# VoroNet: A scalable object network based on Voronoi tessellations

Olivier Beaumont, Anne-Marie Kermarrec, Loris Marchal and Étienne Rivière

SCALAPPLIX project, LaBRI (Bordeaux)

PARIS project, IRISA (Rennes)

GRAAL project, LIP, ENS Lyon

March 2006



- 2 Description of VoroNet
- **③** Evaluation (simulation)
- 4 Perspectives, conclusion

### Outline



- 2 Description of VoroNet
- 3 Evaluation (simulation)
- 4 Perspectives, conclusion

What is peer-to-peer ?

- paradigm to organize distributed ressources (peers)
- overlay network: logical organization
- core functionnality: search objects in the system
- distributed hashtables (DHT) (Chord, Pastry,...)
- hash function gives identifiers for peers and objects
- choice of hash function to get uniform distribution ain goals:
- scalability 🙂
- fault tolerance  $\bigcirc$
- ullet efficient search igodot

but restricted to exact search oxdot highly depends on the hash function oxdot

What is peer-to-peer ?

- paradigm to organize distributed ressources (peers)
- overlay network: logical organization
- core functionnality: search objects in the system
- distributed hashtables (DHT) (Chord, Pastry,...)
- hash function gives identifiers for peers and objects
- choice of hash function to get uniform distribution main goals:
  - scalability 🙂
  - fault tolerance 🙂
  - ullet efficient search igodot

What is peer-to-peer ?

- paradigm to organize distributed ressources (peers)
- overlay network: logical organization
- core functionnality: search objects in the system
- distributed hashtables (DHT) (Chord, Pastry,...)
- hash function gives identifiers for peers and objects
- choice of hash function to get uniform distribution main goals:
  - scalability 🙂
  - fault tolerance 🙂
  - ullet efficient search igodot

but restricted to exact search S highly depends on the hash function S

### Peer-to-peer overlay

Content-based topologies:

- CAN (Content Adressable Network)
  - d-dimensional torus
  - degree O(d)
  - diameter  $O(N^{1/d})$
  - not really "content addressed": location (of objects and peers) computed with hash function (to ensure homogeneous distribution)

| • |   |
|---|---|
|   | • |

### Peer-to-peer overlay

Content-based topologies:

- CAN (Content Adressable Network)
  - d-dimensional torus
  - degree O(d)

• ?

- diameter  $O(N^{1/d})$
- not really "content addressed": location (of objects and peers) computed with hash function (to ensure homogeneous distribution)

| • | • |
|---|---|
|   | • |

### Peer-to-peer overlay

Content-based topologies:

- CAN (Content Adressable Network)
  - d-dimensional torus
  - degree O(d)
  - diameter  $O(N^{1/d})$
  - not really "content addressed": location (of objects and peers) computed with hash function (to ensure homogeneous distribution)

| • | • |   |
|---|---|---|
|   |   | • |

• ?

### • Object-based peer-to-peer overlay

- objects are linked rather than peers
- an object is held by the node which published it
- Content-based topology:
  - not based on a DHT
  - objects with "close" attributes will be neighbors
- *d*-dimensional attribute space
- VoroNet topology is inspired from:
  - Voronoi diagram in the attribute space
  - Kleinberg's small world routing algorithm designed for grids

• Object-based peer-to-peer overlay

- objects are linked rather than peers
- an object is held by the node which published it
- Content-based topology:
  - not based on a DHT
  - objects with "close" attributes will be neighbors
- *d*-dimensional attribute space

VoroNet topology is inspired from:

- Voronoi diagram in the attribute space
- Kleinberg's small world routing algorithm designed for grids

• Object-based peer-to-peer overlay

- objects are linked rather than peers
- an object is held by the node which published it
- Content-based topology:
  - not based on a DHT
  - objects with "close" attributes will be neighbors
- *d*-dimensional attribute space
- VoroNet topology is inspired from:
  - Voronoi diagram in the attribute space
  - Kleinberg's small world routing algorithm designed for grids

- Object-based peer-to-peer overlay
  - objects are linked rather than peers
  - an object is held by the node which published it
- Content-based topology:
  - not based on a DHT
  - objects with "close" attributes will be neighbors
- d-dimensional attribute space we consider for now: d = 2
- VoroNet topology is inspired from:
  - Voronoi diagram in the attribute space
  - Kleinberg's small world routing algorithm designed for grids

- Object-based peer-to-peer overlay
  - objects are linked rather than peers
  - an object is held by the node which published it
- Content-based topology:
  - not based on a DHT
  - objects with "close" attributes will be neighbors
- d-dimensional attribute space we consider for now: d = 2
- VoroNet topology is inspired from:
  - Voronoi diagram in the attribute space
  - Kleinberg's small world routing algorithm designed for grids

### Voronoi tessellations



### • set of points in ${f R}^2$

- $\bullet\,$  consider object at point M
- region of points closer from  ${\cal M}$  than
- do the same for all objects
- Voronoi neighbors: when cells share a border
- graph of Voronoi neighbors: Delaunay triangularization



- set of points in  ${f R}^2$
- $\bullet\,$  consider object at point M
- $\bullet\,$  region of points closer from  $M\,$  than
- do the same for all objects
- Voronoi neighbors: when cells share a border
- graph of Voronoi neighbors: Delaunay triangularization



- ullet set of points in  ${f R}^2$
- $\bullet\,$  consider object at point M
- $\bullet\,$  region of points closer from  $M\,$  than
- do the same for all objects
- Voronoi neighbors: when cells share a border
- graph of Voronoi neighbors: Delaunay triangularization

### Voronoi tessellations



- ullet set of points in  ${f R}^2$
- consider object at point  ${\cal M}$
- region of points closer from M than from A

### • do the same for all objects

- Voronoi neighbors: when cells share a border
- graph of Voronoi neighbors: Delaunay triangularization

### Voronoi tessellations



- ${\scriptstyle \bullet}$  set of points in  ${\bf R}^2$
- consider object at point  ${\cal M}$
- region of points closer from M than from A

### do the same for all objects

- Voronoi neighbors: when cells share a border
- graph of Voronoi neighbors: Delaunay triangularization

### Voronoi tessellations



- $\bullet$  set of points in  ${\bf R}^2$
- consider object at point  ${\cal M}$
- region of points closer from M than from A and B

### do the same for all objects

- Voronoi neighbors: when cells share a border
- graph of Voronoi neighbors: Delaunay triangularization



- ${\bullet}\,$  set of points in  ${\bf R}^2$
- $\bullet\,$  consider object at point M
- region of points closer from M than from any other object: Voronoi cell of M (or region)
- do the same for all objects
- Voronoi neighbors: when cells share a border
- graph of Voronoi neighbors: Delaunay triangularization



- ${\bullet}\,$  set of points in  ${\bf R}^2$
- $\bullet\,$  consider object at point M
- region of points closer from M than from any other object: Voronoi cell of M (or region)
- do the same for all objects
- Voronoi neighbors: when cells share a border
- graph of Voronoi neighbors: Delaunay triangularization



- ${\ensuremath{\bullet}}$  set of points in  ${\ensuremath{\mathbf{R}}}^2$
- $\bullet\,$  consider object at point M
- region of points closer from M than from any other object: Voronoi cell of M (or region)
- do the same for all objects
- Voronoi neighbors: when cells share a border
- graph of Voronoi neighbors: Delaunay triangularization



- ${\ensuremath{\bullet}}$  set of points in  ${\ensuremath{\mathbf{R}}}^2$
- $\bullet\,$  consider object at point M
- region of points closer from M than from any other object: Voronoi cell of M (or region)
- do the same for all objects
- Voronoi neighbors: when cells share a border
- graph of Voronoi neighbors: Delaunay triangularization

### Kleinberg's small-world



- N nodes in a 2D grid  $(\sqrt{N} \times \sqrt{N})$ 
  - routing in  $O(\sqrt{N})$

• add random long range links:

- ▶ probability for a long link to be at distance l: ∝ <sup>1</sup>/<sub>1<sup>2</sup></sub>
- use greedy routing algorithm
- then routing in  $O(\ln^2 N)$

can be extended to any dimension d, with proba  $\propto \frac{1}{p}$ 

### Kleinberg's small-world



- N nodes in a 2D grid  $(\sqrt{N} \times \sqrt{N})$ 
  - routing in  $O(\sqrt{N})$
- add random long range links:
  - ▶ probability for a long link to be at distance l: ∝ 1/2
  - use greedy routing algorithm
  - then routing in  $O(\ln^2 N)$

can be extended to any dimension d, with proba  $\propto \frac{1}{10}$ 

### Kleinberg's small-world



- N nodes in a 2D grid  $(\sqrt{N} \times \sqrt{N})$ 
  - routing in  $O(\sqrt{N})$
- add random long range links:
  - ▶ probability for a long link to be at distance l: ∝ 1/2
  - use greedy routing algorithm
  - then routing in  $O(\ln^2 N)$
- can be extended to any dimension d, with proba  $\propto \frac{1}{l^d}$

### Outline



### 2 Description of VoroNet

- 3 Evaluation (simulation)
- 4 Perspectives, conclusion



- Voronoi neighbors
- Iong range neighbors:
  - randomly chose a target point t
  - the long range neighbors is the object "responsible" for point t
  - keep a back pointer for overlay maintenance
- close neighbors (within distance  $d_{\min}$ ) for convergence



- Voronoi neighbors
- Iong range neighbors:
  - randomly chose a target point t
  - the long range neighbors is the object "responsible" for point t
  - keep a back pointer for overlay maintenance
- close neighbors (within distance  $d_{\min}$ ) for convergence



- Voronoi neighbors
- Iong range neighbors:
  - randomly chose a target point t
  - $\blacktriangleright$  the long range neighbors is the object "responsible" for point t
  - keep a back pointer for overlay maintenance
- close neighbors (within distance  $d_{\min}$ ) for convergence



- Voronoi neighbors
- Iong range neighbors:
  - randomly chose a target point t
  - ▶ the long range neighbors is the object "responsible" for point t
  - keep a back pointer for overlay maintenance
- close neighbors (within distance  $d_{\min}$ ) for convergence



- Voronoi neighbors
- Iong range neighbors:
  - randomly chose a target point t
  - $\blacktriangleright$  the long range neighbors is the object "responsible" for point t
  - keep a back pointer for overlay maintenance
- ullet close neighbors (within distance  $d_{\min})$  for convergence

### VoroNet neighborhood – details

### • Space: 2-dimensional torus: $[0,1]\times [0,1]$

• Long link target of object x: distribution in  $1/d^2$ 

$$\mathsf{Pr}[\mathsf{target}(x) \in \mathcal{B}(y, dr)] = lpha rac{\pi r^2}{d(x, y)^2}$$

- Link always points on the closest object from target.
- Close neighbors: within  $d_{\min} = rac{1}{\pi N_{\max}}$

 $N_{\rm max} = {\rm maximal} \ {\rm number} \ {\rm of} \ {\rm nodes} \ {\rm for} \ {\rm which} \ {\rm we} \ {\rm have} \ {\rm an} \ {\rm efficient}$  routing

| Loris Marchal | VoroNet | 11/ 24 |
|---------------|---------|--------|

### VoroNet neighborhood – details

- Space: 2-dimensional torus:  $[0,1] \times [0,1]$
- Long link target of object x: distribution in  $1/d^2$

$$\mathsf{Pr}ig[\mathsf{target}(x)\in\mathcal{B}(y,dr)ig]=lpharac{\pi r^2}{d(x,y)^2}$$

- Link always points on the closest object from target.
- Close neighbors: within  $d_{\min} = \frac{1}{\pi N_{\max}}$

 $N_{\max} = \max$ imal number of nodes for which we have an efficient routing

### VoroNet neighborhood – details

- Space: 2-dimensional torus:  $[0,1] \times [0,1]$
- Long link target of object x: distribution in  $1/d^2$

$$\mathsf{Pr}ig[\mathsf{target}(x)\in\mathcal{B}(y,dr)ig]=lpharac{\pi r^2}{d(x,y)^2}$$

- Link always points on the closest object from target.
- Close neighbors: within  $d_{\min} = \frac{1}{\pi N_{\max}}$

 $N_{\max} = \max$ imal number of nodes for which we have an efficient routing

| Loris Marchal | VoroNet | 11/24 |
|---------------|---------|-------|
|               |         |       |
### VoroNet neighborhood – details

- Space: 2-dimensional torus:  $[0,1] \times [0,1]$
- Long link target of object x: distribution in  $1/d^2$

$$\mathsf{Pr}ig[\mathsf{target}(x)\in\mathcal{B}(y,dr)ig]=lpharac{\pi r^2}{d(x,y)^2}$$

- Link always points on the closest object from target.
- Close neighbors: within  $d_{\min} = \frac{1}{\pi N_{\max}}$

 $N_{\rm max} = {\rm maximal}$  number of nodes for which we have an efficient routing

VoroNet

- Voronoi neighbors:
  - $\blacktriangleright$  graph of the Voronoi neighbors is planar  $\Rightarrow$  average degree  $\leqslant 6$
  - ▶ *O*(1) size
  - mean value  $\leqslant$  6 (max = N)
- Close neighbors: number of objects in  $\mathcal{B}(o, d_{\min})$ 
  - O(1) size for a "reasonable" distribution
  - mean value = 1 (max = N)
- Long range neighbors:
  - one long range neighbor per object
  - O(1) backward links for a "reasonable" distribution
  - mean value = 1 (max = N)

size of data stored at each node: O(1) mean value  $\leqslant$  9 (we will check this property in the experiments)

- Voronoi neighbors:
  - $\blacktriangleright$  graph of the Voronoi neighbors is planar  $\Rightarrow$  average degree  $\leqslant 6$
  - ▶ O(1) size
  - mean value  $\leqslant$  6 (max = N)
- Close neighbors: number of objects in  $\mathcal{B}(o, d_{\min})$ 
  - O(1) size for a "reasonable" distribution
  - mean value = 1 (max = N)
- Long range neighbors:
  - one long range neighbor per object
  - O(1) backward links for a "reasonable" distribution
  - mean value = 1 (max = N)

size of data stored at each node: O(1) mean value  $\leq$  9 (we will check this property in the experiments)

- Voronoi neighbors:
  - $\blacktriangleright$  graph of the Voronoi neighbors is planar  $\Rightarrow$  average degree  $\leqslant 6$
  - ▶ O(1) size
  - mean value  $\leqslant$  6 (max = N)
- Close neighbors: number of objects in  $\mathcal{B}(o, d_{\min})$ 
  - O(1) size for a "reasonable" distribution
  - mean value = 1 (max = N)
- Long range neighbors:
  - one long range neighbor per object
  - O(1) backward links for a "reasonable" distribution
  - mean value = 1 (max = N)

size of data stored at each node: O(1) mean value  $\leq 9$  (we will check this property in the experiments)

- Voronoi neighbors:
  - $\blacktriangleright$  graph of the Voronoi neighbors is planar  $\Rightarrow$  average degree  $\leqslant 6$
  - ▶ O(1) size
  - mean value  $\leqslant$  6 (max = N)
- Close neighbors: number of objects in  $\mathcal{B}(o, d_{\min})$ 
  - O(1) size for a "reasonable" distribution
  - mean value = 1 (max = N)
- Long range neighbors:
  - one long range neighbor per object
  - O(1) backward links for a "reasonable" distribution
  - mean value = 1 (max = N)

size of data stored at each node: O(1) mean value  $\leq 9$  (we will check this property in the experiments)

### Overlay maintenance

How to insert an object x ?

- Update the Voronoi diagram:
  - Find the closest existing object (route to x)
  - Add a new Voronoi cell
  - Find and update the Voronoi neighbors
- Find and the close neighbors

sufficient to consider close neighbors of Voronoi neighbors

• create a long range target point t, find the corresponding object:  $\implies$  route a JOIN message to t

| Loris Marchal | VoroNet | 13/ 24 |
|---------------|---------|--------|

### Overlay maintenance

How to insert an object x ?

- Update the Voronoi diagram:
  - Find the closest existing object (route to x)
  - Add a new Voronoi cell
  - Find and update the Voronoi neighbors
- Find and the close neighbors

sufficient to consider close neighbors of Voronoi neighbors



• create a long range target point t, find the corresponding object:  $\implies$  route a JOIN message to t

| Loris Marchal | VoroNet | 13/ 24 |
|---------------|---------|--------|

### Overlay maintenance

How to insert an object x ?

- Update the Voronoi diagram:
  - Find the closest existing object (route to x)
  - Add a new Voronoi cell
  - Find and update the Voronoi neighbors
- Find and the close neighbors

sufficient to consider close neighbors of Voronoi neighbors



• create a long range target point t, find the corresponding object:  $\implies$  route a JOIN message to t

| Loris Marchal | VoroNet | 13/ 24 |
|---------------|---------|--------|

## General routing scheme

ROUTE (*Target*): find the object responsible for the Voronoi cell where *Target* is.

ROUTE(Target)

z = DISTANCETOREGION(Target)

if  $d(z, Target) > \frac{1}{3}d(Target, CurrentObject)$  and

 $d(Target, CurrentObject) > d_{\min}$  then

Spawn(ROUTE, *Target*, GREEDYNEIGHBOR(*Target*)) else

ADDVORONOIREGION(z)

ADDVORONOIREGION(*Target*)

Perform some local computations depending on the operation at zREMOVEVORONOIREGION(z)

REMOVE VORONOIREGION (z)

(depending on the operation,

RemoveVoronoiRegion(Target))

#### return

| Loris Marchal | VoroNet | 14/24 |
|---------------|---------|-------|
|---------------|---------|-------|

#### Lemma 1

The probability for the long link of x to be chosen in a disk of center y and radius fr, where r = d(x, y) is lower bounded by  $\frac{\pi f^2}{K(1+f)^2}$ .

• For f = 1/6: probability lower bounded by:  $\frac{1}{08 \ln(\sqrt{2}\pi N)}$ 

• X: number of hops necessary to reach the disk of center *Target* and radius  $\frac{d}{6}$ .

$$E(X) = \sum_{i=1}^{+\infty} \Pr[X \ge i] \le \sum_{i=1}^{+\infty} \left(1 - \frac{1}{98 \ln(\sqrt{2\pi}N_{\max})}\right)^{i-1}$$
  
$$E(X) \le 98 \ln(\sqrt{2\pi}N_{\max}).$$

#### but link target $\neq$ link destination

|                 |      | - NA      | - I I |
|-----------------|------|-----------|-------|
| Loris iviarchai | oris | 'is iviar | cna   |



#### Lemma 1

The probability for the long link of x to be chosen in a disk of center y and radius fr, where r = d(x, y) is lower bounded by  $\frac{\pi f^2}{K(1+f)^2}$ .

• For f = 1/6: probability lower bounded by:  $\frac{1}{98 \ln(\sqrt{2}\pi N_{\text{max}})}$ 

• X: number of hops necessary to reach the disk of center Target and radius  $\frac{d}{6}$ .

$$E(X) = \sum_{i=1}^{+\infty} \Pr[X \ge i] \le \sum_{i=1}^{+\infty} \left(1 - \frac{1}{98 \ln(\sqrt{2\pi}N_{\max})}\right)^{i-1}$$
  
$$E(X) \le 98 \ln(\sqrt{2\pi}N_{\max}).$$

#### but link target $\neq$ link destination

### Lemma 1

The probability for the long link of x to be chosen in a disk of center y and radius fr, where r = d(x, y) is lower bounded by  $\frac{\pi f^2}{K(1+f)^2}$ .

- For f = 1/6: probability lower bounded by:  $\frac{1}{98 \ln(\sqrt{2}\pi N_{\text{max}})}$
- X: number of hops necessary to reach the disk of center Target and radius  $\frac{d}{6}$ .

$$E(X) = \sum_{i=1}^{+\infty} \Pr[X \ge i] \le \sum_{i=1}^{+\infty} \left(1 - \frac{1}{98\ln(\sqrt{2\pi}N_{\max})}\right)^{i-1}$$
  
$$E(X) \le 98\ln(\sqrt{2\pi}N_{\max}).$$

#### but link target $\neq$ link destination

| I oris iviarcha | archa       | N/ | Oris |
|-----------------|-------------|----|------|
|                 | i ai ci i a |    |      |

### Lemma 1

The probability for the long link of x to be chosen in a disk of center y and radius fr, where r = d(x, y) is lower bounded by  $\frac{\pi f^2}{K(1+f)^2}$ .

• For f = 1/6: probability lower bounded by:  $\frac{1}{98 \ln(\sqrt{2}\pi N_{\text{max}})}$ 

• X: number of hops necessary to reach the disk of center Target and radius  $\frac{d}{6}$ .

$$\begin{split} E(X) &= \sum_{i=1}^{+\infty} \Pr[X \ge i] &\leqslant \sum_{i=1}^{+\infty} \left( 1 - \frac{1}{98 \ln(\sqrt{2}\pi N_{\max})} \right)^{i-1} \\ E(X) &\leqslant 98 \ln(\sqrt{2}\pi N_{\max}). \end{split}$$

#### but link target $\neq$ link destination

| LOUS IVIAICUA |       | Manaka   |    |
|---------------|-------|----------|----|
|               | Loris | iviarcha | 11 |

### Lemma 1

The probability for the long link of x to be chosen in a disk of center y and radius fr, where r = d(x, y) is lower bounded by  $\frac{\pi f^2}{K(1+f)^2}$ .

• For f = 1/6: probability lower bounded by:  $\frac{1}{98 \ln(\sqrt{2}\pi N_{\text{max}})}$ 

• X: number of hops necessary to reach the disk of center Target and radius  $\frac{d}{6}$ .

$$\begin{split} E(X) &= \sum_{i=1}^{+\infty} \Pr[X \ge i] &\leqslant \sum_{i=1}^{+\infty} \left( 1 - \frac{1}{98 \ln(\sqrt{2}\pi N_{\max})} \right)^{i-1} \\ E(X) &\leqslant 98 \ln(\sqrt{2}\pi N_{\max}). \end{split}$$

#### but link target $\neq$ link destination

| Loris Marchal | VoroNet | 15/24 |
|---------------|---------|-------|
|---------------|---------|-------|

### Lemma 1

The probability for the long link **target** of x to be chosen in a disk of center y and radius fr, where r = d(x, y) is lower bounded by  $\frac{\pi f^2}{K(1+f)^2}$ .

• For f = 1/6: probability lower bounded by:  $\frac{1}{98 \ln(\sqrt{2}\pi N_{\text{max}})}$ 

• X: number of hops necessary to reach an object whose long link target belongs to the disk of center *Target* and radius  $\frac{d}{6}$ .

$$E(X) = \sum_{i=1}^{+\infty} \Pr[X \ge i] \le \sum_{i=1}^{+\infty} \left(1 - \frac{1}{98 \ln(\sqrt{2}\pi N_{\max})}\right)^{i-1}$$
  
$$E(X) \le 98 \ln(\sqrt{2}\pi N_{\max}).$$

#### but link target $\neq$ link destination

| Loris Marchal | VoroNet | 15/24 |
|---------------|---------|-------|

### Lemma 1

The probability for the long link **target** of x to be chosen in a disk of center y and radius fr, where r = d(x, y) is lower bounded by  $\frac{\pi f^2}{K(1+f)^2}$ .

• For f = 1/6: probability lower bounded by:  $\frac{1}{98 \ln(\sqrt{2}\pi N_{\text{max}})}$ 

• X: number of hops necessary to reach an object whose long link target belongs to the disk of center *Target* and radius  $\frac{d}{6}$ .

$$E(X) = \sum_{i=1}^{+\infty} \Pr[X \ge i] \le \sum_{i=1}^{+\infty} \left(1 - \frac{1}{98 \ln(\sqrt{2}\pi N_{\max})}\right)^{i-1}$$
  
$$E(X) \le 98 \ln(\sqrt{2}\pi N_{\max}).$$

#### but link target $\neq$ link destination

#### This accounts for a super-step.

|--|

VoroNet

- $\bullet\,$  During a super-step, the distance to the target is divided by  $5/6\,$
- Number of super-steps bounded by

$$\frac{\ln(\frac{\sqrt{2}}{d_{\min}})}{\ln(\frac{6}{5})} = \frac{\ln(\sqrt{2}\pi N_{max})}{\ln(\frac{6}{5})}$$

• Expectation of number of steps:

Loi

$$E(N) \leqslant \alpha \ln^2(N_{max})$$

| s Marchal | VoroNet | 16/24 |
|-----------|---------|-------|
|-----------|---------|-------|

# Outline



#### 2 Description of VoroNet

#### Sevaluation (simulation)

#### Perspectives, conclusion

| Loris Marchal | VoroNet | 17/24 |
|---------------|---------|-------|

# Experimental framework

- Simulations
  - 300.000 objects
  - objects are not leaving the overlay (for now)
- Distribution of object
  - uniform
  - skewed (powerlaw with parameter  $\alpha = 1, 2, 5$ )
- We observe:
  - number of neighbors
  - polylogarithmic routing
  - what happens if we add several long range links

# Outgoing degree



Loris Marchal

# Polylogarithmic routing



### Polylogarithmic routing



### Using several long links to improve routing



# Outline

### Introduction

- 2 Description of VoroNet
- 3 Evaluation (simulation)
- 4 Perspectives, conclusion

- No bound on the number of neighbors, O(1) data size ?
- Extend small world property seems possible
- Compute Voronoi diagram: geometric algorithms costly and sensitive to computation errors
- No need to have complete description of Voronoi cells, only compute neighborhood
- Use other techniques: lifting in dimension d + 1 and LP

- No bound on the number of neighbors, O(1) data size ?
- Extend small world property seems possible
- Compute Voronoi diagram: geometric algorithms costly and sensitive to computation errors
- No need to have complete description of Voronoi cells, only compute neighborhood
- Use other techniques: lifting in dimension d + 1 and LP

- No bound on the number of neighbors, O(1) data size ?
- Extend small world property seems possible
- Compute Voronoi diagram: geometric algorithms costly and sensitive to computation errors
- No need to have complete description of Voronoi cells, only compute neighborhood
- Use other techniques: lifting in dimension d + 1 and LP

- No bound on the number of neighbors, O(1) data size ?
- Extend small world property seems possible
- Compute Voronoi diagram: geometric algorithms costly and sensitive to computation errors
- No need to have complete description of Voronoi cells, only compute neighborhood

• Use other techniques: lifting in dimension d + 1 and LP

- No bound on the number of neighbors, O(1) data size ?
- Extend small world property seems possible
- Compute Voronoi diagram: geometric algorithms costly and sensitive to computation errors
- No need to have complete description of Voronoi cells, only compute neighborhood
- Use other techniques: lifting in dimension d + 1 and LP

- No bound on the number of neighbors, O(1) data size ?
- Extend small world property seems possible
- Compute Voronoi diagram: geometric algorithms costly and sensitive to computation errors
- No need to have complete description of Voronoi cells, only compute neighborhood
- Use other techniques: lifting in dimension d + 1 and LP



- No bound on the number of neighbors, O(1) data size ?
- Extend small world property seems possible
- Compute Voronoi diagram: geometric algorithms costly and sensitive to computation errors
- No need to have complete description of Voronoi cells, only compute neighborhood
- Use other techniques: lifting in dimension d + 1 and LP



- No bound on the number of neighbors, O(1) data size ?
- Extend small world property seems possible
- Compute Voronoi diagram: geometric algorithms costly and sensitive to computation errors
- No need to have complete description of Voronoi cells, only compute neighborhood
- Use other techniques: lifting in dimension d + 1 and LP



- No bound on the number of neighbors, O(1) data size ?
- Extend small world property seems possible
- Compute Voronoi diagram: geometric algorithms costly and sensitive to computation errors
- No need to have complete description of Voronoi cells, only compute neighborhood
- Use other techniques: lifting in dimension d + 1 and LP



- No bound on the number of neighbors, O(1) data size ?
- Extend small world property seems possible
- Compute Voronoi diagram: geometric algorithms costly and sensitive to computation errors
- No need to have complete description of Voronoi cells, only compute neighborhood
- $\bullet~$  Use other techniques: lifting in dimension d+1 and LP



- No bound on the number of neighbors, O(1) data size ?
- Extend small world property seems possible
- Compute Voronoi diagram: geometric algorithms costly and sensitive to computation errors
- No need to have complete description of Voronoi cells, only compute neighborhood
- $\bullet~$  Use other techniques: lifting in dimension d+1 and LP



# Conclusion

Perspectives:

- Range queries
- $\bullet$  Queries by proximity: all objects within d from a given object
- Fault tolerance ?

#### VoroNet in a nutshell:

- Object-to-object overlay
- Efficient routing
- Distributed construction and management
- Reasonable size of neighborhood
- Insensitive to object distribution
- Base for complex requests
## Conclusion

Perspectives:

- Range queries
- Queries by proximity: all objects within d from a given object
- Fault tolerance ?

VoroNet in a nutshell:

- Object-to-object overlay
- Efficient routing
- Distributed construction and management
- Reasonable size of neighborhood
- Insensitive to object distribution
- Base for complex requests