
Independent and Divisible Tasks Scheduling
on Heterogeneous Star-shaped Platforms

with Limited Memory

Olivier Beaumont, Arnaud Legrand, Loris Marchal, Yves Robert

Laboratoire de l’Informatique du Parallélisme
École Normale Supérieure de Lyon, France

EUROMICRO PDP 2005

L. Marchal Independant Tasks Scheduling with Limited Memory 1/ 27

Outline

Master-Slave Paradigm to Schedule Independant Tasks

Introducing Memory Constraints - Complexity Results

Approximation Algorithms and Heuristics

Variations
Throughput Maximization
Divisible Load

Conclusion

L. Marchal Independant Tasks Scheduling with Limited Memory 2/ 27

Outline

Master-Slave Paradigm to Schedule Independant Tasks

Introducing Memory Constraints - Complexity Results

Approximation Algorithms and Heuristics

Variations
Throughput Maximization
Divisible Load

Conclusion

L. Marchal Independant Tasks Scheduling with Limited Memory 2/ 27

Outline

Master-Slave Paradigm to Schedule Independant Tasks

Introducing Memory Constraints - Complexity Results

Approximation Algorithms and Heuristics

Variations
Throughput Maximization
Divisible Load

Conclusion

L. Marchal Independant Tasks Scheduling with Limited Memory 2/ 27

Outline

Master-Slave Paradigm to Schedule Independant Tasks

Introducing Memory Constraints - Complexity Results

Approximation Algorithms and Heuristics

Variations
Throughput Maximization
Divisible Load

Conclusion

L. Marchal Independant Tasks Scheduling with Limited Memory 2/ 27

Outline

Master-Slave Paradigm to Schedule Independant Tasks

Introducing Memory Constraints - Complexity Results

Approximation Algorithms and Heuristics

Variations
Throughput Maximization
Divisible Load

Conclusion

L. Marchal Independant Tasks Scheduling with Limited Memory 2/ 27

Outline

Master-Slave Paradigm to Schedule Independant Tasks

Introducing Memory Constraints - Complexity Results

Approximation Algorithms and Heuristics

Variations
Throughput Maximization
Divisible Load

Conclusion

L. Marchal Independant Tasks Scheduling with Limited Memory 3/ 27

Independent Tasks Scheduling

I A set of independent identical tasks to be processed by some
slaves. How to get the best performances on an heterogeneous
set of workstations ?

���
���
���
���
���

���
���
���
���
���

��

�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

�������
�������
�������

�������
�������
�������

	�	�	�	
	�	�	�	

�
�
�

�
�
�

Pp

M

P1
P2

I Applications: cellular micro-physiology, protein conformations,
particle detection, . . .

L. Marchal Independant Tasks Scheduling with Limited Memory 4/ 27

Heterogeneous stars

I ci = transfer time of one
task to Pi

I wi = processing time of
one task on Pi

I 1-port communications

I Computation and com-
munication overlap

P0

P1 P2 PpPi

w1 w2 wi wp

ci

cpc1

c2

Given a master-slave platform (ci, wi)16i6p, what is
the minimum time needed to process n tasks ?

Can be solved in time O(n2p2) with a non-trivial greedy algorithm [BLR02].

L. Marchal Independant Tasks Scheduling with Limited Memory 5/ 27

Heterogeneous stars

I ci = transfer time of one
task to Pi

I wi = processing time of
one task on Pi

I 1-port communications

I Computation and com-
munication overlap

P0

P1 P2 PpPi

w1 w2 wi wp

ci

cpc1

c2

Given a master-slave platform (ci, wi)16i6p, what is
the minimum time needed to process n tasks ?

Can be solved in time O(n2p2) with a non-trivial greedy algorithm [BLR02].

L. Marchal Independant Tasks Scheduling with Limited Memory 5/ 27

Heterogeneous stars

I ci = transfer time of one
task to Pi

I wi = processing time of
one task on Pi

I 1-port communications

I Computation and com-
munication overlap

P0

P1 P2 PpPi

w1 w2 wi wp

ci

cpc1

c2

Given a master-slave platform (ci, wi)16i6p, what is
the minimum time needed to process n tasks ?

Can be solved in time O(n2p2) with a non-trivial greedy algorithm [BLR02].

L. Marchal Independant Tasks Scheduling with Limited Memory 5/ 27

Heterogeneous stars

I ci = transfer time of one
task to Pi

I wi = processing time of
one task on Pi

I 1-port communications

I Computation and com-
munication overlap

P0

P1 P2 PpPi

w1 w2 wi wp

ci

cpc1

c2

Given a master-slave platform (ci, wi)16i6p, what is
the minimum time needed to process n tasks ?

Can be solved in time O(n2p2) with a non-trivial greedy algorithm [BLR02].

L. Marchal Independant Tasks Scheduling with Limited Memory 5/ 27

Heterogeneous stars

I ci = transfer time of one
task to Pi

I wi = processing time of
one task on Pi

I 1-port communications

I Computation and com-
munication overlap

P0

P1 P2 PpPi

w1 w2 wi wp

ci

cpc1

c2

Given a master-slave platform (ci, wi)16i6p, what is
the minimum time needed to process n tasks ?

Can be solved in time O(n2p2) with a non-trivial greedy algorithm [BLR02].

L. Marchal Independant Tasks Scheduling with Limited Memory 5/ 27

Heterogeneous stars

I ci = transfer time of one
task to Pi

I wi = processing time of
one task on Pi

I 1-port communications

I Computation and com-
munication overlap

P0

P1 P2 PpPi

w1 w2 wi wp

ci

cpc1

c2

Given a master-slave platform (ci, wi)16i6p, what is
the minimum time needed to process n tasks ?

Can be solved in time O(n2p2) with a non-trivial greedy algorithm [BLR02].

L. Marchal Independant Tasks Scheduling with Limited Memory 5/ 27

Outline

Master-Slave Paradigm to Schedule Independant Tasks

Introducing Memory Constraints - Complexity Results

Approximation Algorithms and Heuristics

Variations
Throughput Maximization
Divisible Load

Conclusion

L. Marchal Independant Tasks Scheduling with Limited Memory 6/ 27

Introducing Memory Constraints

I ci = transfer time of one
task to Pi

I wi = processing time of
one task on Pi

I 1-port communications

I Computation and
communication overlap

P0

P1 P2 PpPi

w1 w2 wi wp

ci

cpc1

c2

I bi = size of the buffer in Pi

maximum number of tasks that Pi can be hold simultaneously

L. Marchal Independant Tasks Scheduling with Limited Memory 7/ 27

Introducing Memory Constraints

I ci = transfer time of one
task to Pi

I wi = processing time of
one task on Pi

I 1-port communications

I Computation and
communication overlap

P0

P1 P2 PpPi

b1 b2 bi bp

w1 w2 wi wp

ci

cpc1

c2

I bi = size of the buffer in Pi

maximum number of tasks that Pi can be hold simultaneously

L. Marchal Independant Tasks Scheduling with Limited Memory 7/ 27

Introducing Memory Constraints

I ci = transfer time of one
task to Pi

I wi = processing time of
one task on Pi

I 1-port communications

I Computation and
communication overlap

P0

P1 P2 PpPi

b1 b2 bi bp

w1 w2 wi wp

ci

cpc1

c2

wi

Pi

I bi = size of the buffer in Pi

maximum number of tasks that Pi can be hold simultaneously

buffer in Pi (bi = 8):

communication

computation

L. Marchal Independant Tasks Scheduling with Limited Memory 7/ 27

Introducing Memory Constraints

I suppose a bounded buffer of tasks for each processor
=⇒ hard problem on star platforms!

I we prove that this problem is strongly NP-hard from 3-Dimensional
matching

Given 3n integers a1, . . . , a3n and an integer B, is there a partition
of the ai’s into n groups of 3 integers, such that each group sums
to B?

P0

P1 P2 PBP3n

11 1 1

2nB2nB 2nB B

a1

a2

B

a3n

Is it possible to process at least 5n tasks in 4nB
units of time on the above platform?

L. Marchal Independant Tasks Scheduling with Limited Memory 8/ 27

Introducing Memory Constraints

I suppose a bounded buffer of tasks for each processor
=⇒ hard problem on star platforms!

I we prove that this problem is strongly NP-hard from 3-Dimensional
matching

Given 3n integers a1, . . . , a3n and an integer B, is there a partition
of the ai’s into n groups of 3 integers, such that each group sums
to B?

P0

P1 P2 PBP3n

11 1 1

2nB2nB 2nB B

a1

a2

B

a3n

Is it possible to process at least 5n tasks in 4nB
units of time on the above platform?

L. Marchal Independant Tasks Scheduling with Limited Memory 8/ 27

Introducing Memory Constraints

I suppose a bounded buffer of tasks for each processor
=⇒ hard problem on star platforms!

I we prove that this problem is strongly NP-hard from 3-Dimensional
matching

Given 3n integers a1, . . . , a3n and an integer B, is there a partition
of the ai’s into n groups of 3 integers, such that each group sums
to B?

P0

P1 P2 PBP3n

11 1 1

2nB2nB 2nB B

a1

a2

B

a3n

Is it possible to process at least 5n tasks in 4nB
units of time on the above platform?

L. Marchal Independant Tasks Scheduling with Limited Memory 8/ 27

Introducing Memory Constraints

I suppose a bounded buffer of tasks for each processor
=⇒ hard problem on star platforms!

I we prove that this problem is strongly NP-hard from 3-Dimensional
matching

Given 3n integers a1, . . . , a3n and an integer B, is there a partition
of the ai’s into n groups of 3 integers, such that each group sums
to B?

P0

P1 P2 PBP3n

11 1 1

2nB2nB 2nB B

a1

a2

B

a3n

Is it possible to process at least 5n tasks in 4nB
units of time on the above platform?

L. Marchal Independant Tasks Scheduling with Limited Memory 8/ 27

Introducing Memory constraints

Ordering the communications is hard !

P comp
1

P comp
2

P comp
3

P comp
4

P comp
5

P comp
6

a1 a3B a4 a6B B B
communications

P comp
B

a2 a5

B B

B B

2nB 4nB

L. Marchal Independant Tasks Scheduling with Limited Memory 9/ 27

Outline

Master-Slave Paradigm to Schedule Independant Tasks

Introducing Memory Constraints - Complexity Results

Approximation Algorithms and Heuristics

Variations
Throughput Maximization
Divisible Load

Conclusion

L. Marchal Independant Tasks Scheduling with Limited Memory 10/ 27

A simple 2-approximation

worse case: buffers holding only 1 task
=⇒ no communication/computation overlap

ni = number of task that Pi would process in the optimal solution
without memory constraint

A task is sent to Pi as soon as

I the communication medium is free

I Pi is idle

I Pi has processed less than ni tasks

This simple list scheduling is a 2-approximation: the makespan can-
not be larger than twice the makespan of the optimal schedule with-
out memory limitations.

L. Marchal Independant Tasks Scheduling with Limited Memory 11/ 27

A simple 2-approximation

worse case: buffers holding only 1 task
=⇒ no communication/computation overlap

ni = number of task that Pi would process in the optimal solution
without memory constraint

A task is sent to Pi as soon as

I the communication medium is free

I Pi is idle

I Pi has processed less than ni tasks

This simple list scheduling is a 2-approximation: the makespan can-
not be larger than twice the makespan of the optimal schedule with-
out memory limitations.

L. Marchal Independant Tasks Scheduling with Limited Memory 11/ 27

A simple 2-approximation

worse case: buffers holding only 1 task
=⇒ no communication/computation overlap

ni = number of task that Pi would process in the optimal solution
without memory constraint

A task is sent to Pi as soon as

I the communication medium is free

I Pi is idle

I Pi has processed less than ni tasks

This simple list scheduling is a 2-approximation: the makespan can-
not be larger than twice the makespan of the optimal schedule with-
out memory limitations.

L. Marchal Independant Tasks Scheduling with Limited Memory 11/ 27

A simple 2-approximation

worse case: buffers holding only 1 task
=⇒ no communication/computation overlap

ni = number of task that Pi would process in the optimal solution
without memory constraint

A task is sent to Pi as soon as

I the communication medium is free

I Pi is idle

I Pi has processed less than ni tasks

This simple list scheduling is a 2-approximation: the makespan can-
not be larger than twice the makespan of the optimal schedule with-
out memory limitations.

L. Marchal Independant Tasks Scheduling with Limited Memory 11/ 27

Heuristic design - 1

I List-based heuristics

I Schedule a task as soon as possible

How to choose between several available processors ?
Different selection functions:

I min c : choose the smallest communication time

I min w : choose the smallest processing time

I mct : choose the processor that will finish this task the sooner

L. Marchal Independant Tasks Scheduling with Limited Memory 12/ 27

Heuristic design - 1

I List-based heuristics

I Schedule a task as soon as possible

How to choose between several available processors ?
Different selection functions:

I min c : choose the smallest communication time

I min w : choose the smallest processing time

I mct : choose the processor that will finish this task the sooner

L. Marchal Independant Tasks Scheduling with Limited Memory 12/ 27

Heuristic design - 1

I List-based heuristics

I Schedule a task as soon as possible

How to choose between several available processors ?
Different selection functions:

I min c : choose the smallest communication time

I min w : choose the smallest processing time

I mct : choose the processor that will finish this task the sooner

L. Marchal Independant Tasks Scheduling with Limited Memory 12/ 27

Heuristic design - 1

I List-based heuristics

I Schedule a task as soon as possible

How to choose between several available processors ?
Different selection functions:

I min c : choose the smallest communication time

I min w : choose the smallest processing time

I mct : choose the processor that will finish this task the sooner

L. Marchal Independant Tasks Scheduling with Limited Memory 12/ 27

Heuristic design - 1

I List-based heuristics

I Schedule a task as soon as possible

How to choose between several available processors ?
Different selection functions:

I min c : choose the smallest communication time

I min w : choose the smallest processing time

I mct : choose the processor that will finish this task the sooner

L. Marchal Independant Tasks Scheduling with Limited Memory 12/ 27

Heuristic design - 1

I List-based heuristics

I Schedule a task as soon as possible

How to choose between several available processors ?
Different selection functions:

I min c : choose the smallest communication time

I min w : choose the smallest processing time

I mct : choose the processor that will finish this task the sooner

L. Marchal Independant Tasks Scheduling with Limited Memory 12/ 27

Heuristic design

I min loss : send to the processor that avoids the most starvation
of other processors (not a real list algorithm though).

P1

P2

Comm.

min c selection

P1

P2

Comm.

min loss selection

L. Marchal Independant Tasks Scheduling with Limited Memory 13/ 27

Simulation study: Bandwidth-centric

I 1 buffer (no possible overlap)

I comparison with an absolute upper bound.

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 10 100 1000

re
la

tiv
e

pe
rfo

rm
an

ce
 ra

tio

number of tasks (logarithmic scale)

min_c
min_w

mct
min_loss

I network = critical resource

I bandwidth-centric strategies give best results

L. Marchal Independant Tasks Scheduling with Limited Memory 14/ 27

Simulation study: Bandwidth-centric

I 1 buffer (no possible overlap)

I comparison with an absolute upper bound.

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 10 100 1000

re
la

tiv
e

pe
rfo

rm
an

ce
 ra

tio

number of tasks (logarithmic scale)

min_c
min_w

mct
min_loss

I network = critical resource

I bandwidth-centric strategies give best results

L. Marchal Independant Tasks Scheduling with Limited Memory 14/ 27

Simulation study: Bandwidth-centric

I 1 buffer (no possible overlap)

I comparison with an absolute upper bound.

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 10 100 1000

re
la

tiv
e

pe
rfo

rm
an

ce
 ra

tio

number of tasks (logarithmic scale)

min_c
min_w

mct
min_loss

I network = critical resource

I bandwidth-centric strategies give best results

L. Marchal Independant Tasks Scheduling with Limited Memory 14/ 27

Simulation study: 2 buffers are sufficient

I for 1200 tasks

I comparison with an absolute upper bound.

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 0 5 10 15 20 25 30

re
la

tiv
e

pe
rfo

rm
an

ce
 ra

tio

size of the buffer

min_c
min_w

mct
min_loss

I 2 buffers are sufficient in most situations

I Other studies show similar results [CCFK03]

L. Marchal Independant Tasks Scheduling with Limited Memory 15/ 27

Simulation study: 2 buffers are sufficient

I for 1200 tasks

I comparison with an absolute upper bound.

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 0 5 10 15 20 25 30

re
la

tiv
e

pe
rfo

rm
an

ce
 ra

tio

size of the buffer

min_c
min_w

mct
min_loss

I 2 buffers are sufficient in most situations

I Other studies show similar results [CCFK03]

L. Marchal Independant Tasks Scheduling with Limited Memory 15/ 27

Simulation study: 2 buffers are sufficient

I for 1200 tasks

I comparison with an absolute upper bound.

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 0 5 10 15 20 25 30

re
la

tiv
e

pe
rfo

rm
an

ce
 ra

tio

size of the buffer

min_c
min_w

mct
min_loss

I 2 buffers are sufficient in most situations

I Other studies show similar results [CCFK03]

L. Marchal Independant Tasks Scheduling with Limited Memory 15/ 27

Outline

Master-Slave Paradigm to Schedule Independant Tasks

Introducing Memory Constraints - Complexity Results

Approximation Algorithms and Heuristics

Variations
Throughput Maximization
Divisible Load

Conclusion

L. Marchal Independant Tasks Scheduling with Limited Memory 16/ 27

Throughput maximization

hardness may come from the metric makespan:

I setting up such a platform is worthwhile only if the application
is large: big task number, long execution time

I running 5h or 5h02 is equivalent

I modeling a large distributed computing platform is hard and
the accuracy of the parameters is even harder to guarantee;

concentrate steady-state, try to maximize throughput

steady-state notations: average quantities over time

I αi: number of tasks processed by Pi per time-unit;

L. Marchal Independant Tasks Scheduling with Limited Memory 17/ 27

Throughput maximization

hardness may come from the metric makespan:

I setting up such a platform is worthwhile only if the application
is large: big task number, long execution time

I running 5h or 5h02 is equivalent

I modeling a large distributed computing platform is hard and
the accuracy of the parameters is even harder to guarantee;

concentrate steady-state, try to maximize throughput

steady-state notations: average quantities over time

I αi: number of tasks processed by Pi per time-unit;

L. Marchal Independant Tasks Scheduling with Limited Memory 17/ 27

Throughput maximization

hardness may come from the metric makespan:

I setting up such a platform is worthwhile only if the application
is large: big task number, long execution time

I running 5h or 5h02 is equivalent

I modeling a large distributed computing platform is hard and
the accuracy of the parameters is even harder to guarantee;

concentrate steady-state, try to maximize throughput

steady-state notations: average quantities over time

I αi: number of tasks processed by Pi per time-unit;

L. Marchal Independant Tasks Scheduling with Limited Memory 17/ 27

Throughput maximization

hardness may come from the metric makespan:

I setting up such a platform is worthwhile only if the application
is large: big task number, long execution time

I running 5h or 5h02 is equivalent

I modeling a large distributed computing platform is hard and
the accuracy of the parameters is even harder to guarantee;

concentrate steady-state, try to maximize throughput

steady-state notations: average quantities over time

I αi: number of tasks processed by Pi per time-unit;

L. Marchal Independant Tasks Scheduling with Limited Memory 17/ 27

Throughput maximization

hardness may come from the metric makespan:

I setting up such a platform is worthwhile only if the application
is large: big task number, long execution time

I running 5h or 5h02 is equivalent

I modeling a large distributed computing platform is hard and
the accuracy of the parameters is even harder to guarantee;

concentrate steady-state, try to maximize throughput

steady-state notations: average quantities over time

I αi: number of tasks processed by Pi per time-unit;

L. Marchal Independant Tasks Scheduling with Limited Memory 17/ 27

Throughput maximization

hardness may come from the metric makespan:

I setting up such a platform is worthwhile only if the application
is large: big task number, long execution time

I running 5h or 5h02 is equivalent

I modeling a large distributed computing platform is hard and
the accuracy of the parameters is even harder to guarantee;

concentrate steady-state, try to maximize throughput

steady-state notations: average quantities over time

I αi: number of tasks processed by Pi per time-unit;

L. Marchal Independant Tasks Scheduling with Limited Memory 17/ 27

Bounding with Linear Programming

Any schedule verifies:

I ∀i αi × wi 6 1 (processing time)

I ∀i
∑

i

αi × ci,j 6 1 (emissions are sequential)

throughput =
∑

i

αi

smaller than the solution of the LP:

MAXIMIZE
∑

i αi,
SUCH THAT{
∀i αi × wi 6 1
∀i

∑
j sent(Pi → Pj)× ci,j 6 1

L. Marchal Independant Tasks Scheduling with Limited Memory 18/ 27

Bounding with Linear Programming

Any schedule verifies:

I ∀i αi × wi 6 1 (processing time)

I ∀i
∑

i

αi × ci,j 6 1 (emissions are sequential)

throughput =
∑

i

αi

smaller than the solution of the LP:

MAXIMIZE
∑

i αi,
SUCH THAT{
∀i αi × wi 6 1
∀i

∑
j sent(Pi → Pj)× ci,j 6 1

L. Marchal Independant Tasks Scheduling with Limited Memory 18/ 27

Bounding with Linear Programming

Any schedule verifies:

I ∀i αi × wi 6 1 (processing time)

I ∀i
∑

i

αi × ci,j 6 1 (emissions are sequential)

throughput =
∑

i

αi

smaller than the solution of the LP:

MAXIMIZE
∑

i αi,
SUCH THAT{
∀i αi × wi 6 1
∀i

∑
j sent(Pi → Pj)× ci,j 6 1

L. Marchal Independant Tasks Scheduling with Limited Memory 18/ 27

Building an optimal periodic schedule

I from optimal solution of LP ⇒ periodic schedule with optimal
throughput

I schedule asymptotically optimal with respect to the makespan
(neglect initialization and clean-up phases)

approach much powerful than needed here: enables to target

I arbitrarily complex platform graphs (not only star-shaped)

I tasks with dependencies (DAGs with bounded depth [BLMR03])

however, the size of the period may be large,
which incurs big memory overhead

L. Marchal Independant Tasks Scheduling with Limited Memory 19/ 27

Building an optimal periodic schedule

I from optimal solution of LP ⇒ periodic schedule with optimal
throughput

I schedule asymptotically optimal with respect to the makespan
(neglect initialization and clean-up phases)

approach much powerful than needed here: enables to target

I arbitrarily complex platform graphs (not only star-shaped)

I tasks with dependencies (DAGs with bounded depth [BLMR03])

however, the size of the period may be large,
which incurs big memory overhead

L. Marchal Independant Tasks Scheduling with Limited Memory 19/ 27

Building an optimal periodic schedule

I from optimal solution of LP ⇒ periodic schedule with optimal
throughput

I schedule asymptotically optimal with respect to the makespan
(neglect initialization and clean-up phases)

approach much powerful than needed here: enables to target

I arbitrarily complex platform graphs (not only star-shaped)

I tasks with dependencies (DAGs with bounded depth [BLMR03])

however, the size of the period may be large,
which incurs big memory overhead

L. Marchal Independant Tasks Scheduling with Limited Memory 19/ 27

Building an optimal periodic schedule

I from optimal solution of LP ⇒ periodic schedule with optimal
throughput

I schedule asymptotically optimal with respect to the makespan
(neglect initialization and clean-up phases)

approach much powerful than needed here: enables to target

I arbitrarily complex platform graphs (not only star-shaped)

I tasks with dependencies (DAGs with bounded depth [BLMR03])

however, the size of the period may be large,
which incurs big memory overhead

L. Marchal Independant Tasks Scheduling with Limited Memory 19/ 27

Building an optimal periodic schedule

I from optimal solution of LP ⇒ periodic schedule with optimal
throughput

I schedule asymptotically optimal with respect to the makespan
(neglect initialization and clean-up phases)

approach much powerful than needed here: enables to target

I arbitrarily complex platform graphs (not only star-shaped)

I tasks with dependencies (DAGs with bounded depth [BLMR03])

however, the size of the period may be large,
which incurs big memory overhead

L. Marchal Independant Tasks Scheduling with Limited Memory 19/ 27

Building an optimal periodic schedule

I from optimal solution of LP ⇒ periodic schedule with optimal
throughput

I schedule asymptotically optimal with respect to the makespan
(neglect initialization and clean-up phases)

approach much powerful than needed here: enables to target

I arbitrarily complex platform graphs (not only star-shaped)

I tasks with dependencies (DAGs with bounded depth [BLMR03])

however, the size of the period may be large,
which incurs big memory overhead

L. Marchal Independant Tasks Scheduling with Limited Memory 19/ 27

What about the steady-state optimization ?

same problem as in the makespan optimization case:
with bounded buffer on each processor

The problems gets strongly NP-hard again. /

a1 a3

a2 BB

a4 a6

a5

a1 a3

a2 BB

a4 a6

a5

. . .

. . .

. . .

. . .

. . .

. . .P comp
B

P comp
1

P comp
2

P comp
3

P comp
4

P comp
5

P comp
6

2nB 4nB

communications

L. Marchal Independant Tasks Scheduling with Limited Memory 20/ 27

Divisible load theory: one-round

divisible task:
I perfectly parallel job

I can be arbitrarily split into several independent parts

Linear model:

I Transfer time of X units of load to Pi: ci ×X

I Processing time of X units of load to Pi: wi ×X

One round distribution:

TfT2 Tp

...

T1

αpwp

α2w2

α1w1

α2c2 αpcpα1c1

P2

Network

Pp

P1

L. Marchal Independant Tasks Scheduling with Limited Memory 21/ 27

Divisible load theory: one-round

divisible task:
I perfectly parallel job

I can be arbitrarily split into several independent parts

Linear model:

I Transfer time of X units of load to Pi: ci ×X

I Processing time of X units of load to Pi: wi ×X

One round distribution:

TfT2 Tp

...

T1

αpwp

α2w2

α1w1

α2c2 αpcpα1c1

P2

Network

Pp

P1

L. Marchal Independant Tasks Scheduling with Limited Memory 21/ 27

Divisible load theory: one-round

divisible task:
I perfectly parallel job

I can be arbitrarily split into several independent parts

Linear model:

I Transfer time of X units of load to Pi: ci ×X

I Processing time of X units of load to Pi: wi ×X

One round distribution:

TfT2 Tp

...

T1

αpwp

α2w2

α1w1

α2c2 αpcpα1c1

P2

Network

Pp

P1

L. Marchal Independant Tasks Scheduling with Limited Memory 21/ 27

Divisible load theory: one-round

divisible task:
I perfectly parallel job

I can be arbitrarily split into several independent parts

Linear model:

I Transfer time of X units of load to Pi: ci ×X

I Processing time of X units of load to Pi: wi ×X

One round distribution:

TfT2 Tp

...

T1

αpwp

α2w2

α1w1

α2c2 αpcpα1c1

P2

Network

Pp

P1

L. Marchal Independant Tasks Scheduling with Limited Memory 21/ 27

Divisible load theory: one-round

divisible task:
I perfectly parallel job

I can be arbitrarily split into several independent parts

Linear model:

I Transfer time of X units of load to Pi: ci ×X

I Processing time of X units of load to Pi: wi ×X

One round distribution:

TfT2 Tp

...

T1

αpwp

α2w2

α1w1

α2c2 αpcpα1c1

P2

Network

Pp

P1

L. Marchal Independant Tasks Scheduling with Limited Memory 21/ 27

Heterogeneous stars

One can prove that:

I all processors should be used;

I all processors should finish at the same moment;

I data should be sent by the order of increasing ci.

without memory limitations:

Processing power does not matter,
only the communication capabilities!

L. Marchal Independant Tasks Scheduling with Limited Memory 22/ 27

Heterogeneous stars

One can prove that:

I all processors should be used;

I all processors should finish at the same moment;

I data should be sent by the order of increasing ci.

without memory limitations:

Processing power does not matter,
only the communication capabilities!

L. Marchal Independant Tasks Scheduling with Limited Memory 22/ 27

Heterogeneous stars

One can prove that:

I all processors should be used;

I all processors should finish at the same moment;

I data should be sent by the order of increasing ci.

without memory limitations:

Processing power does not matter,
only the communication capabilities!

L. Marchal Independant Tasks Scheduling with Limited Memory 22/ 27

Heterogeneous stars

One can prove that:

I all processors should be used;

I all processors should finish at the same moment;

I data should be sent by the order of increasing ci.

without memory limitations:

Processing power does not matter,
only the communication capabilities!

L. Marchal Independant Tasks Scheduling with Limited Memory 22/ 27

Affine Multiple rounds

I allow for multiple rounds ⇒ better results

I flaw of modeling: infinite number of rounds (with infinitely
small chuncks) gives optimal results

R0 R1 Rk

P2

Network

Pp

P1

introduce latencies: → affine model

I Transfer time of X units of load to Pi: Ci + ci ×X

complexity of the 1-round (or multi-rounds) affine divisible load dis-
tribution is still open!
L. Marchal Independant Tasks Scheduling with Limited Memory 23/ 27

Affine Multiple rounds

I allow for multiple rounds ⇒ better results

I flaw of modeling: infinite number of rounds (with infinitely
small chuncks) gives optimal results

R0 R1 Rk

P2

Network

Pp

P1

introduce latencies: → affine model

I Transfer time of X units of load to Pi: Ci + ci ×X

complexity of the 1-round (or multi-rounds) affine divisible load dis-
tribution is still open!
L. Marchal Independant Tasks Scheduling with Limited Memory 23/ 27

Affine Multiple rounds

I allow for multiple rounds ⇒ better results

I flaw of modeling: infinite number of rounds (with infinitely
small chuncks) gives optimal results

R0 R1 Rk

P2

Network

Pp

P1

introduce latencies: → affine model

I Transfer time of X units of load to Pi: Ci + ci ×X

complexity of the 1-round (or multi-rounds) affine divisible load dis-
tribution is still open!
L. Marchal Independant Tasks Scheduling with Limited Memory 23/ 27

Affine Multiple rounds

I allow for multiple rounds ⇒ better results

I flaw of modeling: infinite number of rounds (with infinitely
small chuncks) gives optimal results

R0 R1 Rk

P2

Network

Pp

P1

introduce latencies: → affine model

I Transfer time of X units of load to Pi: Ci + ci ×X

complexity of the 1-round (or multi-rounds) affine divisible load dis-
tribution is still open!
L. Marchal Independant Tasks Scheduling with Limited Memory 23/ 27

Adding memory constraints

once again, adding memory constraints ⇒ same problem as for in-
dependent tasks:

The problem gets strongly NP-hard again,
whatever the number of distribution may be.

P2
...

Pn

communications

P1

NBNBNB

a6

a2

a3 a4

. . .

B

a3n−2

a5 a3n−1

a3n

Q3n

Q1

Q2

Q3

Q5

Q6

Q4

...
...

Pn+1

a1
n2B

n(N + 1)B + NB + n2B

L. Marchal Independant Tasks Scheduling with Limited Memory 24/ 27

Outline

Master-Slave Paradigm to Schedule Independant Tasks

Introducing Memory Constraints - Complexity Results

Approximation Algorithms and Heuristics

Variations
Throughput Maximization
Divisible Load

Conclusion

L. Marchal Independant Tasks Scheduling with Limited Memory 25/ 27

Conclusion

I On a theoretical point of view, memory constraints make all
simple problems much harder. Even “classical” relaxation tech-
niques fail to make the problem more tractable.

I On a practical point of view, if these constraints are not too
tight (sufficient to overlap a little bit communications and com-
putations), very efficient simple heuristics can be used.

I Classical list-based scheduling heuristics that aim at greedily
minimizing the completion time of each task are outperformed
by the simplest heuristic that consists in delegating data to the
available processor that has the smallest communication time,
regardless of its computation power.

I The different models we have been dealing with tend to confirm
this trend on a theoretical point of view.

On an heterogeneous collection of workstations, network is the
critical resource and it should be handled with care using band-
width centric approaches.

L. Marchal Independant Tasks Scheduling with Limited Memory 26/ 27

Conclusion

I On a theoretical point of view, memory constraints make all
simple problems much harder. Even “classical” relaxation tech-
niques fail to make the problem more tractable.

I On a practical point of view, if these constraints are not too
tight (sufficient to overlap a little bit communications and com-
putations), very efficient simple heuristics can be used.

I Classical list-based scheduling heuristics that aim at greedily
minimizing the completion time of each task are outperformed
by the simplest heuristic that consists in delegating data to the
available processor that has the smallest communication time,
regardless of its computation power.

I The different models we have been dealing with tend to confirm
this trend on a theoretical point of view.

On an heterogeneous collection of workstations, network is the
critical resource and it should be handled with care using band-
width centric approaches.

L. Marchal Independant Tasks Scheduling with Limited Memory 26/ 27

Conclusion

I On a theoretical point of view, memory constraints make all
simple problems much harder. Even “classical” relaxation tech-
niques fail to make the problem more tractable.

I On a practical point of view, if these constraints are not too
tight (sufficient to overlap a little bit communications and com-
putations), very efficient simple heuristics can be used.

I Classical list-based scheduling heuristics that aim at greedily
minimizing the completion time of each task are outperformed
by the simplest heuristic that consists in delegating data to the
available processor that has the smallest communication time,
regardless of its computation power.

I The different models we have been dealing with tend to confirm
this trend on a theoretical point of view.

On an heterogeneous collection of workstations, network is the
critical resource and it should be handled with care using band-
width centric approaches.

L. Marchal Independant Tasks Scheduling with Limited Memory 26/ 27

Conclusion

I On a theoretical point of view, memory constraints make all
simple problems much harder. Even “classical” relaxation tech-
niques fail to make the problem more tractable.

I On a practical point of view, if these constraints are not too
tight (sufficient to overlap a little bit communications and com-
putations), very efficient simple heuristics can be used.

I Classical list-based scheduling heuristics that aim at greedily
minimizing the completion time of each task are outperformed
by the simplest heuristic that consists in delegating data to the
available processor that has the smallest communication time,
regardless of its computation power.

I The different models we have been dealing with tend to confirm
this trend on a theoretical point of view.

On an heterogeneous collection of workstations, network is the
critical resource and it should be handled with care using band-
width centric approaches.

L. Marchal Independant Tasks Scheduling with Limited Memory 26/ 27

Bibliography

O. Beaumont, A. Legrand, L. Marchal, and Y. Robert.
Scheduling strategies for mixed data and task parallelism on heterogeneous clusters.
Parallel Processing Letters, 13(2), 2003.

Olivier Beaumont, Arnaud Legrand, and Yves Robert.
A polynomial-time algorithm for allocating independent tasks on heterogeneous fork-graphs.
In ISCIS XVII, Seventeenth International Symposium On Computer and Information Sciences,
pages 115–119. CRC Press, 2002.

L. Carter, H. Casanova, J. Ferrante, and B. Kreaseck.
Autonomous protocols for bandwidth-centric scheduling of independent-task applications.
In International Parallel and Distributed Processing Symposium IPDPS’2003. IEEE Computer
Society Press, 2003.

Pierre-François Dutot.
Complexity of master-slave tasking on heterogeneous trees.
European Journal of Operational Research, 2003.
Special issue on the Dagstuhl meeting on Scheduling for Computing and Manufacturing systems
(to appear).

Pierre-François Dutot.
Master-slave tasking on heterogeneous processors.
In International Parallel and Distributed Processing Symposium IPDPS’2003. IEEE Computer
Society Press, 2003.

L. Marchal Independant Tasks Scheduling with Limited Memory 27/ 27

	Master-Slave Paradigm to Schedule Independant Tasks
	Introducing Memory Constraints - Complexity Results
	Approximation Algorithms and Heuristics
	Variations
	Throughput Maximization
	Divisible Load

	Conclusion

