Steady-State Scheduling on Heterogeneous Clusters: Why and How?

O. Beaumont
LaBRI, UMR CNRS 5800, Bordeaux, France

Olivier.Beaumont@labri.fr

A. Legrand, L. Marchal and Y. Robert
LIP, UMR CNRS-INRIA 5668, ENS Lyon, France

{Arnaud.Legrand,Loris.Marchal,Yves.Robert}@ens-1lyon.fr

Abstract

In this paper, we consider steady-state scheduling
techniques for heterogeneous systems, such as clusters
and grids. We advocate the use of steady-state schedul-
ing to solve a wvariety of important problems, which
would be too difficult to tackle with the objective of
makespan minimization. We give a few successful ex-
amples before discussing the main limitations of the ap-
proach.

1. Introduction

Scheduling computational tasks on a given set of
processors is a key issue for high-performance com-
puting. The traditional objective of scheduling algo-
rithms is makespan minimization: given a task graph
and a set of computing resources, find a mapping of
the tasks onto the processors, and order the execution
of the tasks so that: (i) task precedence constraints
are satisfied; (ii) resource constraints are satisfied; and
(iii) a minimum schedule length is provided. However,
makespan minimization turned out to be NP-hard in
most practical situations [17, 1]. The advent of more
heterogeneous architectural platforms is likely to even
increase the computational complexity of the process
of mapping applications to machines.

An idea to circumvent the difficulty of makespan
minimization is to lower the ambition of the scheduling
objective. Instead of aiming at the absolute minimiza-
tion of the execution time, why not consider asymptotic
optimality? After all, the number of tasks to be exe-
cuted on the computing platform is expected to be very
large: otherwise why deploy the corresponding applica-
tion on computational grids? To state this informally:
if there is a nice (meaning, polynomial) way to derive,

say, a schedule whose length is two hours and three
minutes, as opposed to an optimal schedule that would
run for only two hours, we would be satisfied. And if
the optimal schedule is not known, there remains the
possibility to establish a lower bound, and to assess the
polynomial schedule against it.

This approach has been pioneered by Bertsimas and
Gamarnik [9]. Steady-state scheduling allows to relax
the scheduling problem in many ways. Initialization
and clean-up phases are neglected. The initial integer
formulation is replaced by a continuous or rational for-
mulation. The precise ordering and allocation of tasks
and messages are not required, at least in the first step.
The main idea is to characterize the activity of each re-
source during each time-unit: which (rational) fraction
of time is spent computing, which is spent receiving or
sending to which neighbor. Such activity variables are
gathered into a linear program, which includes conser-
vation laws that characterize the global behavior of the
system. We give a few examples below.

The rest of the paper is organized as follows. Sec-
tion 2 summarizes the assumptions on the platform
model. Three examples of linear programs characteriz-
ing steady-state operation are given in Section 3. The
target problems are master-slave tasking, pipelined
scatter operations and pipelined multicast operations.
For the first two problems, the solution of the linear
program provides all the information needed to recon-
struct a periodic schedule which is asymptotically opti-
mal, as explained in Section 4. For the third problem,
the situation is more complicated: we discuss this in
Section 4.3. Section 5 aims at discussing several exten-
sions, as well as various limitations, of the steady-state
approach. Finally, we state some concluding remarks
in Section 6.

mk@

COMPUTER

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04) SOCIETY

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Figure 1. A graph labeled with node (compu-
tation) and edge (communication) weights.

2. Platform model

The target architectural framework is represented by
a node-weighted edge-weighted graph G = (V, E, w, ¢),
as illustrated in Figure 1. Let p = |V| be the number
of nodes. Each node P; € V represents a computing
resource of weight w;, meaning that node P; requires
w; time-steps to process one computational unit (so
the smaller w;, the faster the processor node P;). Each
edge e;; : P; — P; is labeled by a value ¢;; which
represents the time needed to communicate one data
unit from P; to P; (communication links are oriented).
We assume that all w; are positive rational numbers.
We disallow w; = 0 since it would permit node P; to
perform an infinite number of computations, but we
allow w; = 400; then P; has no computing power but
can still forward data to other processors. Similarly,
we assume that all ¢;; are positive rational numbers
(or equal to 400 if there is no link between P; and P;).

Our favorite scenario for the operation mode of the
processors is the full overlap, single-port model for both
incoming and outgoing communications. In this model,
a processor node can simultaneously receive data from
one of its neighbors, perform some (independent) com-
putation, and send data to one of its neighbors. At any
given time-step, there are at most two communications
involving a given processor, one sent and the other re-
ceived. We state the communication model more pre-
cisely: if P; sends a data of size L to P; at time-step
t, then: (i) P; cannot start executing or sending this
task before time-step t' = t + ¢;; - L; (ii) P; can not
initiate another receive operation before time-step t’
(but it can perform a send operation and independent
computation); and (iii) P; cannot initiate another send
operation before time-step ¢’ (but it can perform a re-
ceive operation and independent computation).

Altogether, the model is quite simple: linear costs
for computing and communicating, full computation-
communication overlap, one-port constraint for send-

ing and receiving. However, no specific assumption is
made on the interconnection graph, which may well in-
clude cycles and multiple paths, and contention over
communication links is taken into account.

3. Linear programs
3.1. Master-slave tasking

In this problem, a special processor P,, € V (the
master) initially holds a large collection of indepen-
dent, identical tasks to be allocated on the platform.
Think of a task as being associated with a file that con-
tains all the data required for the execution of the task.
The question for the master is to decide which tasks to
execute itself, and how many tasks (i.e. task files) to
forward to each of its neighbors. Due to heterogeneity,
the neighbors may receive different amounts of work
(maybe none for some of them). Each neighbor faces
in turn the same dilemma: determine how many tasks
to execute, and how many to delegate to other proces-
sors. During one time unit, «; is the fraction of time
spent by P; computing, and s;; is the fraction of time
spent by P; sending tasks to P, for e;; € F.

The steady-state equations are summarized in the
following linear program:

STEADY-STATE MASTER SLAVE SSMS(G)

P
e e Q;
Maximize ni,s1(G) = j,
i=1 "
subject to
Vi, 0 < (67 < 1
VeijGE, Ogsijgl
Vi, Zj|eijeE sij <1
\V/Z, jleji€E Sji < 1
Vejm € E, sjm =0
; Sji . Qi Sij
Vi #m, ZjlejiGE cjii | w; + ZJ'I%EE Cij

The third and fourth equations enforce the one-port
constraints. The fifth equation states that the master
does not receive anything. The last equation is the con-
servation law: the number of tasks received by P; every
time-unit is equal to the number of tasks processed by
P;, plus the number of tasks sent to its neighbors. It
is important to see that this equation only holds in
steady-state mode. Finally, the objective function is to
maximize the number of tasks executed over the plat-
form.

Because we have a linear programming problem in
rational numbers, we obtain rational values for all vari-
ables in polynomial time (polynomial in |V| + |E], the
size of the heterogeneous platform). When we have the
optimal solution, we take the least common multiple of

nn@

COMPUTER

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04) SOCIETY

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

the denominators, and thus we derive an integer period
T for the steady state operation, during which we exe-
cute T - neask (G) tasks. Because any periodic schedule
obeys the equations of the linear program, the previous
number is an upper bound of what can be achieved in
steady-state mode. It remains to determine whether
this bound is tight or not: see Section 4.1.

3.2. Pipelined scatter operations

In a scatter operation, one processor Psource has to
send distinct messages to a set of target processors
Piarget = {Po,...,Pnv} C V. In the pipelined ver-
sion of the problem, Psource performs a series of scatter
operations, i.e. consecutively sends a large number of
different messages to the set Piarget-

Let my, be the type of messages whose destination is
Py, and send(i, j, k) be the fractional number of mes-
sages of type my, which are sent on the edge e;; within a
time-unit. Finally, let s;; be the fraction of time spent
by P; sending messages to P;. We derive the following
linear program:

STEADY-STATE PIPELINED SCATTER SSPS(G)
Maximize TP,
subject to
Vi,j, OéSZ‘j <1
Vi’ Zj|eij€E Sij < 1
Vi, D jlesien Sii S 1
Vi, g, sij =y, send(i,], k) X ¢ij
Vi, k, k # 1,
ZﬂejiEE Send(j’ (2 k) = Zj\e”eE Send(i7j7 k)
VP € Prargets ZjlejkeE send(j, k, k) = TP

As before, the first equations deal with one-port con-
straints. The fifth equation is the conservation law: a
processor forwards all the messages which it receives
and whose final destination is another processor. The
last equation states that each target processor receives
the right number of different messages. This number is
indeed the objective function to be maximized. Again,
TP is an upper bound of the throughput that can be
achieved in steady-state mode.

3.3. Pipelined multicast operations

It looks simpler to multicast than to scatter: indeed,
the former operation is the restriction of the latter to
the case where all messages are identical. However,
we do not know how to write a linear program which
would adequately bound the throughput of pipelined
multicast operations. For the scatter problem, Psource

sends messages l‘](:) to each Py, € P, where (t) denotes
the temporal index of the multicast operation. For
the multicast problem, all messages are the same for
a given operation: x,(:) = x}f,) = z(®). Nothing pre-
vents us to use the previous linear program, but the
formulation now is pessimistic. If two different mes-
sages are sent along a given edge, we do have to sum
up the communication times, but if they are the same,
there is no reason to count the communication time
twice. In other words, we may want to replace the
equation s;; = >, send(i,j,k) % ¢;; by the equation
si; = maxy, send(i, j, k) X ¢;;. However, this approach
may be too optimistic, as it may well not be possible
that messages can be forwarded into groups that obey
the new equation: see the discussion in Section 4.3.

4. Reconstructing the schedule

Once the linear program is solved, we aim at (i) fully
characterizing the schedule during one time-period,
and (ii) deriving an actual schedule (with proper ini-
tialization and clean-up) whose asymptotic efficiency
will hopefully be optimal.

4.1. During a period in steady-state mode

There are several subtle points when reconstructing
the actual periodic schedule, i.e. the detailed list of
actions of the processors during a time period. Once
the linear programming problem is solved, we get the
period T of the schedule, and the integer number of
messages going through each link. First, because it
arises from the linear program, log T is indeed a num-
ber polynomial in the problem size, but T itself is not
necessarily polynomial in the problem size. Hence, de-
scribing what happens at every time-step during the
period might be exponential in the problem size, and
we need a more “compact” description of the sched-
ule. Second, we need to exhibit an orchestration of
the message transfers where only independent commu-
nications, i.e. involving disjoint pairs of senders and
receivers, can take place simultaneously.

Both problems are solved as follows. From our plat-
form graph G, and using the result of the linear pro-
gram, we build a bipartite graph: for each node P; in G,
we create two nodes P4 and P/¢*’. For each commu-
nication from P; to P;, we insert an edge between Pfe”d
and P, which is weighted by the length of the com-
munication. We are looking for a decomposition of this
bipartite graph into a set of subgraphs where a node
(sender or receiver) is occupied by at most one com-
munication task. This means that at most one edge
reaches each node in the subgraph. In other words,

mk@

COMPUTER

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04) SOCIETY

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

only communications corresponding to a matching in
the bipartite graph can be performed simultaneously,
and the desired decomposition of the graph is in fact
an edge coloring. The weighted edge coloring algo-
rithm of [15, vol.A,chapter 20] provides in time O(|E|?)
a polynomial number of matchings (in fact, no more
than | F| matchings) which are used to perform the dif-
ferent communications, and which provides the desired
polynomial-size description of the schedule. See [6, 4]
for further details.

Altogether, this technique leads to the description
of an optimal periodic schedule for our first two prob-
lems, namely the master-slave tasking and the series
of scatters. Nothing prevents us to use the solution of
the series of scatters for a series of multicast, but the
throughput is no longer shown to be optimal.

4.2. Asymptotic optimality

Because the different instances of the problem
(tasks, scatter operations) are independent, it is easy to
derive an actual schedule based upon the steady-state
operation. We need a fixed number of periods (no more
than the depth of the platform graph rooted at P,, or
Piource) to reach the steady-state: this corresponds to
the initialization phase (and similarly for the clean-up
phase).

The asymptotic optimality of the final schedule di-
rectly follows. In fact, we have a very strong result,
both for master-slave tasking [3, 2] and for pipelined
scatters [12]: the number of tasks or scatter operations
processed within K time-units is optimal, up to a con-
stant number, which only depends upon the platform
graph (but not on K).

Note that we can generalize the master-slave tasking
to the case of independent task graphs (instead of in-
dependent tasks). Then, collections of identical DAGs
are to be scheduled in order to execute, say, the same
suite of algorithmic kernels, but using different data
samples. There are no dependences between successive
DAGs, but of course there are some within a DAG.
This mixed data and task parallelism problem has not
been solved for arbitrary DAGs, but the approach pre-
sented in Section 3.1 can be extended to any DAG with
a polynomial number of simple paths [6, 4].

Finally, the approach for scatters also works for per-
sonalized all-to-all and reduce operations [12].

4.3. Optimal throughput for the multicast problem

The news for the pipelined multicasts is not so good:
the problem of determining the optimal throughput is

NP-hard [7]. In that case, going from makespan min-
imization to steady-state has not decreased the com-
plexity of the problem.

However, for series of broadcasts rather than multi-
casts, the optimal steady-state can be characterized in
polynomial time. Contrarily to the case of the multi-
cast, the bound given by the linear program where the
max operator replaces the Y operator turns out to be
achievable [5]. Intuitively, because each intermediate
processor participates in the execution, it is not im-
portant to decide which messages will be propagated
along which path: in the end, everybody has the full
information.

This is not the case for the multicast problem, and
we illustrate this using an example. Consider the plat-
form graph represented in Figure 2, where values la-
beling edges are the communication costs of a unit-
size message. A solution of the linear program of Sec-
tion 3.2, but with the max operator instead of the >
operator, is shown in the following figures, and reaches
the throughput of one message per time-unit. Fig-
ure 3(a) shows the number of messages sent on each
link and whose target processor is Ps, while Figure 3(b)
shows similar numbers for target processor Ps. Appar-
ently, looking at Figure 3(c) which shows all the trans-
fers, only one message needs to be sent through edge
(Ps, Py) every second time-unit, which would comply
with the edge capacity. However when trying to recon-
struct the schedule, we see that message routes differ
for odd-numbered indices (label a) and even-numbered
indices (label b). Messages are routed along two differ-
ent trees. To reach Ps, odd-numbered multicast mes-
sages, with label a, use the route Py — P, — P,
while even-numbered messages, with label b, use the
route p - P, — P3 — Py — Ps. Similarly,
there are two routes to multicast the messages to FPg:
route r1 = Py - P, - P3 — P, — P and route
ro = Py — P, — Ps. Label a messages targeted to
Ps must use route 71, because the edge (Pp, P») alone
has not the capacity to carry all the messages. Label b
messages targeted to Pg then use route 3, as shown on
Figure 3(c). As a result, the edge P; — P, is required
to transfer both one a and one b messages every time
unit, which is not possible because of its communica-
tion cost. Therefore, reconstructing a schedule from
the solution of the linear program is not possible, the
bound on the throughput cannot be met.

mk@

COMPUTER

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04) SOCIETY

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Figure 2. The multicast platform (target pro-
cessors are shaded).

5. Limitations
5.1. Communication model

5.1.1 Send OR Receive

Surprisingly, the hypothesis that a processor can si-
multaneously send and receive messages is crucial for
the reconstruction of the schedule. As detailed in Sec-
tion 4.1, the solution of the linear program gives a list
of actions to be conducted during a period, and the
edge-coloring algorithm implements the desired orches-
tration.

If we assume that a processor can either send or
receive, it is easy to modify the linear program: for
each processor, write the constraint that the time spent
sending plus the time spent receiving does not ex-
ceed one time-unit. However, extracting independent
communications (involving disjoint processor pairs)
amounts to edge-color an arbitrary graph. The prob-
lem becomes NP-hard, but efficient polynomial approx-
imation algorithms can be used [1]. However, for gen-
eral graphs, we do not know the counterpart of the edge
coloring algorithm for bipartite weighted graphs [15,
vol. A chapter 20].

This is bad news, because the fact that the activity
variables output by the linear program did lead to a
feasible periodic schedule, regardless of their ordering,
was a key advantage of the steady-state approach.

5.1.2 Multiport

We can also consider more powerful communication
models, where an host, equipped with several network
card devices, can be involved in several receptions or
emissions simultaneously. In the case where each net-
work card on a given host is used in only one direction
(sending or receiving) and is linked to a set of fixed
network cards on neighbor hosts, then a linear pro-
gram can be derived (constraints are written for each
network card), and the schedule can be reconstructed

(each node in the bipartite graph corresponds to a net-
work card).

In the case where a network card can be used for
both sending and receiving operations, then the prob-
lem is NP-hard (see above). In the case where a net-
work card is dedicated either to send or to receive
data, but can be involved in a communication with
any neighbor host, then the complexity of the schedule
reconstruction is still open.

5.2. Start-up costs

Linear programs are naturally suited to linear costs,
so introducing computation or communication start-
ups complicates the story. However, in many situa-
tions, the difficulty can be circumvented as follows:

1. Compute a lower bound of the total execution time
for n tasks Tope(n)

2. Use the solution of the linear program and the re-
construction of the solution to design a periodic sched-
ule whose time period is large (of order \/Topt(n)). A
(small) fraction of each period will be wasted due to
start-up costs.

3. Design initialization and clean up phases (used be-
fore and after the periodic schedule).

4. Prove the asymptotic optimality of the resulting
schedule.

The rationale behind the strategy is simple: (i) the
length of the period should increase to +o0o together
with the total amount of work, so that start-up over-
heads end up by being negligible; (ii) the work per-
formed during a period should tend to a negligible frac-
tion of the total amount of work, because a fixed num-
ber of periods are “wasted” during the initialization and
clean-up phases.

The first examples of this strategy were given in [9].
It was successfully applied to divisible load computa-
tions in [8]. Let us detail the different phases for master
slave tasking when the communication of n;; tasks from
P; to P; now takes C;; + n;;c;; time-steps, where Cj;
is the start-up cost.

1. Clearly, the platform with start up costs is less pow-
erful than the platform without start-up costs, so that
Topt (n) < #k(G)

2. Consider the solution obtained after the reconstruc-
tion (without start up costs) and let T' denote its pe-
riod. The idea is to group the communications of m
consecutive periods into a new period, so as to dimin-
ish the influence of start-up costs. We slightly increase
the new period mT in order to take start-up costs into
account. Since there are at most |E| communication
rounds per period, the overall cost due to start-ups
can be bounded by C|E|, where C' = maxC;;. Thus,

mk@

COMPUTER

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04) SOCIETY

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

during each period of duration mT + C|E|, exactly
mTneask(G) are processed.

3. The initialization phase consists in sending (sequen-
tially) to each processor the number of tasks it will both
compute and send during the first time period. The
duration of this initialization phase can be bounded by
Aim, where A; only depends on the platform (and not
on n). The clean-up phase consists in processing “in
place” the tasks that have not been processed yet af-
ter the first Lmj periods. Since mTnask(G)
are processed during each period, at most mT sk (G)
have not been processed yet, so that the duration of
the clean up phase can be bounded by A;m, where Aq
only depends on the platform (and not on n).

4. The overall time T'(n) of initialization, steady state
and clean up phases is therefore bounded by

Nask (@) mTniag(G)’

so that if we set m = [#}((G)], then

T(n)
Topt (n)

Ntask (G)
NG

thereby achieving the proof of asymptotic optimality
when n becomes arbitrarily large.

C|\E 1
A+ D Lol

<1
+ T

5.3. Platform model

The target architectural platform model presented
in Section 2 takes into account the most important
features of actual grid platforms: heterogeneity, link
contention, 1-port constraints, overlapping capabilities.
We consider it as a good compromise between simplic-
ity (necessary in order to build efficient algorithms) and
realism (necessary to build useful algorithms). Nev-
ertheless, the actual topology of a large scale meta-
computing platform is usually not known. On one
hand, as proposed in [10], we can execute pings be-
tween each pair of participating hosts in order to de-
termine the latency and bandwidth between each pair
of hosts. This leads to a complete graph where con-
tention are not taken into account. On the other hand,
according to Paxson [14], it is very difficult to deter-
mine the paths followed by the packets on wide-area
networks, and it is almost impossible to deduce the
communication performance and the interaction of one
data stream on another.

Fortunately, we only need a macroscopic view of
the network, showing that some link is shared between
some routes, without determining the actual physical
topology. Recently, several tools have been designed in

order to obtain such a macroscopic view. ENV [16] has
been especially designed for master slave tasking, since
it provides the view of the platform as seen from the
master (i.e. a tree showing shared links). AINeM [13]
provides a platform model which is closer to the model
presented in Section 2. Both tools perform simultane-
ous communications between several host pairs in or-
der to determine whether some links are shared on the
route between these pairs. The main limitation of both
tools is that the search of the topology of a real large
scale platform requires a huge amount of time, hence
limiting their use to stable platforms.

5.4. Approximation for fixed periods

In the case where the period obtained from the linear
program is very large, we may want to restrict to fixed-
length periods. The price to pay is that the throughput
may be lowered. Again, it is possible to derive fixed-
period schedules whose throughputs tend to the opti-
mum as the length of the period increases. See [4] for
further details.

5.5. Dynamic versions

A key feature of steady-state scheduling is that it is
adaptive. Because the work is divided into periods, it is
possible to dynamically adjust to changes in processor
speeds or link bandwidths.

Indeed, a classical approach to respond to change
in resources capabilities is borrowed from the simple
paradigm “use the past to predict the future”, i.e. to
use the currently observed speed of computation of
each machine and of each communication link to de-
cide for the next distribution of work. There are too
many parameters to accurately predict the actual speed
of a machine for a given program, even assuming that
the machine load will remain the same throughout the
computation. The situation is even worse for communi-
cation links, because of unpredictable contention prob-
lems. When deploying an application on a platform,
the idea is thus to divide the scheduling into phases.
During each phase, all the machine and network pa-
rameters are collected and histogrammed, using a tool
like NWS [18]. This information will then guide the
scheduling decisions for the next phase.

This approach naturally fits with steady-state
scheduling. A first solution is to recompute the so-
lution of the linear program periodically, based upon
the information acquired during the current period,
and to determine the activity variables for the new pe-
riod accordingly. A second solution is more dynamic:
each processor executes a load-balancing algorithm to

mk@

COMPUTER

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04) SOCIETY

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

choose among several allocations (for instance, various
weighted trees for the scatter problem). This technique
has been used for scheduling independent tasks on tree-
shaped platforms [11].

6. Conclusion

The use of steady-state scheduling techniques turned
out to be very helpful to solve a variety of prob-
lems, which includes master-slave tasking, divisible
load scheduling, and pipelining several types of macro-
communications. The list is far from being exhaustive,
and we aim at enlarging it in the future. More im-
portantly, we hope to characterize, or at least better
understand, which are the situations when the bound
output by the solution of the linear program is achiev-
able.

We conclude by stating an open problem: what is
the complexity of computing the optimal steady-state
for the problem of mapping collections of arbitrary task
graphs (with an exponential number of paths, such as
the Laplace graph)? We conjecture that determining
this optimal throughput is NP-hard.

References

[1] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann,
A. Marchetti-Spaccamela, and M. Protasi. Com-
plexity and Approximation. Springer, Berlin, Ger-
many, 1999.

[2] C. Banino, O. Beaumont, L. Carter, J. Ferrante,
A. Legrand, and Y. Robert. Scheduling strategies
for master-slave tasking on heterogeneous proces-
sor platforms. IEEFE Trans. Parallel Distributed
Systems, 15, 2004.

[3] C. Banino, O. Beaumont, A. Legrand, and
Y. Robert. Scheduling strategies for master-slave
tasking on heterogeneous processor grids. In
PARA’02: International Conference on Applied
Parallel Computing, LNCS 2367, pages 423-432.
Springer Verlag, 2002.

[4] O. Beaumont, A. Legrand, L. Marchal, and
Y. Robert. Optimal algorithms for the pipelined
scheduling of task graphs on heterogeneous sys-
tems. Technical Report RR-2003-29, LIP, ENS
Lyon, France, April 2003.

[5] O. Beaumont, A. Legrand, L. Marchal, and
Y. Robert. Optimizing the steady-state through-
put of broadcasts on heterogeneous platforms het-
erogeneous platforms. Technical report, LIP, ENS
Lyon, France, June 2003.

[6] O. Beaumont, A. Legrand, L. Marchal, and
Y. Robert. Scheduling strategies for mixed data
and task parallelism on heterogeneous clusters.
Parallel Processing Letters, 13(2), 2003.

[7] O. Beaumont, A. Legrand, L. Marchal, and
Y. Robert. Complexity results and heuristics for
pipelined multicast operations on heterogeneous
platforms. Technical report, LIP, ENS Lyon,
France, January 2004.

[8] O. Beaumont, A. Legrand, and Y. Robert.
Scheduling divisible workloads on heterogeneous
platforms. Parallel Computing, 29:1121-1152,
2003.

[9] D. Bertsimas and D. Gamarnik. Asymptotically
optimal algorithm for job shop scheduling and
packet routing. Journal of Algorithms, 33(2):296—
318, 1999.

[10] P.B. Bhat, C.S. Raghavendra, and V.K. Prasanna.
Adaptive communication algorithms for dis-
tributed heterogeneous systems. Journal of Par-
allel and Distributed Computing, 59(2):252-279,
1999.

[11] L. Carter, H. Casanova, J. Ferrante, and
B. Kreaseck. Autonomous protocols for
bandwidth-centric scheduling of independent-
task applications. In International Parallel and
Distributed Processing Symposium IPDPS’2003.
IEEE Computer Society Press, 2003.

[12] A. Legrand, L. Marchal, and Y. Robert. Optimiz-
ing the steady-state throughput of scatter and re-
duce operations on heterogeneous platforms. Tech-
nical Report RR-2003-33, LIP, ENS Lyon, France,
June 2003.

[13] A. Legrand, F. Mazoit, and M. Quinson. An
application-level network mapper. Research Re-
port RR-2003-09, LIP, ENS Lyon, France, feb
2003.

[14] V. Paxson. Measurements and Analysis of End-to-
End Internet Dynamics. PhD thesis, University of
California, Berkeley, 1997.

[15] A. Schrijver. Combinatorial Optimization: Poly-
hedra and Efficiency, volume 24 of Algorithms and
Combinatorics. Springer-Verlag, 2003.

[16] G. Shao. Adaptive scheduling of master/worker
applications on distributed computational re-
sources. PhD thesis, Dept. of Computer Science,
University Of California at San Diego, 2001.

mk@

COMPUTER

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04) SOCIETY

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

[17] B. A. Shirazi, A. R. Hurson, and K. M. Kavi.
Scheduling and load balancing in parallel and dis-
tributed systems. IEEE Computer Science Press,
1995.

[18] R. Wolski, N.T. Spring, and J. Hayes. The network
weather service: a distributed resource perfor-
mance forecasting service for metacomputing. Fu-
ture Generation Computer Systems, 15(10):757—
768, 1999.

(a) Number of messages transferred
through each edge and targeting Ps

(b) Number of messages transferred
through each edge and targeting Pg

o

® Q @

(c) Total number of messages going
through each edge

(d) Conflict between two distinct mes-
sages through edge P3 — Py

Figure 3. Multicast: Problems while recon-
structing a schedule

un@

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04) ng&%ﬁ*‘

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

