
Optimizing the steady-state throughput of scatter
and reduce operations on heterogeneous platforms

Arnaud Legrand, Loris Marchal, Yves Robert

Laboratoire de l’Informatique du Parallélisme
École Normale Supérieure de Lyon, France

APDCM workshop - April 2004

Loris Marchal Steady state collective communications 1/ 27



Outline
Introduction

Two Problems of Collective Communication
Platform Model
Framework

Series of Scatter
Steady-state constraints
Toy Example
Building a schedule
Asymptotic optimality

Series of Reduce
Introduction to reduction trees
Linear Program
Periodic schedule - Asymptotic optimality
Toy Example for Series of Reduce

Approximation for a fixed period

Conclusion

Loris Marchal Steady state collective communications 2/ 27



Outline
Introduction

Two Problems of Collective Communication
Platform Model
Framework

Series of Scatter
Steady-state constraints
Toy Example
Building a schedule
Asymptotic optimality

Series of Reduce
Introduction to reduction trees
Linear Program
Periodic schedule - Asymptotic optimality
Toy Example for Series of Reduce

Approximation for a fixed period

Conclusion

Loris Marchal Steady state collective communications 2/ 27



Outline
Introduction

Two Problems of Collective Communication
Platform Model
Framework

Series of Scatter
Steady-state constraints
Toy Example
Building a schedule
Asymptotic optimality

Series of Reduce
Introduction to reduction trees
Linear Program
Periodic schedule - Asymptotic optimality
Toy Example for Series of Reduce

Approximation for a fixed period

Conclusion

Loris Marchal Steady state collective communications 2/ 27



Outline
Introduction

Two Problems of Collective Communication
Platform Model
Framework

Series of Scatter
Steady-state constraints
Toy Example
Building a schedule
Asymptotic optimality

Series of Reduce
Introduction to reduction trees
Linear Program
Periodic schedule - Asymptotic optimality
Toy Example for Series of Reduce

Approximation for a fixed period

Conclusion

Loris Marchal Steady state collective communications 2/ 27



Outline
Introduction

Two Problems of Collective Communication
Platform Model
Framework

Series of Scatter
Steady-state constraints
Toy Example
Building a schedule
Asymptotic optimality

Series of Reduce
Introduction to reduction trees
Linear Program
Periodic schedule - Asymptotic optimality
Toy Example for Series of Reduce

Approximation for a fixed period

Conclusion

Loris Marchal Steady state collective communications 2/ 27



Outline
Introduction

Two Problems of Collective Communication
Platform Model
Framework

Series of Scatter
Steady-state constraints
Toy Example
Building a schedule
Asymptotic optimality

Series of Reduce
Introduction to reduction trees
Linear Program
Periodic schedule - Asymptotic optimality
Toy Example for Series of Reduce

Approximation for a fixed period

Conclusion

Loris Marchal Steady state collective communications 3/ 27



Introduction

I Complex applications on grid environment require collective
communication schemes:

one to all Broadcast, Multicast, Scatter
all to one Reduce
all to all Gossip, All-to-All

I Numerous studies of a single communication scheme, mainly
about one single broadcast

I Pipelining communications:
I data parallelism involves a large amount of data
I not a single communication, but series of same communication

schemes (e.g. series of broadcasts from same source)
I maximize throughput of steady-state operation

Loris Marchal Steady state collective communications 4/ 27



Introduction

I Complex applications on grid environment require collective
communication schemes:

one to all Broadcast, Multicast, Scatter
all to one Reduce
all to all Gossip, All-to-All

I Numerous studies of a single communication scheme, mainly
about one single broadcast

I Pipelining communications:
I data parallelism involves a large amount of data
I not a single communication, but series of same communication

schemes (e.g. series of broadcasts from same source)
I maximize throughput of steady-state operation

Loris Marchal Steady state collective communications 4/ 27



Introduction

I Complex applications on grid environment require collective
communication schemes:

one to all Broadcast, Multicast, Scatter
all to one Reduce
all to all Gossip, All-to-All

I Numerous studies of a single communication scheme, mainly
about one single broadcast

I Pipelining communications:
I data parallelism involves a large amount of data
I not a single communication, but series of same communication

schemes (e.g. series of broadcasts from same source)
I maximize throughput of steady-state operation

Loris Marchal Steady state collective communications 4/ 27



Introduction

I Complex applications on grid environment require collective
communication schemes:

one to all Broadcast, Multicast, Scatter
all to one Reduce
all to all Gossip, All-to-All

I Numerous studies of a single communication scheme, mainly
about one single broadcast

I Pipelining communications:
I data parallelism involves a large amount of data
I not a single communication, but series of same communication

schemes (e.g. series of broadcasts from same source)
I maximize throughput of steady-state operation

Loris Marchal Steady state collective communications 4/ 27



Introduction

I Complex applications on grid environment require collective
communication schemes:

one to all Broadcast, Multicast, Scatter
all to one Reduce
all to all Gossip, All-to-All

I Numerous studies of a single communication scheme, mainly
about one single broadcast

I Pipelining communications:
I data parallelism involves a large amount of data
I not a single communication, but series of same communication

schemes (e.g. series of broadcasts from same source)
I maximize throughput of steady-state operation

Loris Marchal Steady state collective communications 4/ 27



Introduction

I Complex applications on grid environment require collective
communication schemes:

one to all Broadcast, Multicast, Scatter
all to one Reduce
all to all Gossip, All-to-All

I Numerous studies of a single communication scheme, mainly
about one single broadcast

I Pipelining communications:
I data parallelism involves a large amount of data
I not a single communication, but series of same communication

schemes (e.g. series of broadcasts from same source)
I maximize throughput of steady-state operation

Loris Marchal Steady state collective communications 4/ 27



Introduction

I Complex applications on grid environment require collective
communication schemes:

one to all Broadcast, Multicast, Scatter
all to one Reduce
all to all Gossip, All-to-All

I Numerous studies of a single communication scheme, mainly
about one single broadcast

I Pipelining communications:
I data parallelism involves a large amount of data
I not a single communication, but series of same communication

schemes (e.g. series of broadcasts from same source)
I maximize throughput of steady-state operation

Loris Marchal Steady state collective communications 4/ 27



Introduction

I Complex applications on grid environment require collective
communication schemes:

one to all Broadcast, Multicast, Scatter
all to one Reduce
all to all Gossip, All-to-All

I Numerous studies of a single communication scheme, mainly
about one single broadcast

I Pipelining communications:
I data parallelism involves a large amount of data
I not a single communication, but series of same communication

schemes (e.g. series of broadcasts from same source)
I maximize throughput of steady-state operation

Loris Marchal Steady state collective communications 4/ 27



Introduction

I Complex applications on grid environment require collective
communication schemes:

one to all Broadcast, Multicast, Scatter
all to one Reduce
all to all Gossip, All-to-All

I Numerous studies of a single communication scheme, mainly
about one single broadcast

I Pipelining communications:
I data parallelism involves a large amount of data
I not a single communication, but series of same communication

schemes (e.g. series of broadcasts from same source)
I maximize throughput of steady-state operation

Loris Marchal Steady state collective communications 4/ 27



Two Problems of Collective Communication

Scatter one processor Psource sends distinct messages to target
processors (

{
Pt0 , . . . , PtN

}
)

I Series of Scatter Psource sends consecutively a large number
of distinct messages to all targets

Reduce Each of the participating processor Pri in Pr0 , . . . , PrN

owns a value vi

⇒ compute V = v1 ⊕ v2 ⊕ · · · ⊕ vN (⊕ is associative, non
commutative)

I Series of Reduce several consecutive reduce operations
from the same set Pr0 , . . . , PrN to the same target Ptarget.

Loris Marchal Steady state collective communications 5/ 27



Two Problems of Collective Communication

Scatter one processor Psource sends distinct messages to target
processors (

{
Pt0 , . . . , PtN

}
)

I Series of Scatter Psource sends consecutively a large number
of distinct messages to all targets

Reduce Each of the participating processor Pri in Pr0 , . . . , PrN

owns a value vi

⇒ compute V = v1 ⊕ v2 ⊕ · · · ⊕ vN (⊕ is associative, non
commutative)

I Series of Reduce several consecutive reduce operations
from the same set Pr0 , . . . , PrN to the same target Ptarget.

Loris Marchal Steady state collective communications 5/ 27



Two Problems of Collective Communication

Scatter one processor Psource sends distinct messages to target
processors (

{
Pt0 , . . . , PtN

}
)

I Series of Scatter Psource sends consecutively a large number
of distinct messages to all targets

Reduce Each of the participating processor Pri in Pr0 , . . . , PrN

owns a value vi

⇒ compute V = v1 ⊕ v2 ⊕ · · · ⊕ vN (⊕ is associative, non
commutative)

I Series of Reduce several consecutive reduce operations
from the same set Pr0 , . . . , PrN to the same target Ptarget.

Loris Marchal Steady state collective communications 5/ 27



Two Problems of Collective Communication

Scatter one processor Psource sends distinct messages to target
processors (

{
Pt0 , . . . , PtN

}
)

I Series of Scatter Psource sends consecutively a large number
of distinct messages to all targets

Reduce Each of the participating processor Pri in Pr0 , . . . , PrN

owns a value vi

⇒ compute V = v1 ⊕ v2 ⊕ · · · ⊕ vN (⊕ is associative, non
commutative)

I Series of Reduce several consecutive reduce operations
from the same set Pr0 , . . . , PrN to the same target Ptarget.

Loris Marchal Steady state collective communications 5/ 27



Platform Model

I G = (V,E, c)
I P1, P2, . . . , Pn: processors

I (j, k) ∈ E: communication link
between Pi and Pj

I c(j, k): time to transfer one unit
message from Pj to Pk

I one-port for incoming
communications

I one-port for outgoing
communications

10

10

30

5
5

8

P0

P1

P2

P3

Loris Marchal Steady state collective communications 6/ 27



Platform Model

I G = (V,E, c)
I P1, P2, . . . , Pn: processors

I (j, k) ∈ E: communication link
between Pi and Pj

I c(j, k): time to transfer one unit
message from Pj to Pk

I one-port for incoming
communications

I one-port for outgoing
communications

10

10

30

5
5

8

P0

P1

P2

P3

Loris Marchal Steady state collective communications 6/ 27



Platform Model

I G = (V,E, c)
I P1, P2, . . . , Pn: processors

I (j, k) ∈ E: communication link
between Pi and Pj

I c(j, k): time to transfer one unit
message from Pj to Pk

I one-port for incoming
communications

I one-port for outgoing
communications

10

10

30

5
5

8

P0

P1

P2

P3

Loris Marchal Steady state collective communications 6/ 27



Platform Model

I G = (V,E, c)
I P1, P2, . . . , Pn: processors

I (j, k) ∈ E: communication link
between Pi and Pj

I c(j, k): time to transfer one unit
message from Pj to Pk

I one-port for incoming
communications

I one-port for outgoing
communications

10

10

30

5
5

8

P0

P1

P2

P3

Loris Marchal Steady state collective communications 6/ 27



Platform Model

I G = (V,E, c)
I P1, P2, . . . , Pn: processors

I (j, k) ∈ E: communication link
between Pi and Pj

I c(j, k): time to transfer one unit
message from Pj to Pk

I one-port for incoming
communications

I one-port for outgoing
communications

10

10

30

5
5

8

P0

P1

P2

P3

Loris Marchal Steady state collective communications 6/ 27



Platform Model

I G = (V,E, c)
I P1, P2, . . . , Pn: processors

I (j, k) ∈ E: communication link
between Pi and Pj

I c(j, k): time to transfer one unit
message from Pj to Pk

I one-port for incoming
communications

I one-port for outgoing
communications

10

10

30

5
5

8

P0

P1

P2

P3

Loris Marchal Steady state collective communications 6/ 27



Platform Model

I G = (V,E, c)
I P1, P2, . . . , Pn: processors

I (j, k) ∈ E: communication link
between Pi and Pj

I c(j, k): time to transfer one unit
message from Pj to Pk

I one-port for incoming
communications

I one-port for outgoing
communications

P0

P1

P2

P3

Loris Marchal Steady state collective communications 6/ 27



Platform Model

I G = (V,E, c)
I P1, P2, . . . , Pn: processors

I (j, k) ∈ E: communication link
between Pi and Pj

I c(j, k): time to transfer one unit
message from Pj to Pk

I one-port for incoming
communications

I one-port for outgoing
communications

OK

P0

P1

P2

P3

Loris Marchal Steady state collective communications 6/ 27



Framework

1. express optimization problem as set of linear constraints
(variables = fraction of time a processor spends sending to
one of its neighbors)

2. solve linear program (in rational numbers)

3. use solution to build periodic schedule reaching best
throughput

Loris Marchal Steady state collective communications 7/ 27



Framework

1. express optimization problem as set of linear constraints
(variables = fraction of time a processor spends sending to
one of its neighbors)

2. solve linear program (in rational numbers)

3. use solution to build periodic schedule reaching best
throughput

Loris Marchal Steady state collective communications 7/ 27



Framework

1. express optimization problem as set of linear constraints
(variables = fraction of time a processor spends sending to
one of its neighbors)

2. solve linear program (in rational numbers)

3. use solution to build periodic schedule reaching best
throughput

Loris Marchal Steady state collective communications 7/ 27



Outline
Introduction

Two Problems of Collective Communication
Platform Model
Framework

Series of Scatter
Steady-state constraints
Toy Example
Building a schedule
Asymptotic optimality

Series of Reduce
Introduction to reduction trees
Linear Program
Periodic schedule - Asymptotic optimality
Toy Example for Series of Reduce

Approximation for a fixed period

Conclusion

Loris Marchal Steady state collective communications 8/ 27



Series of Scatter

I mk: types of the messages with destination Pk

I s(Pi → Pj ,mk): fractional number of messages of type mk

sent on the edge Pi → Pj within on time unit

I t(Pi → Pj): fractional time spent by processor Pi to send
data to its neighbor Pj within one time unit

I bound for this activity:

∀Pi, Pj , 0 6 t(Pi → Pj) 6 1

I on a link Pi → Pj during one time-unit:

t(Pi → Pj) =
∑

k

s(Pi → Pj ,mk)

Loris Marchal Steady state collective communications 9/ 27



Series of Scatter

I mk: types of the messages with destination Pk

I s(Pi → Pj ,mk): fractional number of messages of type mk

sent on the edge Pi → Pj within on time unit

I t(Pi → Pj): fractional time spent by processor Pi to send
data to its neighbor Pj within one time unit

I bound for this activity:

∀Pi, Pj , 0 6 t(Pi → Pj) 6 1

I on a link Pi → Pj during one time-unit:

t(Pi → Pj) =
∑

k

s(Pi → Pj ,mk)

Loris Marchal Steady state collective communications 9/ 27



Series of Scatter

I mk: types of the messages with destination Pk

I s(Pi → Pj ,mk): fractional number of messages of type mk

sent on the edge Pi → Pj within on time unit

I t(Pi → Pj): fractional time spent by processor Pi to send
data to its neighbor Pj within one time unit

I bound for this activity:

∀Pi, Pj , 0 6 t(Pi → Pj) 6 1

I on a link Pi → Pj during one time-unit:

t(Pi → Pj) =
∑

k

s(Pi → Pj ,mk)

Loris Marchal Steady state collective communications 9/ 27



Series of Scatter

I mk: types of the messages with destination Pk

I s(Pi → Pj ,mk): fractional number of messages of type mk

sent on the edge Pi → Pj within on time unit

I t(Pi → Pj): fractional time spent by processor Pi to send
data to its neighbor Pj within one time unit

I bound for this activity:

∀Pi, Pj , 0 6 t(Pi → Pj) 6 1

I on a link Pi → Pj during one time-unit:

t(Pi → Pj) =
∑

k

s(Pi → Pj ,mk)

Loris Marchal Steady state collective communications 9/ 27



Series of Scatter

I mk: types of the messages with destination Pk

I s(Pi → Pj ,mk): fractional number of messages of type mk

sent on the edge Pi → Pj within on time unit

I t(Pi → Pj): fractional time spent by processor Pi to send
data to its neighbor Pj within one time unit

I bound for this activity:

∀Pi, Pj , 0 6 t(Pi → Pj) 6 1

I on a link Pi → Pj during one time-unit:

t(Pi → Pj) =
∑

k

s(Pi → Pj ,mk)

Loris Marchal Steady state collective communications 9/ 27



Linear constraints

I one port constraints for outgoing messages in Pi:

∀Pi,
∑

Pi→Pj

t(Pi → Pj) 6 1

I one port constraints for incoming messages in Pi:

∀Pi,
∑

Pj→Pi

t(Pj → Pi) 6 1

I conservation law in node Pi for message mk (k 6= i):

5mk

2mk

3mk

4mk

Pi

∑
Pj→Pi

s(Pj → Pi,mk) =
∑

Pi→Pj

s(Pj → Pi,mk) 6 1

Loris Marchal Steady state collective communications 10/ 27



Linear constraints

I one port constraints for outgoing messages in Pi:

∀Pi,
∑

Pi→Pj

t(Pi → Pj) 6 1

I one port constraints for incoming messages in Pi:

∀Pi,
∑

Pj→Pi

t(Pj → Pi) 6 1

I conservation law in node Pi for message mk (k 6= i):

5mk

2mk

3mk

4mk

Pi

∑
Pj→Pi

s(Pj → Pi,mk) =
∑

Pi→Pj

s(Pj → Pi,mk) 6 1

Loris Marchal Steady state collective communications 10/ 27



Linear constraints

I one port constraints for outgoing messages in Pi:

∀Pi,
∑

Pi→Pj

t(Pi → Pj) 6 1

I one port constraints for incoming messages in Pi:

∀Pi,
∑

Pj→Pi

t(Pj → Pi) 6 1

I conservation law in node Pi for message mk (k 6= i):

5mk

2mk

3mk

4mk

Pi

∑
Pj→Pi

s(Pj → Pi,mk) =
∑

Pi→Pj

s(Pj → Pi,mk) 6 1

Loris Marchal Steady state collective communications 10/ 27



Linear constraints

I one port constraints for outgoing messages in Pi:

∀Pi,
∑

Pi→Pj

t(Pi → Pj) 6 1

I one port constraints for incoming messages in Pi:

∀Pi,
∑

Pj→Pi

t(Pj → Pi) 6 1

I conservation law in node Pi for message mk (k 6= i):

5mk

2mk

3mk

4mk

Pi

∑
Pj→Pi

s(Pj → Pi,mk) =
∑

Pi→Pj

s(Pj → Pi,mk) 6 1

Loris Marchal Steady state collective communications 10/ 27



Linear constraints

I one port constraints for outgoing messages in Pi:

∀Pi,
∑

Pi→Pj

t(Pi → Pj) 6 1

I one port constraints for incoming messages in Pi:

∀Pi,
∑

Pj→Pi

t(Pj → Pi) 6 1

I conservation law in node Pi for message mk (k 6= i):

5mk

2mk

3mk

4mk

Pi

∑
Pj→Pi

s(Pj → Pi,mk) =
∑

Pi→Pj

s(Pj → Pi,mk) 6 1

Loris Marchal Steady state collective communications 10/ 27



Linear constraints

I one port constraints for outgoing messages in Pi:

∀Pi,
∑

Pi→Pj

t(Pi → Pj) 6 1

I one port constraints for incoming messages in Pi:

∀Pi,
∑

Pj→Pi

t(Pj → Pi) 6 1

I conservation law in node Pi for message mk (k 6= i):

5mk

2mk

3mk

4mk

Pi

∑
Pj→Pi

s(Pj → Pi,mk) =
∑

Pi→Pj

s(Pj → Pi,mk) 6 1

Loris Marchal Steady state collective communications 10/ 27



Throughput and Linear Program

I throughput: total number of messages mk received in Pk

TP =
∑

Pj→Pk

s(Pj → Pk,mk)

(same throughput for every target node Pk)

I summarize this constraints in a linear program:
Steady-State Scatter Problem on a Graph SSSP(G)
Maximize TP,
subject to

∀Pi,∀Pj , 0 6 s(Pi → Pj) 6 1
∀Pi,

∑
Pj ,(i,j)∈E s(Pi → Pj) 6 1

∀Pi,
∑

Pj ,(j,i)∈E s(Pj → Pi) 6 1
∀Pi, Pj , s(Pi → Pj) =

∑
mk

send(Pi → Pj ,mk)× c(i, j)
∀Pi,∀mk, k 6= i,

∑
Pj ,(j,i)∈E send(Pj → Pi,mk)

=
∑

Pj ,(i,j)∈E send(Pi → Pj ,mk)
∀Pk, k ∈ T

∑
Pi,(i,k)∈E send(Pi → Pk,mk) = TP

Loris Marchal Steady state collective communications 11/ 27



Throughput and Linear Program

I throughput: total number of messages mk received in Pk

TP =
∑

Pj→Pk

s(Pj → Pk,mk)

(same throughput for every target node Pk)

I summarize this constraints in a linear program:
Steady-State Scatter Problem on a Graph SSSP(G)
Maximize TP,
subject to

∀Pi,∀Pj , 0 6 s(Pi → Pj) 6 1
∀Pi,

∑
Pj ,(i,j)∈E s(Pi → Pj) 6 1

∀Pi,
∑

Pj ,(j,i)∈E s(Pj → Pi) 6 1
∀Pi, Pj , s(Pi → Pj) =

∑
mk

send(Pi → Pj ,mk)× c(i, j)
∀Pi,∀mk, k 6= i,

∑
Pj ,(j,i)∈E send(Pj → Pi,mk)

=
∑

Pj ,(i,j)∈E send(Pi → Pj ,mk)
∀Pk, k ∈ T

∑
Pi,(i,k)∈E send(Pi → Pk,mk) = TP

Loris Marchal Steady state collective communications 11/ 27



Series of Scatter - Toy Example

2/3
4/3 4/3

11

PbPa

Ps

P0 P1

platform graph (edges labeled with c(i, j))

Loris Marchal Steady state collective communications 12/ 27



Series of Scatter - Toy Example

1
4
m01

4
m0

1
4
m0

1
4
m0

1
2
m1

1
2
m1

PbPa

Ps

P0 P1

value of s(Pi → Pj ,mk) in the solution of the linear program

Loris Marchal Steady state collective communications 12/ 27



Series of Scatter - Toy Example

1/3
2/3

3/41/4

1/6

PbPa

Ps

P0 P1

occupation time of the edge (t(Pi → Pj))

Loris Marchal Steady state collective communications 12/ 27



Building a schedule

I consider the time needed
for all transfers

I build a bipartite graph by
splitting all nodes

I extract matchings, using
the weighted-edge
coloring algorithm

1
4

(1
4

m0)

1
3
(
1
4
m 0

)
2
3

(1
2
m1)

1
6

(1
4
m0)

1
4

(1
4
m0)

1
2

(1
2
m1)

Pa Pb

Ps

P0 P1

Loris Marchal Steady state collective communications 13/ 27



Building a schedule

I consider the time needed
for all transfers

I build a bipartite graph by
splitting all nodes

I extract matchings, using
the weighted-edge
coloring algorithm

1
4

1
3

1
21

4

2
3

1
6

P send
a P send

b P recv
b

P send
s

P recv
0 P recv

1

P recv
a

P send
1P send

1

P recv
s

Loris Marchal Steady state collective communications 13/ 27



Building a schedule

I consider the time needed
for all transfers

I build a bipartite graph by
splitting all nodes

I extract matchings, using
the weighted-edge
coloring algorithm

1
2

1
2

P send
a P send

b P recv
b

P send
s

P recv
0 P recv

1

P recv
a

P send
1P send

1

P recv
s

Loris Marchal Steady state collective communications 13/ 27



Building a schedule

I consider the time needed
for all transfers

I build a bipartite graph by
splitting all nodes

I extract matchings, using
the weighted-edge
coloring algorithm

1
4

1
4

P send
a P send

b P recv
b

P send
s

P recv
0 P recv

1

P recv
a

P send
1P send

1

P recv
s

Loris Marchal Steady state collective communications 13/ 27



Building a schedule

I consider the time needed
for all transfers

I build a bipartite graph by
splitting all nodes

I extract matchings, using
the weighted-edge
coloring algorithm

1
6

1
6

1
6

P send
a P send

b P recv
b

P send
s

P recv
0 P recv

1

P recv
a

P send
1P send

1

P recv
s

Loris Marchal Steady state collective communications 13/ 27



Building a schedule

I consider the time needed
for all transfers

I build a bipartite graph by
splitting all nodes

I extract matchings, using
the weighted-edge
coloring algorithm

1
12

1
12

P send
a P send

b P recv
b

P send
s

P recv
0 P recv

1

P recv
a

P send
1P send

1

P recv
s

Loris Marchal Steady state collective communications 13/ 27



Building a schedule

1
2

1
2

P send
a P send

b P recv
b

P send
s

P recv
0 P recv

1

P recv
a

P send
1P send

1

P recv
s

1

Pb → P1

Pb → P0

Pa → P0

Ps → Pb

Ps → Pa

0 t111
12

3
4

1
2

matchings:

I least common multiple T = lcm{bi} where ai
bi

denotes the
number of messages transfered in each matching

I ⇒ periodic schedule of period T with atomic transfers of
messages

Loris Marchal Steady state collective communications 14/ 27



Building a schedule

1
4

1
4

P send
a P send

b P recv
b

P send
s

P recv
0 P recv

1

P recv
a

P send
1P send

1

P recv
s

2

Pb → P1

Pb → P0

Pa → P0

Ps → Pb

Ps → Pa

0 t111
12

3
4

1
2

matchings:

I least common multiple T = lcm{bi} where ai
bi

denotes the
number of messages transfered in each matching

I ⇒ periodic schedule of period T with atomic transfers of
messages

Loris Marchal Steady state collective communications 14/ 27



Building a schedule

1
6

1
6

1
6

P send
a P send

b P recv
b

P send
s

P recv
0 P recv

1

P recv
a

P send
1P send

1

P recv
s

3

Pb → P1

Pb → P0

Pa → P0

Ps → Pb

Ps → Pa

0 t111
12

3
4

1
2

matchings:

I least common multiple T = lcm{bi} where ai
bi

denotes the
number of messages transfered in each matching

I ⇒ periodic schedule of period T with atomic transfers of
messages

Loris Marchal Steady state collective communications 14/ 27



Building a schedule

1
12

1
12

P send
a P send

b P recv
b

P send
s

P recv
0 P recv

1

P recv
a

P send
1P send

1

P recv
s

4

Pb → P1

Pb → P0

Pa → P0

Ps → Pb

Ps → Pa

0 t111
12

3
4

1
2

matchings:

I least common multiple T = lcm{bi} where ai
bi

denotes the
number of messages transfered in each matching

I ⇒ periodic schedule of period T with atomic transfers of
messages

Loris Marchal Steady state collective communications 14/ 27



Building a schedule

2 431

Pb → P1

Pb → P0

Pa → P0

Ps → Pb

Ps → Pa

0 t111
12

3
4

1
2

matchings:

I least common multiple T = lcm{bi} where ai
bi

denotes the
number of messages transfered in each matching

I ⇒ periodic schedule of period T with atomic transfers of
messages

Loris Marchal Steady state collective communications 14/ 27



Building a schedule

2 431

Pb → P1

Pb → P0

Pa → P0

Ps → Pb

Ps → Pa

0 t111
12

3
4

1
2

matchings:

I least common multiple T = lcm{bi} where ai
bi

denotes the
number of messages transfered in each matching

I ⇒ periodic schedule of period T with atomic transfers of
messages

Loris Marchal Steady state collective communications 14/ 27



Building a schedule

1 2 3 4 {
Pb → P1

Pb → P0

Pa → P0

Ps → Pb

Ps → Pa



t484030200 10

matchings

I least common multiple T = lcm{bi} where ai
bi

denotes the
number of messages transfered in each matching

I ⇒ periodic schedule of period T with atomic transfers of
messages

Loris Marchal Steady state collective communications 14/ 27



Asymptotic optimality

I No schedule can perform more tasks than the steady-state:

Lemma.

opt(G, K) 6 TP(G)×K

I periodic schedule ⇒ schedule:

1. initialization phase (fill buffers of messages)
2. r periods of duration T (steady-state)
3. clean-up phase (empty buffers)

Lemma.

the previous algorithm is asymptotically optimal:

lim
K→+∞

steady(G, K)
opt(G, K)

= 1

Loris Marchal Steady state collective communications 15/ 27



Asymptotic optimality

I No schedule can perform more tasks than the steady-state:

Lemma.

opt(G, K) 6 TP(G)×K

I periodic schedule ⇒ schedule:

1. initialization phase (fill buffers of messages)
2. r periods of duration T (steady-state)
3. clean-up phase (empty buffers)

Lemma.

the previous algorithm is asymptotically optimal:

lim
K→+∞

steady(G, K)
opt(G, K)

= 1

Loris Marchal Steady state collective communications 15/ 27



Asymptotic optimality

I No schedule can perform more tasks than the steady-state:

Lemma.

opt(G, K) 6 TP(G)×K

I periodic schedule ⇒ schedule:

1. initialization phase (fill buffers of messages)
2. r periods of duration T (steady-state)
3. clean-up phase (empty buffers)

Lemma.

the previous algorithm is asymptotically optimal:

lim
K→+∞

steady(G, K)
opt(G, K)

= 1

Loris Marchal Steady state collective communications 15/ 27



Asymptotic optimality

I No schedule can perform more tasks than the steady-state:

Lemma.

opt(G, K) 6 TP(G)×K

I periodic schedule ⇒ schedule:

1. initialization phase (fill buffers of messages)
2. r periods of duration T (steady-state)
3. clean-up phase (empty buffers)

Lemma.

the previous algorithm is asymptotically optimal:

lim
K→+∞

steady(G, K)
opt(G, K)

= 1

Loris Marchal Steady state collective communications 15/ 27



Asymptotic optimality

I No schedule can perform more tasks than the steady-state:

Lemma.

opt(G, K) 6 TP(G)×K

I periodic schedule ⇒ schedule:

1. initialization phase (fill buffers of messages)
2. r periods of duration T (steady-state)
3. clean-up phase (empty buffers)

Lemma.

the previous algorithm is asymptotically optimal:

lim
K→+∞

steady(G, K)
opt(G, K)

= 1

Loris Marchal Steady state collective communications 15/ 27



Asymptotic optimality

I No schedule can perform more tasks than the steady-state:

Lemma.

opt(G, K) 6 TP(G)×K

I periodic schedule ⇒ schedule:

1. initialization phase (fill buffers of messages)
2. r periods of duration T (steady-state)
3. clean-up phase (empty buffers)

Lemma.

the previous algorithm is asymptotically optimal:

lim
K→+∞

steady(G, K)
opt(G, K)

= 1

Loris Marchal Steady state collective communications 15/ 27



Asymptotic optimality

I No schedule can perform more tasks than the steady-state:

Lemma.

opt(G, K) 6 TP(G)×K

I periodic schedule ⇒ schedule:

1. initialization phase (fill buffers of messages)
2. r periods of duration T (steady-state)
3. clean-up phase (empty buffers)

Lemma.

the previous algorithm is asymptotically optimal:

lim
K→+∞

steady(G, K)
opt(G, K)

= 1

Loris Marchal Steady state collective communications 15/ 27



Outline
Introduction

Two Problems of Collective Communication
Platform Model
Framework

Series of Scatter
Steady-state constraints
Toy Example
Building a schedule
Asymptotic optimality

Series of Reduce
Introduction to reduction trees
Linear Program
Periodic schedule - Asymptotic optimality
Toy Example for Series of Reduce

Approximation for a fixed period

Conclusion

Loris Marchal Steady state collective communications 16/ 27



Reduce - Reduction trees

I Reduce:
I each processor Pri

owns a value
vi

I compute V = v1 ⊕ v2 ⊕ · · · ⊕ vN

(⊕ associative, non
commutative)

I partial result of the Reduce
operation:
v[k,m] = vk ⊕ v2 ⊕ · · · ⊕ vm

I two partial results can be merged:
v[k,m] = v[k,l] ⊕ v[l+1,m]

(computational task Tk,l,m)

Loris Marchal Steady state collective communications 17/ 27



Reduce - Reduction trees

I Reduce:
I each processor Pri

owns a value
vi

I compute V = v1 ⊕ v2 ⊕ · · · ⊕ vN

(⊕ associative, non
commutative)

I partial result of the Reduce
operation:
v[k,m] = vk ⊕ v2 ⊕ · · · ⊕ vm

I two partial results can be merged:
v[k,m] = v[k,l] ⊕ v[l+1,m]

(computational task Tk,l,m)

Loris Marchal Steady state collective communications 17/ 27



Reduce - Reduction trees

I Reduce:
I each processor Pri

owns a value
vi

I compute V = v1 ⊕ v2 ⊕ · · · ⊕ vN

(⊕ associative, non
commutative)

I partial result of the Reduce
operation:
v[k,m] = vk ⊕ v2 ⊕ · · · ⊕ vm

I two partial results can be merged:
v[k,m] = v[k,l] ⊕ v[l+1,m]

(computational task Tk,l,m)

Loris Marchal Steady state collective communications 17/ 27



Reduce - Reduction trees

I Reduce:
I each processor Pri

owns a value
vi

I compute V = v1 ⊕ v2 ⊕ · · · ⊕ vN

(⊕ associative, non
commutative)

I partial result of the Reduce
operation:
v[k,m] = vk ⊕ v2 ⊕ · · · ⊕ vm

I two partial results can be merged:
v[k,m] = v[k,l] ⊕ v[l+1,m]

(computational task Tk,l,m)

Loris Marchal Steady state collective communications 17/ 27



Reduce - Reduction trees

I Reduce:
I each processor Pri

owns a value
vi

I compute V = v1 ⊕ v2 ⊕ · · · ⊕ vN

(⊕ associative, non
commutative)

I partial result of the Reduce
operation:
v[k,m] = vk ⊕ v2 ⊕ · · · ⊕ vm

I two partial results can be merged:
v[k,m] = v[k,l] ⊕ v[l+1,m]

(computational task Tk,l,m)

Loris Marchal Steady state collective communications 17/ 27



Reduce - Reduction trees

I Reduce:
I each processor Pri

owns a value
vi

I compute V = v1 ⊕ v2 ⊕ · · · ⊕ vN

(⊕ associative, non
commutative)

I partial result of the Reduce
operation:
v[k,m] = vk ⊕ v2 ⊕ · · · ⊕ vm

I two partial results can be merged:
v[k,m] = v[k,l] ⊕ v[l+1,m]

(computational task Tk,l,m)

P0

v0

P1

v1

P2

v2

Loris Marchal Steady state collective communications 17/ 27



Reduce - Reduction trees

I Reduce:
I each processor Pri

owns a value
vi

I compute V = v1 ⊕ v2 ⊕ · · · ⊕ vN

(⊕ associative, non
commutative)

I partial result of the Reduce
operation:
v[k,m] = vk ⊕ v2 ⊕ · · · ⊕ vm

I two partial results can be merged:
v[k,m] = v[k,l] ⊕ v[l+1,m]

(computational task Tk,l,m)

v2

P2 → P1

P0

v0

P1

v1

P2

v2

Loris Marchal Steady state collective communications 17/ 27



Reduce - Reduction trees

I Reduce:
I each processor Pri

owns a value
vi

I compute V = v1 ⊕ v2 ⊕ · · · ⊕ vN

(⊕ associative, non
commutative)

I partial result of the Reduce
operation:
v[k,m] = vk ⊕ v2 ⊕ · · · ⊕ vm

I two partial results can be merged:
v[k,m] = v[k,l] ⊕ v[l+1,m]

(computational task Tk,l,m)

T1,1,2

P1

v2

P2 → P1

P0

v0

P1

v1

P2

v2

Loris Marchal Steady state collective communications 17/ 27



Reduce - Reduction trees

I Reduce:
I each processor Pri

owns a value
vi

I compute V = v1 ⊕ v2 ⊕ · · · ⊕ vN

(⊕ associative, non
commutative)

I partial result of the Reduce
operation:
v[k,m] = vk ⊕ v2 ⊕ · · · ⊕ vm

I two partial results can be merged:
v[k,m] = v[k,l] ⊕ v[l+1,m]

(computational task Tk,l,m)

v0

P0 → P1

T1,1,2

P1

v2

P2 → P1

P0

v0

P1

v1

P2

v2

Loris Marchal Steady state collective communications 17/ 27



Reduce - Reduction trees

I Reduce:
I each processor Pri

owns a value
vi

I compute V = v1 ⊕ v2 ⊕ · · · ⊕ vN

(⊕ associative, non
commutative)

I partial result of the Reduce
operation:
v[k,m] = vk ⊕ v2 ⊕ · · · ⊕ vm

I two partial results can be merged:
v[k,m] = v[k,l] ⊕ v[l+1,m]

(computational task Tk,l,m)

T0,0,2

P1

v0

P0 → P1

T1,1,2

P1

v2

P2 → P1

P0

v0

P1

v1

P2

v2

Loris Marchal Steady state collective communications 17/ 27



Reduce - Reduction trees

I Reduce:
I each processor Pri

owns a value
vi

I compute V = v1 ⊕ v2 ⊕ · · · ⊕ vN

(⊕ associative, non
commutative)

I partial result of the Reduce
operation:
v[k,m] = vk ⊕ v2 ⊕ · · · ⊕ vm

I two partial results can be merged:
v[k,m] = v[k,l] ⊕ v[l+1,m]

(computational task Tk,l,m)
v[0,2]

P1 → P0

T0,0,2

P1

v0

P0 → P1

T1,1,2

P1

v2

P2 → P1

P0

v0

P1

v1

P2

v2

Loris Marchal Steady state collective communications 17/ 27



Series of Reduce

I each processor Pri owns a set of values vt
i (e.g. produced at

different time-steps t)

I perform a Reduce operation on each set {vt
1, . . . , v

t
N} to

compute V t

I each reduction uses a reduction tree

I two reductions (t1 and t2) may use different trees

Loris Marchal Steady state collective communications 18/ 27



Linear Program - Notations

I s(Pi → Pj , v[k,l]): fractional number of values v[k,l] sent on
link Pi → Pj within one time-unit

I t(Pi → Pj) fractional occupation time of link Pi → Pj within
one time-unit:

0 6 t(Pi → Pj) 6 1

I cons(Pi, Tk,l,m): fractional number of tasks Tk,l,m computed
on processor Pi within one time-unit

I α(Pi) time spent by processor Pi computing tasks within one
time-unit:

0 6 α(Pi) 6 1

I size(v[k,m]) size of a message containing a value vt
[k,m]

I w(Pi, Tk,l,m) time needed by processor Pi to compute one
task Tk,l,m

Loris Marchal Steady state collective communications 19/ 27



Linear Program - Notations

I s(Pi → Pj , v[k,l]): fractional number of values v[k,l] sent on
link Pi → Pj within one time-unit

I t(Pi → Pj) fractional occupation time of link Pi → Pj within
one time-unit:

0 6 t(Pi → Pj) 6 1

I cons(Pi, Tk,l,m): fractional number of tasks Tk,l,m computed
on processor Pi within one time-unit

I α(Pi) time spent by processor Pi computing tasks within one
time-unit:

0 6 α(Pi) 6 1

I size(v[k,m]) size of a message containing a value vt
[k,m]

I w(Pi, Tk,l,m) time needed by processor Pi to compute one
task Tk,l,m

Loris Marchal Steady state collective communications 19/ 27



Linear Program - Notations

I s(Pi → Pj , v[k,l]): fractional number of values v[k,l] sent on
link Pi → Pj within one time-unit

I t(Pi → Pj) fractional occupation time of link Pi → Pj within
one time-unit:

0 6 t(Pi → Pj) 6 1

I cons(Pi, Tk,l,m): fractional number of tasks Tk,l,m computed
on processor Pi within one time-unit

I α(Pi) time spent by processor Pi computing tasks within one
time-unit:

0 6 α(Pi) 6 1

I size(v[k,m]) size of a message containing a value vt
[k,m]

I w(Pi, Tk,l,m) time needed by processor Pi to compute one
task Tk,l,m

Loris Marchal Steady state collective communications 19/ 27



Linear Program - Notations

I s(Pi → Pj , v[k,l]): fractional number of values v[k,l] sent on
link Pi → Pj within one time-unit

I t(Pi → Pj) fractional occupation time of link Pi → Pj within
one time-unit:

0 6 t(Pi → Pj) 6 1

I cons(Pi, Tk,l,m): fractional number of tasks Tk,l,m computed
on processor Pi within one time-unit

I α(Pi) time spent by processor Pi computing tasks within one
time-unit:

0 6 α(Pi) 6 1

I size(v[k,m]) size of a message containing a value vt
[k,m]

I w(Pi, Tk,l,m) time needed by processor Pi to compute one
task Tk,l,m

Loris Marchal Steady state collective communications 19/ 27



Linear Program - Notations

I s(Pi → Pj , v[k,l]): fractional number of values v[k,l] sent on
link Pi → Pj within one time-unit

I t(Pi → Pj) fractional occupation time of link Pi → Pj within
one time-unit:

0 6 t(Pi → Pj) 6 1

I cons(Pi, Tk,l,m): fractional number of tasks Tk,l,m computed
on processor Pi within one time-unit

I α(Pi) time spent by processor Pi computing tasks within one
time-unit:

0 6 α(Pi) 6 1

I size(v[k,m]) size of a message containing a value vt
[k,m]

I w(Pi, Tk,l,m) time needed by processor Pi to compute one
task Tk,l,m

Loris Marchal Steady state collective communications 19/ 27



Linear Program - Notations

I s(Pi → Pj , v[k,l]): fractional number of values v[k,l] sent on
link Pi → Pj within one time-unit

I t(Pi → Pj) fractional occupation time of link Pi → Pj within
one time-unit:

0 6 t(Pi → Pj) 6 1

I cons(Pi, Tk,l,m): fractional number of tasks Tk,l,m computed
on processor Pi within one time-unit

I α(Pi) time spent by processor Pi computing tasks within one
time-unit:

0 6 α(Pi) 6 1

I size(v[k,m]) size of a message containing a value vt
[k,m]

I w(Pi, Tk,l,m) time needed by processor Pi to compute one
task Tk,l,m

Loris Marchal Steady state collective communications 19/ 27



Linear Program - Constraints

I occupation of a link Pi → Pj :

t(Pi → Pj) =
∑
v[k,l]

s(Pi → Pj , v[k,l])× size(v[k,l])× c(i, j)

I occupation time of a processor Pi:

α(Pi) =
∑

Tk,l,m

cons(Pi, Tk,l,m)× w(Pi, Tk,l,m)

I “conservation law” for packets of type v[k,m]:∑
Pj→Pi

s(Pj → Pi, v[k,m]) +
∑

k6l<m

cons(Pi, Tk,l,m)

=
∑

Pi→Pj

s(Pi → Pj , v[k,m]) +
∑
n>m

cons(Pi, Tk,m,n) +
∑
n<k

cons(Pi, Tn,k−1,m)

Loris Marchal Steady state collective communications 20/ 27



Linear Program - Constraints

I occupation of a link Pi → Pj :

t(Pi → Pj) =
∑
v[k,l]

s(Pi → Pj , v[k,l])× size(v[k,l])× c(i, j)

I occupation time of a processor Pi:

α(Pi) =
∑

Tk,l,m

cons(Pi, Tk,l,m)× w(Pi, Tk,l,m)

I “conservation law” for packets of type v[k,m]:∑
Pj→Pi

s(Pj → Pi, v[k,m]) +
∑

k6l<m

cons(Pi, Tk,l,m)

=
∑

Pi→Pj

s(Pi → Pj , v[k,m]) +
∑
n>m

cons(Pi, Tk,m,n) +
∑
n<k

cons(Pi, Tn,k−1,m)

Loris Marchal Steady state collective communications 20/ 27



Linear Program - Constraints

I occupation of a link Pi → Pj :

t(Pi → Pj) =
∑
v[k,l]

s(Pi → Pj , v[k,l])× size(v[k,l])× c(i, j)

I occupation time of a processor Pi:

α(Pi) =
∑

Tk,l,m

cons(Pi, Tk,l,m)× w(Pi, Tk,l,m)

I “conservation law” for packets of type v[k,m]:∑
Pj→Pi

s(Pj → Pi, v[k,m]) +
∑

k6l<m

cons(Pi, Tk,l,m)

=
∑

Pi→Pj

s(Pi → Pj , v[k,m]) +
∑
n>m

cons(Pi, Tk,m,n) +
∑
n<k

cons(Pi, Tn,k−1,m)

Loris Marchal Steady state collective communications 20/ 27



Linear Program - Constraints

I definition of the throughput:

TP =
∑

Pj→Ptarget

s(Pj → Ptarget, v[0,m])+
∑

06l<N−1

cons(Ptarget, T0,l,N )

I solve the following linear program over the rational numbers:

Steady-State Reduce Problem on a Graph SSRP(G)
Maximize TP,
subject to all previous constraints

Loris Marchal Steady state collective communications 21/ 27



Linear Program - Constraints

I definition of the throughput:

TP =
∑

Pj→Ptarget

s(Pj → Ptarget, v[0,m])+
∑

06l<N−1

cons(Ptarget, T0,l,N )

I solve the following linear program over the rational numbers:

Steady-State Reduce Problem on a Graph SSRP(G)
Maximize TP,
subject to all previous constraints

Loris Marchal Steady state collective communications 21/ 27



Building a schedule

I consider the reduction tree T t associated with the
computation of the tth value (V t):

I a given tree may be used by many time-stamps t

I there exists an algorithm which extracts from the solution a
set of weighted trees such that

I this description is polynomial and
I the sum of the weighted trees is equal to the original solution

I same use of a weighted edge-coloring algorithm on a bipartite
graph to orchestrate the communication

Loris Marchal Steady state collective communications 22/ 27



Building a schedule

I consider the reduction tree T t associated with the
computation of the tth value (V t):

I a given tree may be used by many time-stamps t

I there exists an algorithm which extracts from the solution a
set of weighted trees such that

I this description is polynomial and
I the sum of the weighted trees is equal to the original solution

I same use of a weighted edge-coloring algorithm on a bipartite
graph to orchestrate the communication

Loris Marchal Steady state collective communications 22/ 27



Building a schedule

I consider the reduction tree T t associated with the
computation of the tth value (V t):

I a given tree may be used by many time-stamps t

I there exists an algorithm which extracts from the solution a
set of weighted trees such that

I this description is polynomial and
I the sum of the weighted trees is equal to the original solution

I same use of a weighted edge-coloring algorithm on a bipartite
graph to orchestrate the communication

Loris Marchal Steady state collective communications 22/ 27



Building a schedule

I consider the reduction tree T t associated with the
computation of the tth value (V t):

I a given tree may be used by many time-stamps t

I there exists an algorithm which extracts from the solution a
set of weighted trees such that

I this description is polynomial and
I the sum of the weighted trees is equal to the original solution

I same use of a weighted edge-coloring algorithm on a bipartite
graph to orchestrate the communication

Loris Marchal Steady state collective communications 22/ 27



Building a schedule

I consider the reduction tree T t associated with the
computation of the tth value (V t):

I a given tree may be used by many time-stamps t

I there exists an algorithm which extracts from the solution a
set of weighted trees such that

I this description is polynomial and
I the sum of the weighted trees is equal to the original solution

I same use of a weighted edge-coloring algorithm on a bipartite
graph to orchestrate the communication

Loris Marchal Steady state collective communications 22/ 27



Building a schedule

I consider the reduction tree T t associated with the
computation of the tth value (V t):

I a given tree may be used by many time-stamps t

I there exists an algorithm which extracts from the solution a
set of weighted trees such that

I this description is polynomial and
I the sum of the weighted trees is equal to the original solution

I same use of a weighted edge-coloring algorithm on a bipartite
graph to orchestrate the communication

Loris Marchal Steady state collective communications 22/ 27



Toy Example for Series of Reduce

1

1

0

1 2

1 1

topology

Loris Marchal Steady state collective communications 23/ 27



Toy Example for Series of Reduce

0

1 2

1 T0,0,2

1
3
v[1,2]

2
3
v[1,2]

2
3
T1,1,2

2
3
v[1,1]

1
3
v[2,2]

1
3
T1,1,2

results of the linear program

Loris Marchal Steady state collective communications 23/ 27



Toy Example for Series of Reduce

0

1 2

v[2,2]

T1,1,2

v[1,2]

T0,0,2

first reduction tree (weight 1/3)

Loris Marchal Steady state collective communications 23/ 27



Toy Example for Series of Reduce

0

1 2

v[1,1]

T1,1,2

v[1,2]

T0,0,2

second reduction tree (weight 2/3)

Loris Marchal Steady state collective communications 23/ 27



Toy Example for Series of Reduce

2

21

1

P0

P1 P2

bipartite graph

Loris Marchal Steady state collective communications 23/ 27



Toy Example for Series of Reduce

P0

P1 P2

first matching second matching

Loris Marchal Steady state collective communications 23/ 27



Toy Example for Series of Reduce

P0

P1 P2

Loris Marchal Steady state collective communications 23/ 27



Outline
Introduction

Two Problems of Collective Communication
Platform Model
Framework

Series of Scatter
Steady-state constraints
Toy Example
Building a schedule
Asymptotic optimality

Series of Reduce
Introduction to reduction trees
Linear Program
Periodic schedule - Asymptotic optimality
Toy Example for Series of Reduce

Approximation for a fixed period

Conclusion

Loris Marchal Steady state collective communications 24/ 27



Approximation for a fixed period

I our framework produces an asymptotically optimal schedule of
period T , but T may be to large

I we can approximate the solution with a fixed period Tfixed :

1. {T ,weightT }: the weighted set of trees obtained by the
decomposition algorithm

2. compute r(T ) =
⌊

weight(T )
T × Tfixed

⌋
3. one port constraints are satisfied for {T ,weightT } on a

period T,
⇒ they are satisfied for {T , r(T )} on a period Tfixed

4. the performance loss is bounded:

TP−TP∗ 6
card(Trees)

Tfixed

Loris Marchal Steady state collective communications 25/ 27



Approximation for a fixed period

I our framework produces an asymptotically optimal schedule of
period T , but T may be to large

I we can approximate the solution with a fixed period Tfixed :

1. {T ,weightT }: the weighted set of trees obtained by the
decomposition algorithm

2. compute r(T ) =
⌊

weight(T )
T × Tfixed

⌋
3. one port constraints are satisfied for {T ,weightT } on a

period T,
⇒ they are satisfied for {T , r(T )} on a period Tfixed

4. the performance loss is bounded:

TP−TP∗ 6
card(Trees)

Tfixed

Loris Marchal Steady state collective communications 25/ 27



Approximation for a fixed period

I our framework produces an asymptotically optimal schedule of
period T , but T may be to large

I we can approximate the solution with a fixed period Tfixed :

1. {T ,weightT }: the weighted set of trees obtained by the
decomposition algorithm

2. compute r(T ) =
⌊

weight(T )
T × Tfixed

⌋
3. one port constraints are satisfied for {T ,weightT } on a

period T,
⇒ they are satisfied for {T , r(T )} on a period Tfixed

4. the performance loss is bounded:

TP−TP∗ 6
card(Trees)

Tfixed

Loris Marchal Steady state collective communications 25/ 27



Approximation for a fixed period

I our framework produces an asymptotically optimal schedule of
period T , but T may be to large

I we can approximate the solution with a fixed period Tfixed :

1. {T ,weightT }: the weighted set of trees obtained by the
decomposition algorithm

2. compute r(T ) =
⌊

weight(T )
T × Tfixed

⌋
3. one port constraints are satisfied for {T ,weightT } on a

period T,
⇒ they are satisfied for {T , r(T )} on a period Tfixed

4. the performance loss is bounded:

TP−TP∗ 6
card(Trees)

Tfixed

Loris Marchal Steady state collective communications 25/ 27



Approximation for a fixed period

I our framework produces an asymptotically optimal schedule of
period T , but T may be to large

I we can approximate the solution with a fixed period Tfixed :

1. {T ,weightT }: the weighted set of trees obtained by the
decomposition algorithm

2. compute r(T ) =
⌊

weight(T )
T × Tfixed

⌋
3. one port constraints are satisfied for {T ,weightT } on a

period T,
⇒ they are satisfied for {T , r(T )} on a period Tfixed

4. the performance loss is bounded:

TP−TP∗ 6
card(Trees)

Tfixed

Loris Marchal Steady state collective communications 25/ 27



Approximation for a fixed period

I our framework produces an asymptotically optimal schedule of
period T , but T may be to large

I we can approximate the solution with a fixed period Tfixed :

1. {T ,weightT }: the weighted set of trees obtained by the
decomposition algorithm

2. compute r(T ) =
⌊

weight(T )
T × Tfixed

⌋
3. one port constraints are satisfied for {T ,weightT } on a

period T,
⇒ they are satisfied for {T , r(T )} on a period Tfixed

4. the performance loss is bounded:

TP−TP∗ 6
card(Trees)

Tfixed

Loris Marchal Steady state collective communications 25/ 27



Outline
Introduction

Two Problems of Collective Communication
Platform Model
Framework

Series of Scatter
Steady-state constraints
Toy Example
Building a schedule
Asymptotic optimality

Series of Reduce
Introduction to reduction trees
Linear Program
Periodic schedule - Asymptotic optimality
Toy Example for Series of Reduce

Approximation for a fixed period

Conclusion

Loris Marchal Steady state collective communications 26/ 27



Conclusion

I new framework to study collective communications in a
heterogeneous environment

I makespan difficult to minimize ⇒ focus on throughput

I relaxation, use of linear programming

I asymptotically optimal algorithm

I can be extended to other communication schemes and
scheduling problems

Loris Marchal Steady state collective communications 27/ 27


	Introduction
	Two Problems of Collective Communication
	Platform Model
	Framework

	Series of Scatter
	Steady-state constraints
	Toy Example
	Building a schedule
	Asymptotic optimality

	Series of Reduce
	Introduction to reduction trees
	Linear Program
	Periodic schedule - Asymptotic optimality
	Toy Example for Series of Reduce

	Approximation for a fixed period
	Conclusion

