[k,m]}^t$
- ▶ $w(P_i, T_{k,l,m})$ time needed by processor P_i to compute one task $T_{k,l,m}$

Loris Marchal

Steady state collective communications

• occupation of a link
$$P_i \rightarrow P_j$$
:

$$t(P_i \to P_j) = \sum_{v_{[k,l]}} s(P_i \to P_j, v_{[k,l]}) \times size(v_{[k,l]}) \times c(i,j)$$

• occupation time of a processor P_i :

$$\alpha(P_i) = \sum_{T_{k,l,m}} cons(P_i, T_{k,l,m}) \times w(P_i, T_{k,l,m})$$

 $\begin{aligned} & \models \text{ "conservation law" for packets of type } v_{[k,m]}: \\ & \sum_{P_j \to P_i} s(P_j \to P_i, v_{[k,m]}) + \sum_{k \leqslant l < m} cons(P_i, T_{k,l,m}) \\ & = \sum_{P_i \to P_j} s(P_i \to P_j, v_{[k,m]}) + \sum_{n > m} cons(P_i, T_{k,m,n}) + \sum_{n < k} cons(P_i, T_{n,k-1,m}) \end{aligned}$

Loris Marchal

Steady state collective communications

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ―臣 … のへで

• occupation of a link
$$P_i \rightarrow P_j$$
:

$$t(P_i \to P_j) = \sum_{v_{[k,l]}} s(P_i \to P_j, v_{[k,l]}) \times size(v_{[k,l]}) \times c(i,j)$$

• occupation time of a processor P_i :

$$\alpha(P_i) = \sum_{T_{k,l,m}} cons(P_i, T_{k,l,m}) \times w(P_i, T_{k,l,m})$$

► "conservation law" for packets of type $v_{[k,m]}$: $\sum_{P_j \to P_i} s(P_j \to P_i, v_{[k,m]}) + \sum_{k \leqslant l < m} cons(P_i, T_{k,l,m})$ $= \sum_{P_i \to P_j} s(P_i \to P_j, v_{[k,m]}) + \sum_{n > m} cons(P_i, T_{k,m,n}) + \sum_{n < k} cons(P_i, T_{n,k-1,m})$

Loris Marchal

Steady state collective communications

• occupation of a link
$$P_i \rightarrow P_j$$
:

$$t(P_i \to P_j) = \sum_{v_{[k,l]}} s(P_i \to P_j, v_{[k,l]}) \times size(v_{[k,l]}) \times c(i,j)$$

occupation time of a processor P_i:

$$\alpha(P_i) = \sum_{T_{k,l,m}} cons(P_i, T_{k,l,m}) \times w(P_i, T_{k,l,m})$$

• "conservation law" for packets of type $v_{[k,m]}$: $\sum_{P_j \to P_i} s(P_j \to P_i, v_{[k,m]}) + \sum_{k \leq l < m} cons(P_i, T_{k,l,m})$ $= \sum_{P_i \to P_j} s(P_i \to P_j, v_{[k,m]}) + \sum_{n > m} cons(P_i, T_{k,m,n}) + \sum_{n < k} cons(P_i, T_{n,k-1,m})$

Loris Marchal

Steady state collective communications

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

definition of the throughput:

$$\mathrm{TP} = \sum_{P_j \to P_{\mathsf{target}}} s(P_j \to P_{\mathsf{target}}, v_{[0,m]}) + \sum_{0 \leqslant l < N-1} cons(P_{\mathsf{target}}, T_{0,l,N})$$

solve the following linear program over the rational numbers:

STEADY-STATE REDUCE PROBLEM ON A GRAPH SSRP(G)Maximize TP, subject to all previous constraints

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ―臣 … のへで

definition of the throughput:

$$TP = \sum_{P_j \to P_{\mathsf{target}}} s(P_j \to P_{\mathsf{target}}, v_{[0,m]}) + \sum_{0 \leqslant l < N-1} cons(P_{\mathsf{target}}, T_{0,l,N})$$

solve the following linear program over the rational numbers:

STEADY-STATE REDUCE PROBLEM ON A GRAPH SSRP(G) Maximize TP, subject to all previous constraints

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□ ◆ ○ ◆

► consider the reduction tree T^t associated with the computation of the tth value (V^t):

a given tree may be used by many time-stamps t

there exists an algorithm which extracts from the solution a set of weighted trees such that

the sum of the weighted trees is equal to the original solution

same use of a weighted edge-coloring algorithm on a bipartite graph to orchestrate the communication

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のなべ

► consider the reduction tree T^t associated with the computation of the tth value (V^t):

 \blacktriangleright a given tree may be used by many time-stamps t

there exists an algorithm which extracts from the solution a set of weighted trees such that

this description is polynomial and

the sum of the weighted trees is equal to the original solution

same use of a weighted edge-coloring algorithm on a bipartite graph to orchestrate the communication

・ロト ・同ト ・ヨト ・ヨト ・ヨー うくや

- ► consider the reduction tree T^t associated with the computation of the tth value (V^t):
 - \blacktriangleright a given tree may be used by many time-stamps t
- there exists an algorithm which extracts from the solution a set of weighted trees such that
 - this description is polynomial and
 - the sum of the weighted trees is equal to the original solution
- same use of a weighted edge-coloring algorithm on a bipartite graph to orchestrate the communication

イロト 不同下 イヨト イヨト ヨー ろくや

- ► consider the reduction tree T^t associated with the computation of the tth value (V^t):
 - \blacktriangleright a given tree may be used by many time-stamps t
- there exists an algorithm which extracts from the solution a set of weighted trees such that
 - this description is polynomial and
 - the sum of the weighted trees is equal to the original solution
- same use of a weighted edge-coloring algorithm on a bipartite graph to orchestrate the communication

イロト 不同下 イヨト イヨト ヨー ろくや

- ► consider the reduction tree T^t associated with the computation of the tth value (V^t):
 - \blacktriangleright a given tree may be used by many time-stamps t
- there exists an algorithm which extracts from the solution a set of weighted trees such that
 - this description is polynomial and
 - the sum of the weighted trees is equal to the original solution
- same use of a weighted edge-coloring algorithm on a bipartite graph to orchestrate the communication

(ロ) (同) (三) (三) (三) (○)

- ► consider the reduction tree T^t associated with the computation of the tth value (V^t):
 - \blacktriangleright a given tree may be used by many time-stamps t
- there exists an algorithm which extracts from the solution a set of weighted trees such that
 - this description is polynomial and
 - the sum of the weighted trees is equal to the original solution
- same use of a weighted edge-coloring algorithm on a bipartite graph to orchestrate the communication

topology

Loris Marchal

Steady state collective communications

23/27

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ―臣 … のへで

Loris Marchal

Steady state collective communications

23/27

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 - のへで

Loris Marchal

Steady state collective communications

23/27

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ―臣 … のへで

second reduction tree (weight 2/3)

Loris Marchal

Steady state collective communications

23/27

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ―臣 … のへで

Loris Marchal

Steady state collective communications

23/27

◆ロト ◆昼 ▶ ◆臣 ▶ ◆臣 ▶ ○ ○ ○ ○ ○ ○

Steady state collective communications

23/27

◆ロト ◆母ト ◆ヨト ◆ヨト 三臣 - のへで

Loris Marchal

Steady state collective communications

23/27

◆ロト ◆昼 ▶ ◆臣 ▶ ◆臣 ▶ ○ ○ ○ ○ ○ ○

Outline

Introduction

Two Problems of Collective Communication Platform Model Framework

Series of Scatter

Steady-state constraints Toy Example Building a schedule Asymptotic optimality

Series of Reduce

Introduction to reduction trees Linear Program Periodic schedule - Asymptotic optimality Toy Example for Series of Reduce

Approximation for a fixed period

Conclusion

Loris Marchal

- our framework produces an asymptotically optimal schedule of period T, but T may be to large
- we can approximate the solution with a fixed period T_{fixed} :
 - decomposition algorithm
 - period T,
 - \Rightarrow they are satisfied for $\{T, r(T)\}$ on a period T_{flaxed}
 - 4. the performance loss is bounded:

$$\mathrm{TP} - \mathrm{TP}^* \leqslant \frac{card(\mathrm{Trees})}{T_{fixed}}$$

Loris Marchal

Steady state collective communications

25/27

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三臣 - のへで

- our framework produces an asymptotically optimal schedule of period T, but T may be to large
- we can approximate the solution with a fixed period T_{fixed} :
 - {*T*, weight_T}: the weighted set of trees obtained by the decomposition algorithm
 - 2. compute $r(T) = \left| \frac{weight(T)}{T} \times T_{fixed} \right|$
 - one port constraints are satisfied for {T, weight_T} on a period T,

 \Rightarrow they are satisfied for $\{\mathcal{T}, r(T)\}$ on a period T_{fixed}

4. the performance loss is bounded:

$$\mathrm{TP} - \mathrm{TP}^* \leqslant \frac{card(\mathrm{Trees})}{T_{fixed}}$$

Loris Marchal

Steady state collective communications

25/27

▲□▶ ▲□▶ ★ □▶ ★ □▶ - □ - のへで

- our framework produces an asymptotically optimal schedule of period T, but T may be to large
- we can approximate the solution with a fixed period T_{fixed} :
 - 1. $\{T, weight_T\}$: the weighted set of trees obtained by the decomposition algorithm
 - 2. compute $r(\mathcal{T}) = \left| rac{weight(\mathcal{T})}{T} imes T_{fixed}
 ight|$
 - 3. one port constraints are satisfied for $\{\mathcal{T}, weight_{\mathcal{T}}\}$ on a period T,

 \Rightarrow they are satisfied for $\{\mathcal{T}, r(T)\}$ on a period T_{fixed}

4. the performance loss is bounded:

$$\mathrm{TP} - \mathrm{TP}^* \leqslant \frac{card(\mathrm{TREES})}{T_{fixed}}$$

Loris Marchal

Steady state collective communications

25/27

▲□▶ ▲□▶ ★ □▶ ★ □▶ - □ - のへで

- our framework produces an asymptotically optimal schedule of period T, but T may be to large
- we can approximate the solution with a fixed period T_{fixed} :
 - 1. $\{\mathcal{T}, weight_{\mathcal{T}}\}$: the weighted set of trees obtained by the decomposition algorithm
 - 2. compute $r(\mathcal{T}) = \left| \frac{weight(\mathcal{T})}{T} \times T_{fixed} \right|$
 - 3. one port constraints are satisfied for $\{\mathcal{T}, weight_{\mathcal{T}}\}\)$ on a period T,

 \Rightarrow they are satisfied for $\{\mathcal{T}, r(T)\}$ on a period T_{fixed}

4. the performance loss is bounded:

$$TP - TP^* \leqslant \frac{card(TREES)}{T_{fixed}}$$

Loris Marchal

Steady state collective communications

25/27

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

- our framework produces an asymptotically optimal schedule of period T, but T may be to large
- we can approximate the solution with a fixed period T_{fixed} :
 - 1. $\{\mathcal{T}, weight_{\mathcal{T}}\}$: the weighted set of trees obtained by the decomposition algorithm
 - 2. compute $r(\mathcal{T}) = \left| \frac{weight(\mathcal{T})}{T} \times T_{fixed} \right|$
 - one port constraints are satisfied for {*T*, weight_T} on a period T,
 - \Rightarrow they are satisfied for $\{\mathcal{T}, r(T)\}$ on a period T_{fixed}
 - 4. the performance loss is bounded:

$$\mathrm{TP} - \mathrm{TP}^* \leqslant \frac{card(\mathrm{TREES})}{T_{fixed}}$$

Loris Marchal

Steady state collective communications

25/27

イロト イポト イヨト イヨト 三手 つのの

- our framework produces an asymptotically optimal schedule of period T, but T may be to large
- we can approximate the solution with a fixed period T_{fixed} :
 - 1. $\{\mathcal{T}, weight_{\mathcal{T}}\}$: the weighted set of trees obtained by the decomposition algorithm
 - 2. compute $r(\mathcal{T}) = \left| \frac{weight(\mathcal{T})}{T} \times T_{fixed} \right|$
 - one port constraints are satisfied for {T, weight_T} on a period T,

 \Rightarrow they are satisfied for $\{\mathcal{T}, r(T)\}$ on a period $T_{\textit{fixed}}$

4. the performance loss is bounded:

$$\mathrm{TP} - \mathrm{TP}^* \leqslant \frac{card(\mathrm{TREES})}{T_{fixed}}$$

イロト イポト イヨト イヨト 三手 つのの

Outline

Introduction

Two Problems of Collective Communication Platform Model Framework

Series of Scatter

Steady-state constraints Toy Example Building a schedule Asymptotic optimality

Series of Reduce

Introduction to reduction trees Linear Program Periodic schedule - Asymptotic optimalit Toy Example for Series of Reduce

Approximation for a fixed period

Conclusion

Loris Marchal

Conclusion

- new framework to study collective communications in a heterogeneous environment
- makespan difficult to minimize \Rightarrow focus on throughput
- relaxation, use of linear programming
- asymptotically optimal algorithm
- can be extended to other communication schemes and scheduling problems

◆□▶ ◆□▶ ◆目▶ ◆目▶ 三目 - のなべ