
Optimizing the steady-state throughput

of scatter and reduce operations
on heterogeneous platforms

A. Legrand, L. Marchal and Y. Robert
LIP, UMR CNRS-INRIA 5668, ENS Lyon, France
{Arnaud.Legrand,Loris.Marchal,Yves.Robert}@ens-lyon.fr

Abstract

In this paper, we consider the communications in-
volved by the execution of a complex application, de-
ployed on a heterogeneous “grid” platform. Such appli-
cations intensively use collective macro-communication
schemes, such as scatters, personalized all-to-alls or
gather/reduce operations. Rather than aiming at
minimizing the execution time of a single macro-
communication, we focus on the steady-state operation.
We assume that there is a large number of macro-
communication to perform in a pipeline fashion, and
we aim at maximizing the throughput, i.e. the (ra-
tional) number of macro-communications which can be
initiated every time-step. We target heterogeneous plat-
forms, modeled by a graph where resources have differ-
ent communication and computation speeds. The situa-
tion is simpler for series of scatters or personalized all-
to-alls than for series of reduce operations, because of
the possibility of combining various partial reductions
of the local values, and of interleaving computations
with communications. In all cases, we show how to de-
termine the optimal throughput, and how to exhibit a
concrete periodic schedule that achieves this through-
put.

1. Introduction

In this paper, we consider the communications in-
volved by the execution of a complex application, de-
ployed on a heterogeneous “grid”platform. Such appli-
cations intensively use macro-communication schemes,
such as broadcasts, scatters, all-to-all or reduce opera-
tions.

These macro-communication schemes have often
been studied with the goal of minimizing their
makespan, i.e. the time elapsed between the emission

of the first message by the source, and the last recep-
tion. But in many cases, the application has to perform
a large number of instances of the same operation (for
example if data parallelism is used), and the makespan
is not a significant measure for such problems. Rather,
we focus on the optimization of the steady-state mode,
and we aim at optimizing the throughput of a series
of macro-communications instead of the makespan of
each macro-communication taken individually.

In this paper, we focus on scatter and reduce oper-
ations. Here are the definitions of these operations:

Scatter One processor Psource has to send a distinct
message to each target processor Pt0 , . . . , PtN .

Series of Scatters The same source processor per-
forms a series of Scatter operations, i.e. consec-
utively sends a large number of different messages
to the set of target processors {Pt0 , . . . , PtN }.

Reduce Each processor Pi among the set Pr0 , . . . , PrN

of participating processors has a local value vi, and
the goal is to calculate v = v0 ⊕ · · ·⊕ vN , where ⊕
is an associative, non-commutative operator. The
result v is to be stored on processor Ptarget.

Series of Reduces A series of Reduce operations is
to be performed, from the same set of participating
processors and to the same target.

For the Scatter and Reduce problems, the goal is
to minimize the makespan of the operation. For the Se-
ries version of these problems, the goal is to pipeline
the different scatter/reduce operations so as to reach
the best possible throughput in steady-state operation.
In this paper, we propose a new algorithmic strategy
to solve this latter problem. The main idea is the same
for the Series of Scatters and Series of Reduces
problems, even though the latter turns out to be more
difficult, because of the possibility of combining various

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

partial reductions of the local values, and of interleav-
ing computations with communications.

The rest of the paper is organized as follows. Sec-
tion 2 describes the model used for the target comput-
ing platform model, and states the one-port assump-
tions for the operation mode of the resources. Sec-
tion 3 deals with the Series of Scatters problem.
Section 3.5 is devoted to the extension to the gossip-
ing problem. The more complex Series of Reduces
problem is described in Section 4. Finally, we state
some concluding remarks in Section 5.

Due to lack of space, we do not survey related work:
instead, we refer to the extended version [7] of this
paper.

2. Framework

We adopt a model of heterogeneity close to the one
developed by Bhat, Raghavendra and Prasanna [3].
The network is represented by an edge-weighted graph
G = (V, E, c). This graph may well include cycles and
multiple paths. Each edge e is labeled with the value
c(e), the time needed to transfer a unit-size message
along the edge.

Among different scenarios found in the literature, we
adopt the widely used (and realistic) one-port model:
at each time-step, a processor is able to perform at
most one emission and one reception. When computa-
tion is taken into account, we adopt a full-overlap as-
sumption: a processor can perform computations and
(independent) communications simultaneously.

To state the model more precisely, suppose that pro-
cessor Pi starts to send a message of length m at time
t. This transfer will last m × c(i, j) time-steps. Note
that the graph is directed, so there is no reason to
have c(i, j) = c(j, i) (and even more, the existence
of edge (i, j) does not imply that of link (j, i)). The
one-port model imposes that between time-steps t and
t + m× c(i, j): (i) processor Pi cannot initiate another
send operation (but it can perform a receive opera-
tion and an independent computation), (ii) processor
Pj cannot initiate another receive operation (but it can
perform a send operation and an independent compu-
tation), (iii) processor Pj cannot start the execution of
tasks depending on the message being transferred.

Our framework is the following. We will express
both optimization problems (Series of Scatters and
Series of Reduces) as a set of linear constraints, so
as to build a linear program. Basically, the linear con-
straints aim at determining which fraction of time does
each processor spend communicating which message on
which edge. We solve the linear program (in rational
numbers) with standard tools, and we use the solution

to build a schedule that implements the best commu-
nication scheme.

Notations A few variables and constraints are com-
mon to all problems, because they arise from the one-
port model assumption. We call s(Pi → Pj) the frac-
tion of time spent by processor Pi to send messages to
Pj during one time-unit. This quantity is a rational
number between 0 and 1:

∀Pi, ∀Pj , 0 � s(Pi → Pj) � 1 (1)

The one-port model constraints are expressed by the
following equations:

∀Pi,
∑

Pj ,(i,j)∈E

s(Pi → Pj) � 1 (2)

∀Pi,
∑

Pj ,(j,i)∈E

s(Pj → Pi) � 1 (3)

We will later add further constraints corresponding
to each specific problem under study. We first illustrate
how to use this framework on the simple Series of
Scatters problem.

3. Series of Scatters

Recall that a scatter operation involves a source pro-
cessor Psource and a set of target processors {Pt, t ∈ T }.
The source processor has a message mt to send to each
processor Pt. We focus here on the pipelined version of
this problem: processor Psource aims at sending a large
number of different same-size messages to each target
processor Pt.

3.1. Linear program

First, we introduce a few definitions for the steady-
state operation:

• mk is the type of the messages whose destination
is processor Pk,

• send(Pi → Pj , mk) is the fractional number of
messages of type mk which are sent on the edge
(i, j) within a time-unit.

The relation between send(Pi → Pj , mk) and
s(Pi → Pj) is expressed by the following equation:

∀Pi, Pj , s(Pi → Pj) =
∑
mk

send(Pi → Pj , mk) × c(i, j) (4)

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

The fact that some packets are forwarded by a node
Pi can be seen as a sort of “conservation law”: all the
packets reaching a node which is not their final des-
tination are transferred to other nodes. This idea is
expressed by the following constraint:

∀Pi, ∀mk, k �= i,
∑

Pj ,(j,i)∈E

send(Pj → Pi, mk)

=
∑

Pj ,(i,j)∈E

send(Pi → Pj , mk) (5)

Moreover, let us define the throughput at processor
Pk as the number of messages mk received at this node,
i.e. the sum of all messages of type mk received by Pk

via all its incoming edges. We impose that the same
throughput TP is achieved at each target node, and
we write the following constraint:

∀Pk, k ∈ T,
∑

Pi,(i,k)∈E

send(Pi → Pk, mk) = TP (6)

We can summarize the previous constraints in a lin-
ear program:

Steady-State Scatter Problem on a Graph
SSSP(G)

Maximize TP,
subject to
∀Pi, ∀Pj , 0 � s(Pi → Pj) � 1
∀Pi,

∑
Pj ,(i,j)∈E s(Pi → Pj) � 1

∀Pi,
∑

Pj ,(j,i)∈E s(Pj → Pi) � 1
∀Pi, Pj , s(Pi → Pj) =

∑
mk

send(Pi → Pj , mk) × c(i, j)
∀Pi, ∀mk, k �= i,

∑
Pj ,(j,i)∈E send(Pj → Pi, mk)

=
∑

Pj ,(i,j)∈E send(Pi → Pj , mk)
∀Pk, k ∈ T

∑
Pi,(i,k)∈E send(Pi → Pk, mk) = TP

This linear program can be solved in polynomial
time by using tools like lpsolve[2], Maple [4] or Mu-
PaD [6]. We solve it over the rational numbers. Then
we compute the least common multiple of the denom-
inators of all the variables, which leads to a periodic
schedule where all quantities are integers. This period
is potentially very large, but we discuss in Section 4.5
how to approximate the result for a smaller period.

3.2. Toy example

To illustrate the use of the linear program, consider
the simple example described on Figure 1. Figure 1(a)
presents the topology of the network, where each edge
e is labeled with its communication cost c(e). In this
simple case, one source Ps sends messages to two target
processors P0 and P1.

11

2/3 4/34/3

PbPa

Ps

P0 P1

(a) Topology

3m0
3m0

6m1

6m1
3m03m0

PbPa

Ps

P0 P1

(b) send values

3 9

2
4

8

PbPa

Ps

P0 P1

(c) s values

Figure 1. Toy example for the Series of Scat-
ters problem. The values are given for a pe-
riod of 12: the achieved throughput is 6 mes-
sages every 12 time-units.

Figures 1(b) and 1(c) show the results of the lin-
ear program: on Figure 1(b) we represent the number
of messages of each type going through the network,
whereas Figure 1(c) describes the occupation of each
edge.

The throughput achieved with this solution is TP =
1/2, which means that one scatter operation is exe-
cuted every two time-units. We point out that all the
messages destined to processor P0 do not take the same
route: some are transferred by Pa, and others by Pb.
The linear constraints allow for using multiple routes
in order to reach the best throughput.

3 (3m0)
3 (3m

0)

6 (6m
1)

8 (6m1)2 (3m0)
4
(3

m 0
)

P send
a P recv

a P send
b P recv

b

P send
s

P recv
0 P recv

1

Figure 2. Bipartite Graph

3.3. Building a schedule

Once the linear program is solved, we get the pe-
riod T of the schedule and the integer number of mes-
sages going through each link. We still need to exhibit
a schedule of the message transfers where emissions
(resp. receptions) never overlap on one node. This
is done using a weighted-matching algorithm, as ex-
plained in [1]. We recall the basic principles of this
algorithm. From our platform graph G, and the re-
sult of the linear program, we build a bipartite graph
GB = (VB , EB, eB) as follows:

• for each node Pi in G, create two nodes P send
i and

P recv
i , one in charge of emissions, the other of re-

ceptions.

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

6 (6m0)

6 (9
2
m1)

P send
a P recv

a P send
b P recv

b

P send
s

P recv
0 P recv

1

(a) Matching 1

3 (3m0)

3 (9
4
m0)

P send
a P recv

a P send
b P recv

b

P send
s

P recv
0 P recv

1

(b) Matching 2

2 (2m0)

2 (3
2
m1)2 (3m0)

P send
a P recv

a P send
b P recv

b

P send
s

P recv
0 P recv

1

(c) Matching 3

1 (1m0)

1 (3
4
m0)

P send
a P recv

a P send
b P recv

b

P send
s

P recv
0 P recv

1

(d) Matching 4

Figure 3. Decomposition of the bipartite
graph into matchings. Edges are labeled with
the communication times for each type of
message going through the edge. The corre-
sponding number of messages is mentioned
between brackets.

• for each transfer send(Pi → Pj , mk), insert an
edge between P send

i and P recv
j labeled with the

time needed by the transfer: send(Pi → Pj , mk)×
c(i, j).

We are looking for a decomposition of this graph into
a set of subgraphs where a node (sender or receiver) is
occupied by at most one communication task. This
means that at most one edge reaches each node in the
subgraph. In other words, only communications cor-
responding to a matching in the bipartite graph can
be performed simultaneously, and the desired decom-
position of the graph is in fact an edge coloring. The
weighted edge coloring algorithm of [8, vol.A chapter
20] provides in polynomial time a polynomial number
of matchings, which are used to perform the different
communications. Rather than going into technical de-
tails, we illustrate this algorithm on the previous exam-
ple. The bipartite graph constructed with the previous
send and s values (as returned by the linear program)
is represented on Figure 2. It can be decomposed into
four matchings, represented on Figures 3(a) to 3(d).

These matchings explain how to split the commu-
nications to build a schedule. Such a schedule is de-
scribed on Figure 4(a). We assume that the transfer
of a message can be split into several parts (for ex-

ample, the fourth message transferred from Pb to P1

is sent during the first and the third part of the pe-
riod, corresponding to the first and third matchings. If
needed, we can avoid splitting the transfer of a message
by multiplying again by the least common multiple of
all denominators appearing in the number of messages
to be sent in the different matchings. In our example,
since this least common multiple is 4, this produces a
schedule of period 48, represented on Figure 4(a).

2 431 {

Pb → P1

Pb → P0

Pa → P0

Ps → Pb

Ps → Pa

 {

0 5 1210
t

matchings:

(a) Schedule if we allow for splitting messages (period = 12)

{

t484030200 10

Pb → P1

Pb → P0

Pa → P0

Ps → Pb

Ps → Pa

1 2 3 4matchings:

(b) Schedule without any split message (period = 48)

Figure 4. Different possible schedules for the
example.

3.4. Asymptotic optimality

In this section, we state that the previous peri-
odic schedule is asymptotically optimal: basically, no
scheduling algorithm (even non periodic) can execute
more scatter operations in a given time-frame than
ours, up to a constant number of operations. This sec-
tion contains the formal statement of this result, whose
proof is available in [7].

Given a platform graph G = (V, E, c), a
source processor Psource holding an infinite num-

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

ber of unit-size messages, a set of target processors
PT = {Pt1 , . . . , PtN } and a time bound K, define
opt(G, K) as the optimal number of messages that can
be received by every target processor in a succession
of scatter operations, within K time-units. Let TP(G)
be the solution of the linear program SSSP(G) of Sec-
tion 3.1 applied to this platform graph G. We have the
following result:

Lemma 1. opt(G, K) � TP(G) × K

This lemma states that no schedule can send more
messages that the steady-state. There remains to
bound the loss due to the initialization and the clean-
up phase in our periodic solution, to come up with a
well-defined scheduling algorithm based upon steady-
state operation. This algorithm is fully described in
[7]. Let steady(G, K) denote the number of reduction
operations performed in time K with this algorithm.
We state that steady(G, K) � K × P − A, where A
does not depend on K, which leads to following result:

Proposition 1. The previous scheduling algorithm
based on the steady-state operation is asymptotically
optimal:

lim
K→+∞

steady(G, K)
opt(G, K)

= 1.

3.5. Extension to gossiping

We have dealt with the Series of Scatters prob-
lem, but the same equations can be used in the more
general case of a Series of Gossips, i.e. a series of
personalized all-to-all problems. In this context, a set
of source processors {Ps, s ∈ S} has to send a series
of messages to a set of target processors {Pt, t ∈ T }.
The messages are now typed with the source and the
destination processors: mk,l is a message emitted by
Pk and destined to Pl. The constraints stand for the
one-port model, and for conservation of the messages.
The throughput has to be the same for each sender,
and at each target node. We give the linear program
summarizing all this constraints:

Steady-State Personalized All-to-All
Problem on a Graph SSPA2A(G)

Maximize TP,
subject to
∀Pi, ∀Pj , 0 � s(Pi → Pj) � 1
∀Pi,

∑
Pj ,(i,j)∈E s(Pi → Pj) � 1

∀Pi,
∑

Pj ,(j,i)∈E s(Pj → Pi) � 1
∀Pi, Pj , s(Pi → Pj) =

∑
mk,l

send(Pi → Pj , mk,l) × c(i, j)
∀Pi, ∀mk, k �= i, l �= i,

∑
Pj ,(j,i)∈E send(Pj → Pi, mk,l)

=
∑

Pj ,(i,j)∈E send(Pi → Pj , mk,l)
∀Pk, ∀mk,l

∑
Pi,(i,k)∈E send(Pi → Pk, mk) = TP

After solving this linear system, we have to compute
the period of a schedule as the least common multiple
of all denominators in the solution, and then to build a
valid schedule, using the weighted-matching algorithm
just as previously. Furthermore, we can prove the same
result of asymptotic optimality:

Proposition 2. For the Series of Gossips problem,
the scheduling algorithm based on the steady-state op-
eration is asymptotically optimal.

4. Series of Reduces

We recall the sketch of a reduce operation: some pro-
cessors Pr0 , . . . , PrN own a value v0, . . . , vN . The goal
is to compute the reduction of these values: v = v0 ⊕
· · · ⊕ vN , where ⊕ is an associative, non-commutative1

operator. This operation is useful for example to com-
pute a maximum/minimum, sort or gather data in a
particular order (see [5] for other applications). We
impose that at the end, the result is stored in proces-
sor Ptarget.

The reduce operation is more complex than the scat-
ter operation, because we add computational tasks to
merge the different messages into new ones. Let v[k,m]

denote the partial result corresponding to the reduction
of the values vk, . . . , vm:

v[k,m] = vk ⊕ · · · ⊕ vm

The initial values vi = v[i, i] will be reduced into partial
results until the final result v = v[0,N] is reached. As
⊕ is associative, two partial results can be reduced as
follows:

v[k,m] = v[k,l] ⊕ v[l+1,m]

We let Tk,l,m denote the computational task needed for
this reduction.

We start by giving an example of a non-pipelined
reduce operation, in order to illustrate how to interpret
this operation as a reduction tree. Next, we move to
the Series of Reduces problem: we explain how to
derive the linear program, and how to build a schedule
using the result of this linear program.

4.1. Introduction to reduction trees

We call reduction tree a tree representing how a
reduction is done: the nodes represent the task (ei-
ther computation or communication) located on the

1When the operator is commutative, we have more freedom
to assemble the final result. Of course it is always possible to
perform the reduction with a commutative operator, but without
taking advantage of the commutativity.

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

resources (node or link), and there is an edge ni → nj

is the result of task ni is used as a data of task nj.
Figure 5 presents the example of a simple reduction
tree.

T0,0,2

P1

P1

T1,1,2
v0

P0 → P1

P0

v0

P1

v1 v2

P2 → P1

P2

v2

P1 → P0

v[0,2]

v[0,2] at P1

v[1,2] at P1

v[2,2] at P1

v[0,0] at P1

Figure 5. Simple example of a reduction tree

A schedule for a single reduction operation uses a
single reduction tree. As we are interested in the Se-
ries of Reduces problem, we assume that each pro-
cessor Pri has a set of values, indexed with a time-
stamp: one of these values is denoted as vt

i . The se-
ries of reductions consists in the reduction of each set
{vt

0, . . . , v
t
N} for each time-stamp t. We can interpret

each of these reductions as a reduction tree, but two
different reductions (for distinct time-stamps t1 and t2)
may well use different reduction trees.

4.2. Linear program

To describe the linear constraints of the Series of
Reduces problem, we use the following variables:

• send(Pi → Pj , v[k,l]) is the fractional number of
messages containing v[k,l] values and which sent
from Pi to Pj , within one time unit

• cons(Pi, Tk,l,m) is the fractional number of tasks
Tk,l,m computed on processor Pi,

• α(Pi) is the time spent by Pi computing tasks
within each time-unit. This quantity is obviously
bounded as follows:

∀Pi, 0 � α(Pi) � 1 (7)

• size(v[k,l]) is the size of one message containing a
value v[k,l],

• w(Pi, Tk,l,m) is the time needed by processor Pi to
compute one task Tk,l,m.

The number of messages sent on edge (i, j) is related
to the communication time on this edge:

∀Pi, Pj , s(Pi → Pj) =∑
v[k,l]

send(Pi → Pj , v[k,l]) × size(v[k,l]) × c(i, j) (8)

In the same way, the number of tasks computed by
Pi is related to the time spent for their computation:

∀Pi, α(Pi) =
∑

Tk,l,m
cons(Pi, Tk,l,m) × w(Pi, Tk,l,m) (9)

We can write the following “conservation law”which
expresses that the number of packets of type v[k,m]

reaching a node (either created by a local computation
of a task Tk,l,m or by a transfer from another node) is
used in a local computation (Tn,k,m or Tk,m,n) or sent
to another node:

∀Pi, ∀v[k,m] with (if there exists i′ such that Pri′ = Pi,

k �= i′ or m �= i′) and (Ptarget �= Pi or k �= 0 or m �= N)∑
Pj ,(j,i)∈E

send(Pj → Pi, v[k,m])+
∑

k�l<m

cons(Pi, Tk,l,m)

=
∑

Pj ,(i,j)∈E

send(Pi → Pj , v[k,m])+
∑
n>m

cons(Pi, Tk,m,n)

+
∑
n<k

cons(Pi, Tn,k−1,m) (10)

Note that this equation is not verified for the mes-
sage v[i′,i′] on processor Pri′ (we assume we have an
unlimited number of such messages). It is is also not
verified for the final complete message v = v[0,N] on
the target processor. In fact, the number of messages
v reaching the target processor Ptarget is the through-
put TP that we want to maximize:

TP =
∑

Pj ,(j,target)∈E

send(Pj → Ptarget, v[0,N])

+
∑

0�l<n−1

cons(Ptarget, T0,l,N) (11)

If we summarize all these constraints, we come to a
linear program, called Steady-State Reduce Prob-
lem on a Graph(G), whose objective function is to
maximize TP under the constraints described in Equa-
tions 1, 2, 3, 7, 8, 9, 10 and 11.

As for the Series of Scatters problem, after solv-
ing this linear program in rational numbers, we com-
pute the least common multiple of all denominators,
and we multiply every variable by this quantity. We
then obtain an integer solution during a period T .

4.3. Building a schedule

Once the solution is computed, we have to exhibit
a concrete schedule that achieves it. To complicate
matters, the description of the schedule during a single
period is not enough, we need to explicit the initializa-
tion and termination phases. A naive way would be to

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

describe a schedule for a duration T ′ multiple of T in
extension, explaining how the values v0 to vTP. T ′

T −1 can
be computed in time T ′, and to prove that this schedule
can be pipelined. The main problem of this approach
is that the period T is not polynomially bounded2 in
the size of the input parameters (the size of the graph),
so describing the schedule in extension cannot be done
in polynomial time. Furthermore, it might not even be
feasible from a practical point of view, if T is too large.

To circumvent the extensive description of the sched-
ule, we use reduction trees. For each time-stamp t be-
tween 0 and T ′ − 1 a reduction tree is used to reduce
the values vt

0, . . . , v
t
N−1. A given tree T might be used

by many time-stamps t.
We can get a description of a schedule more com-

pact than the extensive description of all trees using
a family of trees weighted by the throughput of each
tree. In [7], we provide an algorithm which extracts
from the solution a set of weighted trees such that: 1)
the weights are integers, 2) the weighted sum of the
trees is equal to the original solution, and 3) the num-
ber of trees (and their description) is polynomial in the
size of the topology graph G. Once this decomposition
obtained, we use the same approach as for the scatter
operation, based on a weighted-matching algorithm, to
build a valid schedule. We construct a bipartite graph
GB = (VB , EB, eB) as follows:

• for each processor Pi, we add two nodes to VB:
P send

i and P recv
i ,

• for each communication task send(Pi → Pj , v[k,m])
in each reduction tree T , we add an edge between
P send

i and P recv
j weighted by the time need to per-

form the transfer:
(throughput of the tree)× size(v[k,m]) × c(i, j).

The one-port constraints impose that the sum of the
weights of edges adjacent to a processor is smaller than
the period T . Using the same weighted-matching algo-
rithm, we decompose the graph into a weighted sum of
matchings such that the sum of the coefficient is less
than T . As previously, this gives a schedule for achiev-
ing the throughput TP within a period T .

4.4. Asymptotic optimality

We can prove the same result of asymptotic opti-
mality as for the scatter and gossip operations:

2In fact, because it arises from the linear program, log T is
indeed a number polynomial in the problem size, but T itself is
not, and describing what happens at every time-step would be
exponential in the problem size.

Proposition 3. For the Series of Reduces prob-
lem, the scheduling algorithm based on the steady-state
operation is asymptotically optimal.

4.5. Approximation for a fixed period

The framework developed here gives a schedule for
a pipelined reduce problem with an integer throughput
TP during a period T . However, as already pointed
out, this period may be too large, from a practical
viewpoint. We propose here to approximate the so-
lution with a periodic solution of period Tfixed.

Assume that we have the solution and its
decomposition into a set of weighted reduction
trees {T , weight(T)}. We compute the following val-
ues:

r(T) =
⌊

weight(T)
T

× Tfixed

⌋

The one-port constraints are satisfied for
{T , weight(T)} on a period T , so they are still
satisfied for {T , r(T)} on a period Tfixed. So these
new values can be used to build a valid schedule whose
period is Tfixed.

We can bound the difference between the new
throughput TP∗ = 1

Tfixed
× ∑

T ∈Trees r(T) of the ap-
proximated solution and the original throughput TP:

TP − TP∗

= TP −
∑

T ∈Trees
1

Tfixed
×

⌊
weight(T)

T × Tfixed

⌋
� TP − ∑

T ∈Trees
1

Tfixed
×

(
weight(T)

T × Tfixed − 1
)

� card(Trees)
Tfixed

This shows that the approximated solution asymp-
totically approaches the best throughput as Tfixed

grows. We have proven the following result:

Proposition 4. We can derive a steady-state opera-
tion for periods of arbitrary length, whose throughput
converges to the optimal solution as the period size in-
creases.

4.6. Example and experimental results

In this section, we work out a complete example.
Figure 6(a) shows the topology of the network. Each
edge e is labeled with its communication cost c(e). Ev-
ery processor can process any task in one time-unit,
except node 0 which can process any two tasks in one
time-unit. The size of every message is 1. The target
node is node 0. The solution of the linear program is
described on Figure 6(b), and mapped on the topology
graph on Figure 6(c). The exhaustive description of

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

a valid schedule using the values given in 6(c). Three
reductions are performed every three time-units. The
values reduced are labeled with their time-stamp (up-
per index). Figure 6(d) shows the schedule of one pe-
riod. This schedule can be pipelined on a period of
three time-units, leading to a throughput of one reduce
operation per time-unit.

1

1

0

1 2

1 1

(a) Topology

send(P1 → P2, v[1,1]) = 2
send(P2 → P1, v[2,2]) = 1
send(P1 → P0, v[1,2]) = 1
send(P2 → P0, v[1,2]) = 2
cons(P1, T1,1,2) = 1
cons(P2, T1,1,2) = 2
cons(P0, T0,0,2) = 3

(b) Solution of linear pro-
gram (period T = 3)

0

1 2

3 T0,0,2

1 v[1,2]
2 v[1,2]

2 T1,1,2

2 v[1,1]

1 v[2,2]

1 T1,1,2

(c) Results on
topology

Link/Node 0 1 2 3 4 5

node 1 T 1
[1,1,2] T 2

[1,1,2]

1 → 2 v0
[1,1]

1 → 0 v1
[1,2] v2

[1,2]

node 2 T 0
[1,1,2]

2 → 1 v1
[1,1] v2

[1,1]

2 → 0 v0
[1,2]

node 0 T 0
[0,0,2] T 1

[0,0,2] T 2
[0,0,2]

(d) Example of schedule - basic scheme

Figure 6. Exhaustive schedule derived from
the results of the linear program

In the extended version of the paper [7], we also
present an example where the topology graph is ob-
tained from a topology generator. We notice that in
the obtained schedule, one reduction tree is not suffi-
cient to come with the optimal throughput.

5. Conclusion

In this paper, we have studied several collective
communications, with the objective to optimize the
throughout that can be achieved in steady-state mode,
when pipelining a large number of operations. Focus-
ing on series of scatters, gossips and reduces, we have
shown how to explicitly determine the best steady-state
scheduling in polynomial time. The best throughout
can easily be found with linear programming, whereas
a polynomial description of a valid schedule realizing
this throughout is more difficult to exhibit. In partic-
ular, we had to use reduction trees to describe a poly-
nomial schedule for the Series of Reduces problem.
It is important to point out that the concrete schedul-
ing algorithms based upon the steady-state operation

are asymptotically optimal, in the class of all possible
schedules (not only periodic solutions).

An interesting problem is to extend the solution for
reduce operations to general parallel prefix computa-
tions, where each node Pi must obtain the result v[0,i]

of the reduction limited to processors whose rank is
lower than its own rank.

References

[1] O. Beaumont, A. Legrand, L. Marchal, and
Y. Robert. Optimal algorithms for the pipelined
scheduling of task graphs on heterogeneous sys-
tems. Technical Report RR-2003-29, LIP, ENS
Lyon, France, April 2003.

[2] Michel Berkelaar. LP SOLVE: Linear Program-
ming Code. URL: http://www.cs.sunysb.edu/
~algorith/implement/lpsolve/implement.shtml.

[3] P.B. Bhat, C.S. Raghavendra, and V.K. Prasanna.
Efficient collective communication in distributed
heterogeneous systems. In ICDCS’99 19th Inter-
national Conference on Distributed Computing Sys-
tems, pages 15–24. IEEE Computer Society Press,
1999.

[4] B. W. Char, K. O. Geddes, G. H. Gonnet, M. B.
Monagan, and S. M. Watt. Maple Reference Man-
ual, 1988.

[5] J. Reif (editor). Synthesis of Parallel Algorithms.
Morgan Kaufmann, 1993.

[6] The MuPAD Group (Benno Fuchssteiner et al.).
MuPAD User’s Manual. John Wiley and sons,
1996.

[7] A. Legrand, L. Marchal, and Y. Robert. Optimizing
the steady-state throughput of scatter and reduce
operations on heterogeneous platforms. Technical
Report RR-2003-33, LIP, ENS Lyon, France, June
2003.

[8] A. Schrijver. Combinatorial Optimization: Polyhe-
dra and Efficiency, volume 24 of Algorithms and
Combinatorics. Springer-Verlag, 2003.

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	footer1: 0-7803-8367-2/04/$20.00 ©2004 IEEE
	01: 3
	02: 4
	03: 5
	04: 6
	05: 7
	06: 8
	07: 9
	08: 10
	09: 11
	10: 47

