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Broadcasting data

I Key collective communication operation

I Start: one processor has the data

I End: all processors own a copy

I Vast literature about broadcast, MPI Bcast

I Standard approach: use a spanning tree

I Finding the best spanning tree: NP-Complete problem
(even in the telephone model)
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Different broadcast problems

Broadcast large messages ⇒ pipelining strategies

I split the messages into slices (application level)

I route them concurrently, possibly using different spanning
trees

I throughput optimization (relaxation of makespan
minimization)

STA Singe Tree, Atomic message
heuristics to minimize makespan: FNF. . .

STP Single Tree, Pipelined series of messages

MTP Multiple Tree, Pipelined series of messages
I polynomial algorithm to find optimal solution

(LP formulation)
I hard to implement ⇒ concentrate on STP
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Models

Network = directed graph P = (V ,E )

P0

P1

P3

P2

time

I General case: affine model (includes latencies)

I Common variant: sending and receiving processors busy
during whole transfer
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Multi-port

I Banikazemi et al.
no overlap between link and processor occupation:

time

recv 2,3

T2,3(L)

send2,3

P3

link e2,3

P2

⇒ methodology to instantiate parameters
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Multi-port

I Bar-Noy et al.
occupation time of sender Pu independent of target Pv

time

recv vPv

Tu,v(L)link eu,v

senduPu

not fully multi-port model, but allows for starting a new transfer

from Pu without waiting for previous one to finish
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One-port

I Bhat et al.
same parameters for sender Pu, link eu,v and receiver Pv

time

ru,v · L
ru,vPv

βu,v · L
αu,vlink eu,v

su,v · L
su,vPu

Two flavors:

I bidirectional: simultaneous send and receive transfers allowed

I unidirectional: only one send or receive transfer at a given time-step
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Framework

I Platform graph P = (V ,E )

I Source processor Psource

I Goal: broadcast a series of messages to all other nodes

I Transfers of successive messages are pipelined

I Send messages along a spanning tree

I Find a spanning tree with good throughput
(neglect initialization and clean-up phases)

I Bidirectional one-port model:
time

recv 2,3P3

T2,3(L)link e2,3

send2,3P2

I Multi-port model:
time

recv 2,3P3

T2,3(L)link e2,3

send2,3P2
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One port-model

I Processors involved in one (sending or receiving)
communication

I Duration of a transfer = f (link eu,v )

sendu,v (L) = recvu,v (L) = Tu,v (L) = Tu,v
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Simple Platform Pruning

I Idea: delete edges of maximum weight, until we have a tree

I Algorithm:

SIMPLE-PLATFORM-PRUNING(P,Psource)
TreeEdges ← all edges of E
while |TreeEdges| > n − 1 do

L ← edges of TreeEdges sorted by non-increasing weight Tu,v

for each edge e ∈ L do
if the graph (V ,TreeEdges\{e}) is still connected then

TreeEdges ← TreeEdges\{e}
return (V ,TreeEdges)
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Simple Platform Pruning

I Example of simple pruning:

1

3

46

22

Topology, costs of edges Tu,v
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Simple Platform Pruning

I Example of simple pruning:

1

322

Achievable throughput: 1/8
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Refined Platform Pruning

I Idea:
I at each step, compute the out-degree of each node
I prune an edge from a node whose out-degree is maximum

I Example:

1

3

46

22

Topology, costs of edges Tu,v
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Refined Platform Pruning

I Idea:
I at each step, compute the out-degree of each node
I prune an edge from a node whose out-degree is maximum

I Example:

1

3

4

22

106

Choosing maximum out-degree node, then maximum edge
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Refined Platform Pruning

I Idea:
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Refined Platform Pruning

I Idea:
I at each step, compute the out-degree of each node
I prune an edge from a node whose out-degree is maximum

I Example:

1

4

22

Achievable throughput: 1/5
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Refined Platform Pruning

REFINED-PLATFORM-PRUNING(P,Psource)
1: TreeEdges ← all edges of E
2: for each u ∈ V do
3: OutDegree(u)←

∑
v , (u,v)∈E

Tu,v

4: while |TreeEdges| > n − 1 do
5: SortedNodes ← nodes sorted by non-increasing value of

OutDegree(u)
6: for u ∈ SortedNodes do
7: L ← edges sorted by decreasing weight Tu,v

8: for each edge e = (u, v) ∈ L do
9: if the graph (V ,TreeEdges\{e}) is still connected then

10: TreeEdges ← TreeEdges\{e}
11: OutDegree(u)← OutDegree(u)− Tu,v

12: goto 4
13: return (V ,TreeEdges)
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Growing a Minimum Weighted Out-Degree Tree

I Idea: grow a tree as in Prim’s algorithm

I At each step, choose an edge optimizing metric

I Our metric:
I minimize the weighted out-degree of each node in the tree

I Example:

1

3

46

22

Achievable throughput: 1/5
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Growing a Minimum Weighted Out-Degree Tree

GROWING-MINIMUM-WEIGHTED-OUT-DEGREE-TREE(P,Psource)
TreeEdges ← ∅
TreeVertices ← {Psource}
for each edge e = (u, v) do

cost(u, v)← Tu,v

while TreeVertices 6= V do
choose the link (u, v) such that u ∈ TreeVertices,
v /∈ TreeVertices and (u, v) has minimum value cost(u, v)
TreeVertices ← TreeVertices ∪ {v}
TreeEdges ← TreeEdges ∪ {(u, v)}
for each edge (u,w) /∈ TreeEdges do

cost(u,w)← cost(u,w) + cost(u, v)
return (TreeVertices,TreeEdges)
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Binomial tree heuristic

I For sake of comparison

I Close to MPI Bcast

I Construct a binomial tree (without topological information)
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Multi-port

I Adapt the growing-tree heuristic to
multi-port model

I Congestion may come from:
I the number of send operations

from Pu,
I the length of a transfer Pu → Pv

I New computation of out-degree:

sendu

recv v1

Tu,v1 Tu,v2

recv v2

Tu,v3

recv v2

u

v1

v3

v2

iv3

iv2iv1

iu

Tperiod = max

(
δout(Pu)× sendu,max

i
(Tu,vi )

)
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Multi-port

I Case where throughput is bounded by the serialized sendu:

I Case where throughput is bounded by the longest link
occupation Tu,v :
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recv v3
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LP formulation

I Solving the MTP problem with LP formulation:
I variables: average number of messages going through each link
I constraints: one-port model constraints, link occupation

I Solution of LP ⇒ network utilization to reach best throughput

I Complicated algorithm to reconstruct optimal set of trees for
MTP, not needed here

I Use results output by LP, optimal solution Sopt:
I TP = optimal throughput
I nu,v = number of messages through edge eu,v in one time-unit

in Sopt
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LP-based heuristics

I Communication graph pruning:
I similar to the previous pruning heuristic
I based on the communication graph, labeled with nu,v values
I prune edges carrying the fewest messages in Sopt

I Growing a spanning tree over the communication graph
I start from the communication graph of Sopt

I grow a tree, selecting edges with maximal number of messages
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Platform

Simulations using both the one-port and multi-port models

1. random generation of platforms, with parameters:
number of nodes : 10, 20,. . . , 50

density : 0.04, 0.08,. . . , 0.20

Tu,v : Gaussian distribution
: (mean=100MB/s, deviation=20MB/s)

sendu,v : 0.80 ·minw ,(u,w)∈E {Tu,w}
(for each set of parameters, 10 different configurations generated)

2. realistic platforms generated by Tiers:
I 100 platforms with 30 nodes
I 100 platforms with 65 nodes
I density between 0.05 and 0.15
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Results, one-port, random platforms

I Performance versus number of nodes
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Results, one-port, random platforms

I Performance versus density
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Results, multi-port, random platforms

I Performance versus number of nodes
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Results, one-port, realistic platforms

I Performance of the one-port heuristics on two types of
platforms generated by Tiers
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Analysis

I For the one-port model:
I small platforms: results close to the optimal
I large platforms: “advanced” heuristics within 60% of the

optimal
I simple pruning heuristic: not scalable
I binomial heuristic: very poor results

I Under multi-port assumption:
I binomial heuristic performs slightly better
I adapted heuristic (Growing-Tree): much better results
I LP-based heuristics perform well
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Conclusion

I Designing efficient algorithms to broadcast data

I Use pipelining techniques, focus on steady-state

I Using multiple trees (MTP): polynomial algorithm, but
difficult to enforce in practice

I Using a single tree (STP): NP-Complete

I Design heuristics for STP, possibly using MTP linear program

I Avoid binomial approach (MPI)
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