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Scheduling on an heterogeneous environment

Scheduling parallel applications is already a challenging problem on
simple homogeneous platforms. On an heterogeneous one, it is even
more complicated.
Even when an optimal solution to a scheduling problem can be found
in polynomial time, small modifications of the underlying assump-
tions (e.g. addition of non-zero network latencies) often render the
problem NP-hard:

; low complexity heuristics
Questions:

I How to compare two different heuristics?

I How to study the flaws of the modeling?
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Real experiments . . .

Modern computing platforms are increasingly distributed and often
span multiple administrative domains.

I Resource availability fluctuations makes it impossible to con-
duct repeatable experiments for relatively long running applica-
tions.

I The number of platform configurations that can be explored is
limited.
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. . . or simulation

Simulation has been used extensively as a way to evaluate and com-
pare scheduling strategies as simulation experiments are repeatable,
configurable, and generally fast. But. . .

I No standard : “throw-away” simulators make it difficult to re-
produce results. This lack of standard simulation procedure and
software was somewhat justifiable when the simulation models
in use were simplistic but traditional models and assumptions
about computing platforms are no longer valid for modern plat-
forms.

I Need for realistic and more complex models than the one used
for designing algorithms. The assumption that the behavior
of the computing platform is perfectly predictable also needs
to be revisited as modern platforms exhibit dynamic resource
availabilities.

How to model a distributed computing platform made of thousands
of non identical and unreliable processors and links ?
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Network Simulators

Goal : I understanding networks behavior, routing protocols,
QoS, . . .

I identifying limitations of network protocols and develop-
ing improvements.

; requires a precise simulation of the movement of packets along
the network links: NS, DaSSF, OMNeT++.

Inadequate
We are interested by the network behavior as it is experienced by an
application.

I Due to their highly detailed simulation models, most network
simulators induce long simulation times (e.g. they implement
the TCP stack).

I Adding CPU resources to model applications using the network
is labor-intensive.

I External background load is generally done by using additional
random connections, hence a longer simulation time.
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Platform Emulation

A few examples:

MicroGrid (UCSD)

I The computing platform is mapped onto a fast cluster: a
fraction of CPU is allocated to each process according to
the speed and the load of the simulated host.

I Network simulation is handled through DaSSF
I No external load for the network.

PANDA (Amsterdam)

I Two-level grid (High speed LAN or slow WAN) and no pro-
cessor heterogeneity: one-to-one mapping of the computing
platform on a cluster; virtual inter-cluster links are artificially
slowed down.

I No external load for processors.

The code is run for real ; too slow, too “precise”, too
difficult for simple tests or the design phase.
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SIMGRID

History:

I Application Level Scheduling (AppLeS) : to a given application
corresponds a given scheduler. ; Many students have been
working on scheduling on the grid with specific needs.

I From these experiences, Henri Casanova (UCSD) designed a
minimal set of low-level basic functions essential for building a
simulator that uses traces: SG (SIMGRID v.1)

I MSG is a simulator built on top of SG and adapted to the
study of non-centralized scheduling (SIMGRID v.2). Simulation
is described in terms of communicating processes.

Strong points:

I Ability to use complex and realistic platforms.

I Fast simulations : ratio simulation time
simulated time ≈ 10−6.
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SG : objects

A trace is a time-stamped series of values.
Two different types: resources and tasks.

SG Resource Name, availability trace (CPU, bandwidth), time ac-
cess trace (latency), sharing policy (sequential, shared, TCP).

SG Task Name, amount of work

SG allows to create those objects and to schedule a task on a re-
source.

I Starting a transfer of S bytes on a resource at time t0 requires
T units of time with T s.a.:∫ t0+T

t=t0+L(t0)
B(t)dt = S
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WormHole : computation intensive (packets), not that realistic
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How to model a file transfer along a path?

∀l ∈ L,
∑

r∈R s.a. l∈r

ρr 6 cl,

Max-Min Fairness maximize min
r∈R

ρr.

Proportional Fairness maximize
∑
r∈R

ρr log(ρr).

MCT minimization maximize
∑
r∈R

1
ρr

.

TCP behavior Close to max-min. In MSG : max-min + bound
by 1/RTT
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Task an amount of computing, a data size, and private data;

Path a set of network links used to transfer a task from a location
to another location;

Channel mailbox number.
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Flat models

Brain-dead N dots are randomly chosen (using a uniform distribu-
tion) in a square. Then they are randomly connected with a
uniform probability α.

Waxman Dots are randomly placed on a square of side c and are
randomly connected with a probability P (u, v) = αe−d/(βL), 0 <
α, β 6 1 where d is the Euclidean distance between u and v and
L = c

√
2. The edge number increases with α and the edge length

heterogeneity increases with β.

Exponential Dots are randomly placed and are connected with a
probability P (u, v) = αe−d/(L−d).

Locality This model is due to Zegura. Dots are randomly placed
and are connected with a probability

P (u, v) =

{
α if d < L× r

β if d > L× r
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Top-Down

N-level Starting from a connected graph, at each step, a node is
replaced by another connected graph (Tiers, GT-ITM).

Transit-stub 2-levels of hierarchy and some additional edges (GT-
ITM, BRITE).
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Gathering traces

Network Weather Service

I Developed at UCSB

I Provides accurate data on a meta-
computing platform

I Forecasting on links and processors
performances

I Almost automatized deployment
from the ENV output.
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A few remarks

SIMGRID cannot: but SIMGRID rather can

help you to figure out what is
going to be the duration of a
real application

help you to compare two algo-
rithms

model accurately the behavior
of a computing platform

help you to study the robust-
ness of your algorithm in a
noisy environment

help you to fix some experimen-
tal thresholds

be used to design adaptive
thresholds strategies and test
them against a wide variety of
environments

help you to debug an already
existing code

help you to test and debug your
algorithms before the real im-
plementation
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Always keep in mind

I Modeling is the art of tradeoff: trying to model everything is
hopeless and it may be worse than a plain modeling.

I If you are working with DAGs and perfectly centralized schedul-
ing (i.e. with Gantt Charts) then you should use SG.

I If many scheduling actions may occur independently, then use
MSG. If you fail to express something with MSG, just wonder
what you would do if you had to implement it for real.

I SIMGRID is still under development. . .,
http://gcl.ucsd.edu/simgrid/

http://gcl.ucsd.edu/simgrid/
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