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Independent Tasks Scheduling

I A set of independent identical tasks to be processed by some
slaves. How to get the best performances on an heterogeneous
set of workstations ?
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I Applications: cellular micro-physiology, protein conformations,
particle detection, . . .
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Heterogeneous stars

I ci = transfer time of one
task to Pi

I wi = processing time of
one task on Pi

I 1-port communications

I Computation and com-
munication overlap

P0

P1 P2 PpPi

w1 w2 wi wp

ci

cpc1

c2

Given a master-slave platform (ci, wi)16i6p, what is
the minimum time needed to process n tasks ?

Can be solved in time O(n2p2) with a non-trivial greedy algorithm [BLR02].
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Introducing Memory Constraints

I ci = transfer time of one
task to Pi

I wi = processing time of
one task on Pi

I 1-port communications

I Computation and
communication overlap

P0

P1 P2 PpPi

w1 w2 wi wp

ci

cpc1

c2

I bi = size of the buffer in Pi

maximum number of tasks that Pi can be hold simultaneously
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I Computation and
communication overlap

P0

P1 P2 PpPi

b1 b2 bi bp

w1 w2 wi wp

ci

cpc1

c2

wi

Pi

I bi = size of the buffer in Pi

maximum number of tasks that Pi can be hold simultaneously

buffer in Pi (bi = 8):

communication

computation

L. Marchal Independant Tasks Scheduling with Limited Memory 7/ 27



Introducing Memory Constraints

I suppose a bounded buffer of tasks for each processor
=⇒ hard problem on star platforms!

I we prove that this problem is strongly NP-hard from 3-Dimensional
matching

Given 3n integers a1, . . . , a3n and an integer B, is there a partition
of the ai’s into n groups of 3 integers, such that each group sums
to B?

P0

P1 P2 PBP3n

11 1 1

2nB2nB 2nB B

a1

a2

B

a3n

Is it possible to process at least 5n tasks in 4nB
units of time on the above platform?
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Introducing Memory constraints

Ordering the communications is hard !

P comp
1

P comp
2

P comp
3

P comp
4

P comp
5

P comp
6

a1 a3B a4 a6B B B
communications

P comp
B

a2 a5

B B

B B

2nB 4nB
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A simple 2-approximation

worse case: buffers holding only 1 task
=⇒ no communication/computation overlap

ni = number of task that Pi would process in the optimal solution
without memory constraint

A task is sent to Pi as soon as

I the communication medium is free

I Pi is idle

I Pi has processed less than ni tasks

This simple list scheduling is a 2-approximation: the makespan can-
not be larger than twice the makespan of the optimal schedule with-
out memory limitations.
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Heuristic design - 1

I List-based heuristics

I Schedule a task as soon as possible

How to choose between several available processors ?
Different selection functions:

I min c : choose the smallest communication time

I min w : choose the smallest processing time

I mct : choose the processor that will finish this task the sooner
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Heuristic design

I min loss : send to the processor that avoids the most starvation
of other processors (not a real list algorithm though).

P1

P2

Comm.

min c selection

P1

P2

Comm.

min loss selection
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Simulation study: Bandwidth-centric

I 1 buffer (no possible overlap)

I comparison with an absolute upper bound.
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I network = critical resource

I bandwidth-centric strategies give best results
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Simulation study: 2 buffers are sufficient

I for 1200 tasks

I comparison with an absolute upper bound.
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I 2 buffers are sufficient in most situations

I Other studies show similar results [CCFK03]
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Throughput maximization

hardness may come from the metric makespan:

I setting up such a platform is worthwhile only if the application
is large: big task number, long execution time

I running 5h or 5h02 is equivalent

I modeling a large distributed computing platform is hard and
the accuracy of the parameters is even harder to guarantee;

concentrate steady-state, try to maximize throughput

steady-state notations: average quantities over time

I αi: number of tasks processed by Pi per time-unit;
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Bounding with Linear Programming

Any schedule verifies:

I ∀i αi × wi 6 1 (processing time)

I ∀i
∑

i

αi × ci,j 6 1 (emissions are sequential)

throughput =
∑

i

αi

smaller than the solution of the LP:

MAXIMIZE
∑

i αi,
SUCH THAT{
∀i αi × wi 6 1
∀i

∑
j sent(Pi → Pj)× ci,j 6 1
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Building an optimal periodic schedule

I from optimal solution of LP ⇒ periodic schedule with optimal
throughput

I schedule asymptotically optimal with respect to the makespan
(neglect initialization and clean-up phases)

approach much powerful than needed here: enables to target

I arbitrarily complex platform graphs (not only star-shaped)

I tasks with dependencies (DAGs with bounded depth [BLMR03])

however, the size of the period may be large,
which incurs big memory overhead
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What about the steady-state optimization ?

same problem as in the makespan optimization case:
with bounded buffer on each processor

The problems gets strongly NP-hard again. /

a1 a3

a2 BB

a4 a6

a5

a1 a3

a2 BB

a4 a6

a5

. . .

. . .

. . .

. . .

. . .

. . .P comp
B

P comp
1

P comp
2

P comp
3

P comp
4

P comp
5

P comp
6

2nB 4nB

communications
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Divisible load theory: one-round

divisible task:
I perfectly parallel job

I can be arbitrarily split into several independent parts

Linear model:

I Transfer time of X units of load to Pi: ci ×X

I Processing time of X units of load to Pi: wi ×X

One round distribution:

TfT2 Tp

...

T1

αpwp

α2w2

α1w1

α2c2 αpcpα1c1

P2

Network

Pp

P1

L. Marchal Independant Tasks Scheduling with Limited Memory 21/ 27



Divisible load theory: one-round

divisible task:
I perfectly parallel job

I can be arbitrarily split into several independent parts

Linear model:

I Transfer time of X units of load to Pi: ci ×X

I Processing time of X units of load to Pi: wi ×X

One round distribution:

TfT2 Tp

...

T1

αpwp

α2w2

α1w1

α2c2 αpcpα1c1

P2

Network

Pp

P1
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Heterogeneous stars

One can prove that:

I all processors should be used;

I all processors should finish at the same moment;

I data should be sent by the order of increasing ci.

without memory limitations:

Processing power does not matter,
only the communication capabilities!
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Affine Multiple rounds

I allow for multiple rounds ⇒ better results

I flaw of modeling: infinite number of rounds (with infinitely
small chuncks) gives optimal results

R0 R1 Rk

P2

Network

Pp

P1

introduce latencies: → affine model

I Transfer time of X units of load to Pi: Ci + ci ×X

complexity of the 1-round (or multi-rounds) affine divisible load dis-
tribution is still open!
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Adding memory constraints

once again, adding memory constraints ⇒ same problem as for in-
dependent tasks:

The problem gets strongly NP-hard again,
whatever the number of distribution may be.
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Conclusion

I On a theoretical point of view, memory constraints make all
simple problems much harder. Even “classical” relaxation tech-
niques fail to make the problem more tractable.

I On a practical point of view, if these constraints are not too
tight (sufficient to overlap a little bit communications and com-
putations), very efficient simple heuristics can be used.

I Classical list-based scheduling heuristics that aim at greedily
minimizing the completion time of each task are outperformed
by the simplest heuristic that consists in delegating data to the
available processor that has the smallest communication time,
regardless of its computation power.

I The different models we have been dealing with tend to confirm
this trend on a theoretical point of view.

On an heterogeneous collection of workstations, network is the
critical resource and it should be handled with care using band-
width centric approaches.
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