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Abstract. New architectures for Brain-Machine Interface communication and 
control use mixture models for expanding rehabilitation capabilities of disabled 
patients. Here we present and test a dynamic data-driven (BMI) Brain-Machine 
Interface architecture that relies on multiple pairs of forward-inverse models to 
predict, control, and learn the trajectories of a robotic arm in a real-time closed-
loop system. A method of window-RLS was used to compute the forward-
inverse model pairs in real-time and a model switching mechanism based on 
reinforcement learning was used to test the ability to map neural activity to 
elementary behaviors. The architectures were tested with in vivo data and 
implemented using remote computing resources. 
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1   Introduction 

Among other applications, Brain-machine interfaces (BMIs) for motor control can 
potentially enable patients with spinal injuries to regain autonomy as well as create 
new and revolutionary forms of man-machine interaction. Research is providing an 
increased understanding of how brains control and learn movement, how neuronal 
signals can be detected and processed, and how computers can be used to control 
artificial limbs in real time. This paper reports progress of our work in these fronts. 

In [2] we described a BMI architecture that relies on pairs of forward-inverse 
models to predict, control and learn the trajectories of a robotic arm in a real-time 
closed-loop system. Section 2 extends it into a dynamically data-driven adaptive 
system (DDAS) where the choice and learning of computational models is determined 
by predicted model responsibilities and observed trajectory errors.  The experimental 
setup is described in Section 3. The real-time computation and learning of the models 
require the matrix operations and adaptive algorithms discussed in Section 4. 
Experimental results and conclusions are reported in Sections 5 and 6. 
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2   A Mixed-Model DDDBMI Architecture 

The basis of our design methodology for BMIs is rooted in a model-based approach to 
motor control proposed by Kawato and Wolpert [1, 3]. The major difference is that 
for BMIs the inputs are a mixture of neuronal outputs from motor cortex and feedback 
signals which are processed by computer hardware to generate an output to a 
prosthetic arm (Fig 1). The architecture uses the concept called the Multiple Paired 
Forward-Inverse Model (MPFIM) which consists of multiple pairs of models, each 
comprising a forward model (for movement planning) and an inverse model (for 
movement execution). Individual model-pairs or combinations of model-pairs control 
motion on the basis of feedback data (visual or proprioceptive). 

 

Fig. 1. Multiple paired models and the responsibility predictor for the DDDAS based BMI 

In the DDDAS framework, the feedforward models are implemented with con-
ventional optimal input-output mappers (adaptive FIR filters) using supervised 
learning [4]. Therefore, we include both the neural signal and musculoskeletal 
transformation of those signals to prosthetic joint actuations (lookup table) in our 
inverse model. The MPFIM architecture requires a Responsibility Predictor/Estimator 
(RP) to serve as the gating mechanism to select which local ‘expert’ (forward-inverse 
model pair) is most appropriate based on the current system inputs. In the original 
architecture, the RP uses ‘contextual signal’ such as ‘sensory information and 
cognitive plans’ to determine the responsibility of each local expert at the current time 
based on the state of the motor control system and environment [1]. Research 
suggests that the a representation of the state of the motor control system is present in 
the motor cortex [5]. Following this view, this work estimates the firing rates from the 
forelimb area of primary motor cortex [6] to create a contextual (state) signal. 

The RP is trained to map neural state to the appropriate forward-inverse model 
pair. That model pair generates an elementary action (or moveme analogous to 
phoneme) for the prosthetic limb. To determine the model-pairs for each neural state, 
we use a modified version of reinforcement learning (RL), which provides a learning 
mechanism that is similar to those of a biological motor system [7]. Indeed, the 
learner is not told what actions to take but must discover which actions yield the most 
reward by trying them [8], very similar to operant conditioning in psychology. 
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Conceptually, RL teaches an agent a policy to interact with their environment in a 
fashion that maximizes reward over time [8]. RL requires 3 signals to try to learn the 
optimal policy: the ‘state’ of the environment, the ‘reward’ provided by the 
environment, and the ‘action’ taken by the agent. From the BMI perspective, ‘reward’ 
is achieved by reaching a targeted position. For RL, a positive reward signal is 
generated for task completion (i.e. reach-and-grasp); to encourage efficiency, the 
reward signal is negative for actions that do not immediately complete the task. 

3   Experimental Design 

To investigate and exploit the distributed representation of neurons in the rat motor 
cortex and implement them in a novel computational framework, we have developed 
a novel experimental design involving a “reach and grasp” task where a cue is given 
to initiate controlled movement of a robotic arm from a rest position to one of two 
targets. This paradigm is designed to be comparable to a real situation where the 
patient’s neural signal and rewards are known but kinematic variables are unavailable. 
We developed a “testbed” behavioral task that rats could perform stereotypically 
across trials, that could be relatively easily modeled using our grid computing 
approach, that would facilitate rats’ switching from arm control to brain control, and 
finally, that could be modified to introduce brain control of the MPFIM without the 
availability of a desired response, as is conventionally done in neurorobotic research. 
The animal training paradigm (see Fig. 2) was designed to gradually shape the rats 
into the desired reaching behavior. Neural firing rates from a rat were recorded using 
a Tucker-Davis (Alachua, Florida) Pentusa system during a go no-go behavioral task 
as described in [9]. The task was defined such that the animal initiates all trials (nose 
poke breaking an IR beam). The animal must press a lever in the behavioral box while 
a LED cue is present.  

Additionally, a robotic arm moves in a 3-dimensional grid to target levers within 
the rat’s field of vision [10] but in a discrete area (outside the cage) that the rat cannot 
reach. To earn a reward, the rat and robotic arm must press and hold their respective 
levers for 250 ms simultaneously. Performance of this task must exceed 80% before 

 

 

Fig. 2. Animal Experimental Paradigm. The rat is in the cage on the left side. In brain control, 
the rat levers are not extended, the robotic arm is the only way to earn rewards. 
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electrode implantation or the animal was excluded from the study. This criterion 
ensures that the animal is discriminating between cues rather than guessing. Video 
analysis confirmed (> 95% trials) that the animal presses with the paw contralateral to 
the lever; ispilateral neural firings reflect this difference in behavior. In this reach-
and-grasp task all data is time synchronized to the Pentusa’s clock (neural signal, 
reward times, and lever position) and sent to remote computers for analysis. However, 
we do not record the kinematic variables of the animal’s arms. 

4   Computational Framework  

We now turn to the question of how to train the forward-inverse models pairs and the 
gating mechanism (i.e. the individual likelihood models and the RP) of Fig. 1.  

4.1   Weight Training for Linear Models 

The output of an optimal linear filter of order p is computed by XW=Y T × where X is 
the vector of the last p input data and W is the matrix of weights. To train the weights, 
we are given the past values of X and Y on a large time window (also called the 
training window). A common method is then to find the weights W that gives the 
smallest sum of square errors on Y when applied on the X values (least squares 
method). When all data are available at once, the weights can be computed by 

XY
1

X rR=W ×−  where 
XR  is the auto-correlation matrix of signal X, and XYr  the cross-

correlation matrix between X and Y. Computing the auto-correlation matrix and its 
inverse requires a huge amount of computation, especially when the training window 
is large. This is the reason why we focus on recursive updates to compute the optimal 
weights, specifically the recursive least square (RLS) algorithm [11]. 

The principle of the recursive least square method is to obtain rank one updates of 
both for 1−

XR  and XYr at each time a new data vector is received. Many variants exist 
such as the sliding window-RLS [14] or the QR-RLS [15], which uses a QR 
factorization of the auto-correlation matrix. Because of the requirement of large 
training windows (up to 10,000 samples), we adopt the sliding window-RLS 
algorithm, which is based on the Woodbury formula [13]. We implemented a general 
algorithm, providing the following features: (1) multidimensional inputs and outputs 
and separated modules for auto- and cross-correlation recursion, so that the same 
signal can be used to train a lot of different models at low cost; (2) strict sliding 
window, the matrices are updated with new data and “downdated” with old ones; (3) 
ability to use a forgetting factor to increase the importance of recent data. 

This algorithm is specifically designed for online training, by updating its internal 
data structure at each data received. It works on a special set of weights, called 
”training weights” and does not interfere with current model computations. When the 
user asks for it, or at predefined time-steps, the weights of the model computation are 
updated and replaced by the training weights. The RLS algorithm could also be used 
on offline data, to initialize a set of weights on data recorded in a past experiment. 
However, the RLS algorithm is not efficient for this purpose, so we also provide an 
implementation of the block least square (BLS) algorithm for offline training. Fig. 3 
shows the raw neural data along with the lever press and a linear model output.  
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Fig. 3. Representative lever press, linear, and non-linear filter output for this paradigm [top]. 
Raster plot of recorded neural firing during the lever press [bottom]. 

4.2   Inverse Model Computation 

In the initial testing of this DDDBMI architecture, the set of possible desired 
trajectories is restricted to six movemes (or simplified models of moving forward, 
back, up, down, left, and right) of equal length. The starting position of the robot 
prosthetic is also constant for all trials. This allows us to compute a lookup table of 
necessary joint actuations for any possible prosthetic orientation – desired trajectory 
pair in our workspace. This lookup table is only a placeholder for future inverse 
models where the initial positions may not be known a priori and the set of movemes 
may be modified through training.  

These future inverse models would require an optimization using a biomechanical 
model of the prosthetic limb to be controlled. Such an optimization averages 24.5 
function evaluations using Matlab’s fmincon1. Computing a single inverse model 
(performed every 100 ms) requires, on average, 784 multiplications, 1054 additions, 
and 343 trigonometric function evaluations. 

4.3   RL Computation  

Here we train the switching mechanism through an application of RL. In the classical 
embodiment of RL, a model of the animal’s brain would be considered an ‘agent’ 
which learns (through RL or other methods) to achieve a goal or reward. Here the 
states of the environment and rewards are used to drive new actions (i.e. which model 
pair to select). In a BMI experimental paradigm though, one has access to not only the 
real animal brain but can observe the spatio-temporal activation of brain states 
(indirectly related to the environment) as the animal seeks a goal or reward. Thus, 

                                                           
1  fmincon is a function provided by the MATLAB Optimization Toolbox for constrained 

nonlinear optimization; it finds a constrained minimum of a scalar function of several 
variables starting at an initial estimate. 
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from the BMI point of view, neural activity is external to, and can not be directly 
modified by, the agent  (algorithm); it must be considered part of the environment [8]. 
The BMI RL agent must use information in the neural signal to create movement 
commands for the robot; therefore the agent must learn the state-to-action mapping.  

We devised a novel architecture where the animal’s neural firing is part of the 
environment and defines the state, actions occur in a discrete physical space (a 
separate portion of the environment), and the RL algorithm serves as the agent. The 
animal can see the actions of the robot in the environment; however, actions do not 
directly influence the state of the rat brain. This is an important shift in RL 
architecture because states are decoupled from actions  

5   Results 

Presently, linear models are being studied; the software must support the following 
requirements. With about 100 neurons and a time window of 10 steps to compute a 
five-dimension output, each linear model roughly use 5000 weights. Thus the 
computing power needed for one model is small; however, we want to use hundreds 
of models and need to distribute this computation on the available resources. 
Additionally, each linear model is constantly training its weights as data is received, 
to improve its behavior. This training has to be done in parallel with the computation 
of the output, and may represent a huge amount of computation. The software for 
signal processing is composed of communicating processes, currently in MPI. One 
global process receives data from the Brain Institute and broadcasts them to a number 
of processes, each of them responsible for one model. For each model, a thread, 
running in background, is constantly training the weights. All the computation-
intensive operations are implemented using function calls to BLAS (gotoBLAS) and 
LAPACK libraries. The timing results for a close-loop experiment on a 512MB 
Pentium 3 1.16GHz computing node using one model are the following: 

 
  Gathering data from the animal's brain 3.4 ms 
  Overall communication between both laboratories 0.87 ms 
  Computing the output of one model 0.20 ms 
  Inter-process communication and data management 23 ms 
  Robot Control 0.028 ms 
  Weight training 31.8 ms 
  From collection of brain data to robot control 28 ms 

 
This shows that one closed-loop using only one model takes much less than the 

bound of 100ms, even when training the weights of the model on the same machine. 
The MPFIM architecture tested here contains two fixed movemes (actions) and 

two target locations; thus, we can model the movements of the prosthetic in the 
environment to generate the reward signal for RL. The ‘value’ (responsibility in the 
MPFIM) of each moveme (forward-inverse model pair) is approximated by an 
artificial neural network (ANN) based on the animal’s brain state. Watkin’s Q(λ) 
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learning [8] was used to train the ANNs and decide which moveme is most 
appropriate given the current neural state.  In vivo testing of the experimental 
paradigm and MPFIM architecture was performed in one dimensional space with two 
possible movemes (-1 or +1,i.e. left or right robotic movements). In this form of RL, 
we performed value function approximation using both single and multilayer 
perceptrons to test the performance differences for achieving the target.  To earn a 
reward, the BMI needed to reach a target of -7 or +7 starting from position 0. There 
were 46 training trials (23 trials each for left and right targets) and 16 testing trials (8 
targets for each direction). All trials contained 10 samples of neural data (1 s) which 
terminated in a water reward in the in vivo animal recordings. Three different ANN 
topologies were used to approximate the value of the neural state: single layer 
perceptron (SLP), multilayer perceptron (MLP-nonlinear output), and a multilayer 
perceptron with linear outputs. 

After training the value function, the MPFIM architecture was tested on the 16 
novel trials not used for training. Performance was evaluated as the percent of trials 
that the robot reached the targets. For this test, the null hypothesis is that the neural 
data contains no information about the movement intent of the animal and the MPFIM 
will learn regardless of neural state. To test this hypothesis, a surrogate data set was 
constructed by randomizing the temporal sequence of neural activity collected from 
all of the neurons. The results for real neural data and surrogate neural data are 
presented in table 1. The real neural data can hit the cued target between 81% and 
94% of the trials. In contrast, the null hypothesis was shown to be incorrect through 
the performance of the surrogate data (hitting the cued target 31% of the time). 
Although we only present results from a simplified environment, we show that the RL 
does generalize to novel data and presents a viable technique for switching in the RP. 

The training and testing performance of this architecture can also be measured in 
terms of its computational complexity. Temporal difference error [8] was used to train 
the networks where each error signal is applied to a history of past states (inputs).  
Therefore, the average number of weight updates per sample depends on the length of 
trials that the algorithm has to find a reward. For a 1s trial length, the algorithm 
averages 4.5 weight updates per step (100 ms). In animal experiments, we allow 6.5 s 
for the animal to earn a reward.  This trial length averages 33 weight updates per step. 
For the best performing case (SLP), the weight training consists of multiplications on 
the order of (4M+1)*A and adds on the order of (M+1)*A for each update. Here M 
corresponds to the number of input neurons (ranging from 10s to 100s) and A is the 
number of actions. This example indicates that future architectures utilizing online 
training will require high-performance computing resources. 

Table 1. MPFIM performance in 1D environment 

 SLP MLP(NO) MLP(LO) 
Real Data 93.7% 81.2% 81.2% 
Surrogates 31.2% 31.2% 31.2% 

   [note: MLPs have 3 hidden PEs] 
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6   Conclusions 

The DDAS BMI architecture can serve as a general-purpose neural–to-motor 
mapping framework with modular forward and inverse models with a semi-
supervised gating mechanism. This architecture is well prepared to deal with the 
uncertainties in the nature and generation of motor commands. We showed how the 
capabilities of linear and nonlinear feedforward models can be implemented in real-
time, simultaneously allowing one to determine the most appropriate functional form 
of the motor commands. Distributed processing provided the necessary computational 
power for performing in vivo experimentation on the timescales of the behaving 
animal. Implementation of the reinforcement learning for mapping to the elemental 
constructs of movement is a first step in the development of semi-supervised, goal-
directed BMI techniques for paralyzed patients who are unable to generate a desired 
movement response. Future work will focus on scaling up the biomechanical 
modeling and behavioral response of the animal to 3-D robot control.  
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