Centralized versus distributed schedulers for multiple bag-of-task applications

Laboratoire LaBRI, CNRS Bordeaux, France

Dept. of Computer Science and Engineering, University of California, San Diego, USA

Laboratoire ID-IMAG, CNRS-INRIA Grenoble, France

Laboratoire de l’Informatique du Parallélisme École Normale Supérieure de Lyon, France

IPDPS 2006
Motivation

Large-scale distributed platforms result from the collaboration of many users:

- **Sharing** resources among users should somehow be **fair**
- Task regularity \Rightarrow steady-state scheduling
- Assessing centralized versus decentralized approaches
Large-scale distributed platforms result from the collaboration of many users:

- Sharing resources among users should somehow be fair
- Task regularity \leadsto steady-state scheduling
- Assessing centralized versus decentralized approaches
Large-scale distributed platforms result from the collaboration of many users:

- **Sharing** resources among users should somehow be fair
- **Task regularity** \(\sim\) steady-state scheduling
- Assessing **centralized** versus **decentralized** approaches
Multiple applications:
- each consisting in a large number of same-size independent tasks
- all competing for CPU and network resources

Different communication and computation demands for different applications

Important parameter: communication size

\[A_1 \quad A_2 \quad A_3 \]
Introduction – Applications

- Multiple applications:
 - each consisting in a large number of same-size independent tasks
 - all competing for CPU and network resources

- Different communication and computation demands for different applications

- Important parameter: \[
\frac{\text{communication size}}{\text{computation size}}
\]
Introduction – Platform

- Target platform: master-worker
 - star network
 - tree network

- Master holds all tasks initially
Maximize throughput

Maintain balanced execution between applications (fairness)

Scheduling decisions:
- at master: which applications to assign to which subtree
- at nodes (tree): which tasks to forward to which children

Objective function:
- priority weight: $w^{(k)}$ for application A_k
- throughput:
 $\alpha^{(k)} = \text{number of tasks of type } k \text{ computed per time-unit}$
- MAX-MIN fairness: MAXIMIZE $\min_k \left\{ \frac{\alpha^{(k)}}{w^{(k)}} \right\}$.
Maximize throughput

Maintain balanced execution between applications (fairness)

Scheduling decisions:
- at master: which applications to assign to which subtree
- at nodes (tree): which tasks to forward to which children

Objective function:
- priority weight: $w^{(k)}$ for application A_k
- throughput:
 $\alpha^{(k)} = \text{number of tasks of type } k \text{ computed per time-unit}$
- MAX-MIN fairness: \[
\text{MAXIMIZE } \min_k \left\{ \frac{\alpha^{(k)}}{w^{(k)}} \right\} .
\]
- Maximize throughput
- Maintain balanced execution between applications (fairness)

Scheduling decisions:
- at master: which applications to assign to which subtree
- at nodes (tree): which tasks to forward to which children

Objective function:
- priority weight: \(w^{(k)} \) for application \(A_k \)
- throughput:
 \[\alpha^{(k)} = \text{number of tasks of type } k \text{ computed per time-unit} \]
- MAX-MIN fairness: \(\text{MAXIMIZE } \min_k \left\{ \frac{\alpha^{(k)}}{w^{(k)}} \right\} \).
Introduction – Strategies

- **Centralized strategies**
 - central scheduler at master
 - complete and reliable knowledge of the platform
 - optimal schedule (Linear Programming formulation)
 - reasonable for small platforms

- **Decentralized strategies**
 - more realistic for large scale platforms
 - only local information available at each node (neighbors)
 - assume limited memory at each node
 - decentralized heuristics
Introduction – Strategies

Centralized strategies
- central scheduler at master
- complete and reliable knowledge of the platform
- optimal schedule (Linear Programming formulation)
- reasonable for small platforms

Decentralized strategies
- more realistic for large scale platforms
- only local information available at each node (neighbors)
- assume limited memory at each node
- decentralized heuristics
1. Platform and Application Model
2. Computing the Optimal Solution
3. Decentralized Heuristics
4. Simulation Results
5. Conclusion & Perspectives
Outline

1. Platform and Application Model
2. Computing the Optimal Solution
3. Decentralized Heuristics
4. Simulation Results
5. Conclusion & Perspectives
Platform Model

- **Star or tree network**
- **Workers** P_1, \ldots, P_p, master P_{master}
- Parent of P_u: $P_{p(u)}$
- Bandwidth of link $P_u \rightarrow P_{p(u)}$: b_u
- Computing speed of P_u: c_u
- Full communication/computation overlap
- One-port model for communications
Platform Model

- Star or tree network
- Workers P_1, \ldots, P_p, master P_{master}
- Parent of P_u: $P_{p(u)}$
- Bandwidth of link $P_u \rightarrow P_{p(u)}$: b_u
- Computing speed of P_u: c_u
- Full communication/computation overlap
- One-port model for communications
Platform Model

- Star or tree network
- Workers P_1, \ldots, P_p, master P_{master}
- Parent of P_u: $P_{p(u)}$
- Bandwidth of link $P_u \rightarrow P_{p(u)}$: b_u
- Computing speed of P_u: c_u
- Full communication/computation overlap
- One-port model for communications
Platform Model

- Star or tree network
- Workers P_1, \ldots, P_p, master P_{master}
- Parent of P_u: $P_{p(u)}$
- Bandwidth of link $P_u \rightarrow P_{p(u)}$: b_u
- Computing speed of P_u: c_u
- Full communication/computation overlap
- One-port model for communications
Application Model

- K applications A_1, \ldots, A_k
- Priority weights $w^{(k)}$: $w^{(1)} = 3$ and $w^{(2)} = 1 \iff$ process 3 tasks of type 1 per task of type 2
- For each task of A_k:
 - processing cost $c^{(k)}$ (MFlops)
 - communication cost $b^{(k)}$ (MBytes)
- Communication for input data only (no result message)
- communication-to-computation ratio (CCR): $\frac{b^{(k)}}{c^{(k)}}$
Application Model

- K applications A_1, \ldots, A_k
- Priority weights $w^{(k)}$: $w^{(1)} = 3$ and $w^{(2)} = 1 \iff$ process 3 tasks of type 1 per task of type 2

For each task of A_k:

- processing cost $c^{(k)}$ (MFlops)
- communication cost $b^{(k)}$ (MBytes)

Communication for input data only (no result message)

communication-to-computation ratio (CCR): $\frac{b^{(k)}}{c^{(k)}}$
Application Model

- \(K \) applications \(A_1, \ldots, A_k \)
- Priority weights \(w^{(k)}: w^{(1)} = 3 \) and \(w^{(2)} = 1 \) \(\iff \) process 3 tasks of type 1 per task of type 2
- For each task of \(A_k \):
 - processing cost \(c^{(k)} \) (MFlops)
 - communication cost \(b^{(k)} \) (MBytes)
- Communication for input data only (no result message)
- communication-to-computation ratio (CCR): \(\frac{b^{(k)}}{c^{(k)}} \)
Application Model

- \(K \) applications \(A_1, \ldots, A_k \)
- Priority weights \(w^{(k)}: w^{(1)} = 3 \) and \(w^{(2)} = 1 \) \(\iff \) process 3 tasks of type 1 per task of type 2
- For each task of \(A_k \):
 - processing cost \(c^{(k)} \) (MFlops)
 - communication cost \(b^{(k)} \) (MBytes)
- Communication for input data only (no result message)
- communication-to-computation ratio (CCR): \(\frac{b^{(k)}}{c^{(k)}} \)
K applications A_1, \ldots, A_k

Priority weights $w^{(k)}$: $w^{(1)} = 3$ and $w^{(2)} = 1 \iff$ process 3 tasks of type 1 per task of type 2

For each task of A_k:

- processing cost $c^{(k)}$ (MFlops)
- communication cost $b^{(k)}$ (MBytes)

Communication for input data only (no result message)

communication-to-computation ratio (CCR): $\frac{b^{(k)}}{c^{(k)}}$
Outline

1. Platform and Application Model
2. Computing the Optimal Solution
3. Decentralized Heuristics
4. Simulation Results
5. Conclusion & Perspectives
Computing the Optimal Solution

Linear Program for a Star Network

- \(\alpha_u^{(k)} \) = rational number of tasks of \(A_k \) executed by \(P_u \) every time-unit
- \(\alpha_u^{(k)} = 0 \) for all \(A_k \) \(\iff \) \(P_u \) does not participate
- Constraint for computations by \(P_u \):
 \[
 \sum_k \alpha_u^{(k)} \cdot c^{(k)} \leq c_u
 \]
- Number of bytes sent to worker \(P_u \): \(\sum_{k=1}^K \alpha_u^{(k)} \cdot b^{(k)} \)
- Constraint for communications from the master:
 \[
 \sum_{k=1}^K \alpha_u^{(k)} \cdot b^{(k)} \leq 1
 \]
- Throughput for application \(A_k \): \(\alpha^{(k)} = \sum_{u=1}^p \alpha_u^{(k)} \)
- Objective:
 \[
 \text{MAXIMIZE} \ \min_k \frac{\alpha^{(k)}}{W^{(k)}}
 \]
Computing the Optimal Solution

Linear Program for a Star Network

- $\alpha^{(k)}_u = \text{rational number of tasks of } A_k \text{ executed by } P_u \text{ every time-unit}$
- $\alpha^{(k)}_u = 0 \text{ for all } A_k \iff P_u \text{ does not participate}$
- Constraint for computations by P_u:
 \[\sum_k \alpha^{(k)}_u \cdot c^{(k)} \leq c_u \]
- Number of bytes sent to worker P_u: $\sum_{k=1}^{K} \alpha^{(k)}_u \cdot b^{(k)}$
- Constraint for communications from the master:
 \[\sum_{k=1}^{K} \alpha^{(k)}_u \cdot b^{(k)} \\ \sum_{u=1}^{p} \frac{\alpha^{(k)}_u \cdot b^{(k)}}{b_u} \leq 1 \]
- Throughput for application A_k: $\alpha^{(k)} = \sum_{u=1}^{p} \alpha^{(k)}_u$
- Objective:
 \[\text{MAXIMIZE } \min_k \frac{\alpha^{(k)}}{w^{(k)}} \]
Linear Program for a Star Network

- \(\alpha_u^{(k)} \) = rational number of tasks of \(A_k \) executed by \(P_u \) every time-unit
- \(\alpha_u^{(k)} = 0 \) for all \(A_k \) \(\iff \) \(P_u \) does not participate
- Constraint for computations by \(P_u \):
 \[\sum_k \alpha_u^{(k)} \cdot c^{(k)} \leq c_u \]

- Number of bytes sent to worker \(P_u \): \(\sum_{k=1}^{K} \alpha_u^{(k)} \cdot b^{(k)} \)
- Constraint for communications from the master:
 \[\sum_{u=1}^{p} \frac{\sum_{k=1}^{K} \alpha_u^{(k)} \cdot b^{(k)}}{b_u} \leq 1 \]

- Throughput for application \(A_k \): \(\alpha^{(k)} = \sum_{u=1}^{p} \alpha_u^{(k)} \)
- Objective:
 \[\text{MAXIMIZE} \ \min_k \frac{\alpha^{(k)}}{w^{(k)}} \]
Computing the Optimal Solution

Linear Program for a Star Network

- \(\alpha_u^{(k)} \) = rational number of tasks of \(A_k \) executed by \(P_u \) every time-unit
- \(\alpha_u^{(k)} = 0 \) for all \(A_k \) \(\iff \) \(P_u \) does not participate
- Constraint for computations by \(P_u \):
 \[
 \sum_k \alpha_u^{(k)} \cdot c^{(k)} \leq c_u
 \]
- Number of bytes sent to worker \(P_u \): \(\sum_{k=1}^{K} \alpha_u^{(k)} \cdot b^{(k)} \)
- Constraint for communications from the master:
 \[
 \sum_{k=1}^{K} \alpha_u^{(k)} \cdot b^{(k)} \leq 1
 \]
- Throughput for application \(A_k \): \(\alpha^{(k)} = \sum_{u=1}^{p} \alpha_u^{(k)} \)
- Objective:
 \[
 \text{MAXIMIZE} \quad \min_k \frac{\alpha^{(k)}}{\omega^{(k)}}
 \]
Computing the Optimal Solution

Linear Program for a Star Network

- $\alpha_u^{(k)}$ = rational number of tasks of A_k executed by P_u every time-unit
- $\alpha_u^{(k)} = 0$ for all A_k \iff P_u does not participate
- Constraint for computations by P_u:
 \[\sum_k \alpha_u^{(k)} \cdot c^{(k)} \leq c_u \]
- Number of bytes sent to worker P_u: \[\sum_{k=1}^{K} \alpha_u^{(k)} \cdot b^{(k)} \]
- Constraint for communications from the master:
 \[\sum_{u=1}^{p} \sum_{k=1}^{K} \frac{\alpha_u^{(k)} \cdot b^{(k)}}{b_u} \leq 1 \]
- Throughput for application A_k: $\alpha^{(k)} = \sum_{u=1}^{p} \alpha_u^{(k)}$
- Objective:
 \[\text{MAXIMIZE} \min_k \frac{\alpha^{(k)}}{w^{(k)}} \]
Computing the Optimal Solution

Linear Program for a Star Network

- \(\alpha_u^{(k)} \) = rational number of tasks of \(A_k \) executed by \(P_u \) every time-unit
- \(\alpha_u^{(k)} = 0 \) for all \(A_k \) if \(P_u \) does not participate
- Constraint for computations by \(P_u \):
 \[
 \sum_k \alpha_u^{(k)} \cdot c^{(k)} \leq c_u
 \]
- Number of bytes sent to worker \(P_u \):
 \[
 \sum_{k=1}^{K} \alpha_u^{(k)} \cdot b^{(k)}
 \]
- Constraint for communications from the master:
 \[
 \sum_{u=1}^{p} \frac{\sum_{k=1}^{K} \alpha_u^{(k)} \cdot b^{(k)}}{b_u} \leq 1
 \]
- Throughput for application \(A_k \):
 \[
 \alpha^{(k)} = \sum_{u=1}^{p} \alpha_u^{(k)}
 \]
- Objective:
 \[
 \text{MAXIMIZE } \min_k \frac{\alpha^{(k)}}{w^{(k)}}
 \]
Linear Program for a Star Network

- \(\alpha_{u}^{(k)} \) = rational number of tasks of \(A_{k} \) executed by \(P_{u} \) every time-unit
- \(\alpha_{u}^{(k)} = 0 \) for all \(A_{k} \) \(\iff \) \(P_{u} \) does not participate
- Constraint for computations by \(P_{u} \):
 \[
 \sum_{k} \alpha_{u}^{(k)} \cdot c^{(k)} \leq c_{u}
 \]
- Number of bytes sent to worker \(P_{u} \):
 \[
 \sum_{k=1}^{K} \alpha_{u}^{(k)} \cdot b^{(k)}
 \]
- Constraint for communications from the master:
 \[
 \sum_{u=1}^{p} \sum_{k=1}^{K} \alpha_{u}^{(k)} \cdot b^{(k)}
 \leq 1
 \]
- Throughput for application \(A_{k} \):
 \(\alpha^{(k)} = \sum_{u=1}^{p} \alpha_{u}^{(k)} \)
- Objective:
 \[
 \text{MAXIMIZE} \quad \min_{k} \frac{\alpha^{(k)}}{w^{(k)}}
 \]
Reconstructing an Optimal Schedule

- Solution of linear program: $\alpha_u^{(k)} = \frac{p_{u,k}}{q_{u,k}}$, throughput ρ
- Set period length: $T_p = \text{lcm}\{q_{u,k}\}$
- During each period, send $n_u^{(k)} = \alpha_u^{(k)} \cdot T_{\text{period}}$ to each worker P_u ⇒ periodic schedule with throughput ρ

- Initialization and clean-up phases
- Asymptotically optimal schedule (computes optimal number of tasks in time T, up to a constant independent of T)
Computing the Optimal Solution

Reconstructing an Optimal Schedule

- Solution of linear program: \(\alpha_u^{(k)} = \frac{p_{u,k}}{q_{u,k}} \), throughput \(\rho \)
- Set period length: \(T_p = \text{lcm}\{q_{u,k}\} \)
- During each period, send \(n_u^{(k)} = \alpha_u^{(k)} \cdot T_{\text{period}} \) to each worker \(P_u \)
 \(\Rightarrow \) periodic schedule with throughput \(\rho \)

- Initialization and clean-up phases
- Asymptotically optimal schedule (computes optimal number of tasks in time \(T \), up to a constant independent of \(T \))
Computing the Optimal Solution

Reconstructing an Optimal Schedule

- Solution of linear program: $\alpha_{u}^{(k)} = \frac{p_{u,k}}{q_{u,k}}$, throughput ρ

- Set period length: $T_p = \text{lcm}\{q_{u,k}\}$

- During each period, send $n_{u}^{(k)} = \alpha_{u}^{(k)} \cdot T_{\text{period}}$ to each worker P_u
 \Rightarrow periodic schedule with throughput ρ

- Initialization and clean-up phases

- Asymptotically optimal schedule (computes optimal number of tasks in time T, up to a constant independent of T)
Theorem

- Sort the link by bandwidth so that $b_1 \geq b_2 \ldots \geq b_p$.
- Sort the applications by CCR so that $\frac{b^{(1)}}{c^{(1)}} \geq \frac{b^{(2)}}{c^{(2)}} \ldots \geq \frac{b^{(K)}}{c^{(K)}}$.

Then there exist indices $a_0 \leq a_1 \ldots \leq a_K$, $a_0 = 1$, $a_{k-1} \leq a_k$ for $1 \leq k \leq K$, $a_K \leq p$, such that only processors P_u, $u \in [a_{k-1}, a_k]$, execute tasks of type k in the optimal solution.
Adaptation to Tree Networks

- Linear Program can be extended
- Similarly reconstruction of periodic schedule
- No proof of a particular structure

Problems with this approach:
- Linear programming
- Centralized, needs all global information at master
- Schedule period possibly huge
 \[\Rightarrow \text{difficult to adapt to load variation} \]
- Large memory requirement, huge flow time
Adaptation to Tree Networks

- Linear Program can be extended
- Similarly reconstruction of periodic schedule
- No proof of a particular structure

Problems with this approach:

- Linear programming
- Centralized, needs all global information at master
- Schedule period possibly huge
 - difficult to adapt to load variation
- Large memory requirement, huge flow time
Outline

1. Platform and Application Model
2. Computing the Optimal Solution
3. Decentralized Heuristics
4. Simulation Results
5. Conclusion & Perspectives
General scheme for a decentralized heuristic:

- Finite buffer (makes the problem NP hard)
- Demand-driven algorithms
- Local scheduler:

 Loop

 If there will be room in your buffer, request work from parent.
 Select which child to assign work to.
 Select the type of application that will be assigned.
 Get incoming requests from your local worker and children, if any.
 Move incoming tasks from your parent, if any, into your buffer.

 If you have a task and a request that match your choice **Then**
 Send the task to the chosen thread (when the send port is free)

 Else
 Wait for a request or a task

- Use only local information
- **Centralized LP based (LP)**
 - Solve linear program with global information
 - Give each node the $\alpha^{(k)}_u$ for its children and himself
 - Use a 1D load balancing mechanism with these ratios → close to optimal throughput?
 - Hybrid heuristic: *centralized* computation of rates ($\alpha^{(k)}_u$) but *distributed* control of the scheduling

- **First Come First Served (FCFS)**
 - Each scheduler enforces a FCFS policy
 - Master ensures fairness using 1D load balancing mechanism
Decentralized Heuristics

Heuristics – LP

- **Centralized LP based (LP)**
 - Solve linear program with global information
 - Give each node the $\alpha^{(k)}_u$ for its children and himself
 - Use a 1D load balancing mechanism with these ratios → close to optimal throughput?
 - Hybrid heuristic: **centralized** computation of rates ($\alpha^{(k)}_u$) but **distributed** control of the scheduling

- **First Come First Served (FCFS)**
 - Each scheduler enforces a FCFS policy
 - Master ensures fairness using 1D load balancing mechanism
Decentralized Heuristics

Heuristics – One application = bandwidth-centric strategy

- Optimal strategy for a single application: send tasks to faster-communicating children first

- Demand-driven based on local information: bandwidth and CPU speed of children

- Extension to trees by bottom-up node reduction
Coarse-Grain Bandwidth-Centric (CGBC)

- Bandwidth-centric = optimal solution for a single application (send tasks to children communicating faster first)
- Assemble different types of tasks into one macro-task:

 \[
 A_1 \quad w^{(1)} = 3 \\
 A_2 \quad w^{(2)} = 2 \\
 A_3 \quad w^{(3)} = 1
 \]

- Not expected to reach optimal throughput: slow links are used to transfer tasks with high CCR
Parallel Bandwidth-Centric (PBC)

- Superpose bandwidth-centric strategy for each application
- On each worker, K independent schedulers
- Fairness enforced by the master, distributing the tasks
- Independent schedulers \rightarrow concurrent transfers
- Limited capacity on outgoing port
 \sim gives an (unfair) advantage to PBC (allows interruptible communications)
Data-centric scheduling (DATA-CENTRIC)

- Decentralized heuristic
- Try to convergence to the solution of LP
- Intuition based on the structure of optimal solution for star networks
- Start by scheduling only tasks with higher CCR, then periodically:
 - substitute tasks of type A (high CCR) for tasks of type B (lower CCR)
 - if unused bandwidth appears, send more tasks with high CCR
 - if only tasks with high CCR are sent, lower this quantity to free bandwidth, in order to send other types of tasks
- Needs information on neighbors
- Some operations are decided on the master, then propagated along the tree
Methodology

- **How to measure fair-throughput?**
 - Concentrate on phase where all applications simultaneously run
 \[T = \text{first time s.t. all tasks of some application are terminated} \]
 - Ignore initialization and termination phases
 - Set time-interval: \([0.1 \times T ; \ 0.9 \times T]\)
 - Compute achieved throughput for each application on this interval

- **Platform generation**
 - 150 random platforms generated, preferring wide trees
 - Links and processors characteristics based on measured values
 - Buffer of size 10 tasks (of any type)

- **Application generation**
 - CCR chosen between 0.001 (matrix multiplication) and 4.6 (matrix addition)

- **Heuristic implementation**
 - Distributed implementation using SimGrid,
 - Link and processor capacities measured within SimGrid
Methodology

- **How to measure fair-throughput?**
 - Concentrate on phase where all applications simultaneously run → \(T \) = first time s.t. all tasks of some application are terminated
 - Ignore initialization and termination phases
 - Set time-interval: \([0.1 \times T ; 0.9 \times T]\)
 - Compute achieved throughput for each application on this interval

- **Platform generation**
 - 150 random platforms generated, preferring wide trees
 - Links and processors characteristics based on measured values
 - Buffer of size 10 tasks (of any type)

- **Application generation**
 - CCR chosen between 0.001 (matrix multiplication) and 4.6 (matrix addition)

- **Heuristic implementation**
 - Distributed implementation using SimGrid,
 - Link and processor capacities measured within SimGrid
Methodology

How to measure fair-throughput?
- Concentrate on phase where all applications simultaneously run
 \(T = \text{first time s.t. all tasks of some application are terminated} \)
- Ignore initialization and termination phases
- Set time-interval: \([0.1 \times T \; ; \; 0.9 \times T]\)
- Compute achieved throughput for each application on this interval

Platform generation
- 150 random platforms generated, preferring wide trees
- Links and processors characteristics based on measured values
- Buffer of size 10 tasks (of any type)

Application generation
- CCR chosen between 0.001 (matrix multiplication) and 4.6 (matrix addition)

Heuristic implementation
- Distributed implementation using SimGrid,
- Link and processor capacities measured within SimGrid
How to measure fair-throughput?
- Concentrate on phase where all applications simultaneously run
 \(T = \text{first time s.t. all tasks of some application are terminated} \)
- Ignore initialization and termination phases
- Set time-interval: \([0.1 \times T; 0.9 \times T]\)
- Compute achieved throughput for each application on this interval

Platform generation
- 150 random platforms generated, preferring wide trees
- Links and processors characteristics based on measured values
- Buffer of size 10 tasks (of any type)

Application generation
- CCR chosen between 0.001 (matrix multiplication) and 4.6 (matrix addition)

Heuristic implementation
- Distributed implementation using SimGrid,
- Link and processor capacities measured within SimGrid
Simulation Results

Theoretical v/ Experimental Throughput

- LP, CGBC: possible to compute expected (theoretical) throughput

![Graph showing deviation from theoretical throughput with average deviation = 9.4%]

- Increase buffer size from 10 to 200 → average deviation = 0.3%
- In the following, LP = basis for comparison
- Compute $\log \frac{\text{performance of } H}{\text{performance of LP}}$ for each heuristic H, on each platform
- Plot distribution
Simulation Results

Theoretical v/ Experimental Throughput

- LP, CGBC: possible to compute expected (theoretical) throughput

![Plot showing deviation from theoretical throughput]

average deviation $= 9.4\%$

- Increase buffer size from 10 to 200 \rightarrow average deviation $= 0.3\%$

- In the following, LP = basis for comparison

- Compute \(\log \frac{\text{performance of } H}{\text{performance of LP}} \) for each heuristic H, on each platform

- Plot distribution
LP, CGBC: possible to compute expected (theoretical) throughput

average deviation = 9.4%

Increase buffer size from 10 to 200 → average deviation = 0.3%

In the following, LP = basis for comparison

Compute \(\log \frac{\text{performance of } H}{\text{performance of LP}} \)

for each heuristic H, on each platform

Plot distribution
Simulation Results

Theoretical v/ Experimental Throughput

- LP, CGBC: possible to compute expected (theoretical) throughput

![Frequency vs. Deviation from theoretical throughput graph]

- average deviation = 9.4%

- Increase buffer size from 10 to 200 \(\rightarrow\) average deviation = 0.3%

- In the following, LP = basis for comparison

- Compute \(\log \frac{\text{performance of } H}{\text{performance of } \text{LP}}\) for each heuristic \(H\), on each platform

- Plot distribution
Simulation Results

Theoretical v/ Experimental Throughput

- LP, CGBC: possible to compute expected (theoretical) throughput

![Graph showing the deviation from theoretical throughput with frequency on the y-axis and deviation on the x-axis. The average deviation is 9.4%.]

- Increase buffer size from 10 to 200 → average deviation = 0.3%

- In the following, LP = basis for comparison

- Compute $\log \frac{\text{performance of H}}{\text{performance of LP}}$ for each heuristic H, on each platform

- Plot distribution
Geometrical average: FCFS is 1.56 times worse than LP
Worst case: 8 times worse
Simulation Results

Performance of CGBC

- Geometrical average: CGBC is 1.15 times worse than LP
- Worst case: 2 times worse
In 35% of the cases: one application is totally unfavored, its throughput is close to 0.
Simulation Results

Performance of DATA-CENTRIC

- Geometrical average: DATA-CENTRIC is 1.16 worse than LP
- Few instances with very bad solution
- On most platforms, very good solution
- Hard to know why it performs badly in few cases
Outline

1. Platform and Application Model
2. Computing the Optimal Solution
3. Decentralized Heuristics
4. Simulation Results
5. Conclusion & Perspectives
Conclusion

- Centralized algorithm computes optimal solution with global information
- Nice characterization of optimal solution on single-level trees
- Design distributed heuristics to deal with practical settings of clusters and grids (distributed information, variability, limited memory)
- Evaluation of these heuristics through extensive simulations
- Good performance of sophisticated heuristics compared to the optimal scheduling
Perspectives

- Adapt decentralized MultiCommodity Flow algorithm (Awerbuch & Leighton) to our problem
 - Decentralized approach to compute optimal throughput
 - Slow convergence speed

- Consider other kinds of fairness such as proportional fairness:
 - Reasonable (close to the behavior of TCP)
 - Easy to enforce with distributed algorithms

- Study robustness and adaptability of these heuristics...
Outline

1. Platform and Application Model
2. Computing the Optimal Solution
3. Decentralized Heuristics
4. Simulation Results
5. Conclusion & Perspectives