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Abstract—This paper introduces two new tape archival policies
that can improve tape archive performance in certain regimes,
compared to the classical RAIT (Redundant Array of Independent
Tapes) policy. The first policy, PARALLEL, still requires as
many parallel tape drives as RAIT but pre-computes large
data stripes that are written contiguously on tapes to increase
write/read performance. The second policy, VERTICAL, writes
contiguous data into a single tape, while updating error cor-
recting information on the fly and delaying its archival until
enough data has been archived. This second approach reduces
the number of tape drives used for every user request to
one. The performance of the three RAIT, PARALLEL and
VERTICAL policies is assessed through extensive simulations,
using a hardware configuration and a distribution of I/O requests
similar to these expected on the BLUE WATERS system. These
simulations show that VERTICAL is the most suitable policy
for small files, whereas PARALLEL must be used for files larger
than 1 GB. We also demonstrate that RAIT never outperforms
both proposed policies, and that a heterogeneous policies mixing
VERTICAL and PARALLEL performs 10 times better than
any other policy.

I. INTRODUCTION

The new generation of petascale supercomputers will need
exabyte-scale archival storage. For example, the BLUE WA-
TERS petascale system that is being installed at the University
of Illinois, Urbana-Champaign [1] will have a peak perfor-
mance of over 10 petaflop/s, over a petabyte of DRAM, and
over 18 petabytes of disk storage; yet most of the storage –
up to half an exabyte – will be on tapes. This is consistent
with a recent report [2], based on eight year experience at
several major High Performance Computing (HPC) centers,
that shows a need to archive about 35 TB of new data each
year for every TB of memory, not counting archived data that
are deleted (20-50%). In a such a system, there is a crucial
need for efficient archival policies for writing to and reading
from the tape system.

In addition, archive systems need to be reliable. Experience
shows that a significant fraction of jobs in HPC centers fail
because of some errors in the archive system: inability to
load the tape, metadata errors on the tape, tensioning errors,
breaking tape, etc. It is estimated in large centers that 1 out of
100 tape handling events leads to a job failure [3]. Moreover,
tapes may face unrecoverable data errors leading to permanent
data loss. The current solution to prevent data loss and avoid
the propagation of a failed tape handling event is RAIT, which
stands for Redundant Array of Independent Tapes [4] – in
analogy to RAID.

On BLUE WATERS, the disk space will be managed by
GPFS [5], while the archival tape system will be managed
by HPSS [6], [7]. The GPFS-HPSS Interface (GHI) integrates
the tape archive into the GPFS namespace, so that the disk
storage essentially is a cache for the tape storage, and data
migrates transparently between disk and tape.

HPSS supports RAIT Level 0 (mirroring, for reliability)
and RAIT Level 1 (stripping, for increased transfer speed).
Mirroring doubles the amount of tape storage needed – an ex-
pensive proposition. There is ongoing work on HPSS support
for schemes similar to RAID 6 [3]. Such a RAIT architecture
requires X + Y tape drives for archiving a single file. The
file is split into blocks; for each X consecutive blocks one
computes Y Erasure Code (EC) blocks. The X + Y blocks
are written on X + Y distinct tapes, with EC blocks rotated
across tapes. Such a design can recover from the failure of
any Y tapes, and speed up transfer rate, by a factor of X .
(However, start-up time increases, as X + Y tapes need to be
loaded.) Values being considered include X+Y = 4+1, 4+2
or 8 + 2.

The main drawbacks of such a RAIT architecture are the
following:

• Because X consecutive blocks of the (currently written)
file are stored in parallel, files are scattered across many
tapes.

• Each archival request monopolizes X + Y tape drives,
which considerably reduces the number of user requests
that can be simultaneously processed by the system.

The first problem (file fragmentation) is expected to have a
dramatic impact on performance. Contiguous access is faster
when reading from tapes, just as it is for disks, but the speedup
ratio is much larger. Suppose that, in order to use a tape
efficiently, one needs to access a contiguous block of size
at least S; then, with RAIT, one needs to access at least
X ×S contiguous data to use the tapes efficiently. Many files
might be shorter than this threshold. It is possible to solve
this issue for writes, by concatenating multiple short files into
one larger “container file”. However, subsequent reads will
have low performance unless all the files concatenated in one
container are accessed together – something that is not always
true, and cannot be guaranteed, especially in a system such as
Blue Waters where archival is initiated by the system, not by
a user.

The second problem (several tape drives per request) will
drastically limit the access concurrency of the system, by
increasing the response time when many users aim at archiving



their data. If, say, 500 tape drives are available, and if the
archival policy requires 10 tape drives per request, then at
most 50 requests can be served simultaneously. This may
well prove a severe limitation for some usage scenarios of
the target supercomputer platform. Furthermore, the average
start-up time for file transfers can increase significantly, since
the number of robotic arms to move tapes is often lower than
the number of tape drives, and the transfer can start only after
the last tape was mounted.

Note that, unlike for RAID, it is not always necessary to
read the redundancy blocks when a file is accessed: Since tape
blocks are long, one can compute and store longitudinal codes
to ensure that data read is valid. Also, one can leverage the
fact that disk storage (unlike main memory) is persistent to
delay the storage of error correcting information to tape, thus
enabling more asynchrony. These differences allow for new
policies, different from classical RAID.

To overcome the shortcomings of RAIT, we have designed
two new archival policies. The first of them, PARALLEL,
still uses the same number X + Y of tape drives, and hence
suffers from the same problem that it reduces the servicing
capacity of the system and increases start-up time. But it does
reduce the fragmentation of files, by pre-partitioning such files
into X stripes that will be written in contiguous mode on the
tapes. Subsequent reads will be able to access larger segments
from each tape.

The second policy, VERTICAL, is more drastic and solves
both problems, at the price of lower transfer rates. The idea
is to write data contiguously and sequentially on X tapes,
filling up the tapes one by one, and to delay the archival
of the redundancy data on Y tapes after X tapes have been
actually written. This requires to update the contents of the Y
redundancy tapes on-the-fly. This scheme allows for serving as
many requests as the number of available tape drives. However,
each request is processed without any parallelism in writing,
hence transfer rate decreases. (The problem can be avoided,
for very long files, by simultaneously writing or reading tape-
sized segments; it is not an issue for very short files, where
tape load and seek time dominates access time; it affects files
in a range in between these extremes.)

The main goal of this paper is to evaluate the three RAIT,
PARALLEL and VERTICAL policies within an event-driven
simulator, and to compare their performances through exten-
sive simulations. The simulation setting corresponds to real-
istic execution scenarios (in terms of both hardware platform
parameters and I/O request rates) for the future exploitation
of BLUE WATERS. After studying their relative performance
on different file sizes, we propose a last strategy, which mixes
the best two candidates (PARALLEL and VERTICAL) to
outperform them.

The paper is organized as follows. We first briefly review
related work in Section II, and we outline the framework
in Section III. Then we detail the three archival policies
in Section IV. The main scheduler and load balancer are
described in Section V. The simulation setting is provided
in Section VI, as well as the results of the comprehensive

simulations. Finally, we state some concluding remarks and
hints for future work in Section VII.

II. RELATED WORK

We classify related work into two main categories, those
dealing with resilient storage policies, and those discussing
tape request scheduling strategies.

a) Resilient storage policies: The first fault-tolerant pol-
icy proposed for tapes was inspired from disks. It adapts the
classical disk RAID policy for tapes, and thus was called
RAIT [4]. An important difference between RAID and RAIT
is that the erasure code is computed from disk blocks on RAID
5 and RAID 6, while RAIT compute the erasure code from
file stripes. Notes that this approach of encoding the data has
also been proposed recently to overcome the issues related to
RAID 5 and RAID 6.

Jonhson and Prabhakar proposed to decouple the stripes
used to write files to the tapes from the ones used to compute
parity, called regions [8]. Their basic idea is to group a number
of regions from different tapes into a parity group and to
compute and store the parity of these regions on another tape.
The proposed framework allows for a wide variety of policies,
such as the ones developed in this paper.

b) Scheduling tape requests: Together with designing
tape storage policies, we also need to schedule I/O requests.
Some specific problems to I/O on tapes have been considered
in the literature. In [9], Hillyer et al. consider the problem
of scheduling retrieval requests to data stored on tapes. Using
a precise model for the performance of the tape drives, they
proved the problem of minimizing the completion time for a
set of request NP-hard, and proposed a complex heuristic to
solve it.

In [10], Prabhakar et al. consider the problem of scheduling
a set of storage requests using a simple model of tape storage,
with the objective of minimizing the average waiting time. An
optimal scheduling policy is provided for the one tape drive
case, and the problem is proven NP-complete for multiple
drives.

To the best of our knowledge, this work is the first aimed at
designing innovative tape archival policies for petascale com-
puters like BLUE WATERS, and assessing their performance.

III. FRAMEWORK

In this section, we first describe the platform model, and
then we state the optimization problem under consideration.

A. Platform model

We derive a model that is representative of a system such
as Blue Waters, but does not match exactly its (currently con-
fidential) configuration. Our goal is to simulate the maximum
capacity of the BLUE WATERS archival storage (0.5 Exabytes),
that is much higher than its initial capacity. Here is a list of
key parameters describing the platform:



Tapes The archival system counts 5,000,000 serpentine tapes.
Each tape stores up to 1 TB of uncompressed data.

Tape Drives There are 500 tape drives to perform read/write
operations on these tapes.

Tape Libraries Tapes are gathered into 3 tape libraries, with
passthrough to transfer tapes between different libraries

Mover Nodes 50 mover nodes are dedicated to process I/O
requests and compute redundancy blocks. Each mover
node has 24 cores and 96 GB of RAM; a mover mode
is connected to 10 tape drives. We assume that a mover
node has access to 10 TB of local disk storage.

Additional computing resources are used by HPSS, e.g., to
schedule transfers, and by GPFS to run file system code.

B. Problem statement

The focus of this study is to handle I/O requests in an
efficient way. An I/O request can be sent in the system in
response to an explicit user command (to archive or delete
data, or move it to disk or off-site); by the automatic disk
management system (to migrate from disk data not touched
recently); or by the job scheduler (to load to disk files needed
by scheduled batch jobs).

An I/O request is characterized by the file that it is access-
ing, and therefore by the size of this file. The request is also
associated with a resiliency scheme X +Y , where X denotes
the number of data blocks corresponding to Y Erasure Code
(EC) blocks. The Y EC blocks are computed by using any
EC algorithm over X blocks of data. Finally, an I/O request is
defined by the I/O policy which it is using, i.e., the way data
and EC blocks are organized onto tapes. As already stated,
three I/O policies will be considered in this study: RAIT,
VERTICAL and PARALLEL.

The most natural objective function is the average response
time for a request, which measures the time between the
arrival of a request in the system and the completion of
its processing. However, this objective is known to unduly
favor large request over smaller ones, and the objective of
choice is rather the average weighted response time, where
the response time for a request is divided by its size. The
weighted response time is close to the stretch, which is a
widely used fairness objective [11]. The stretch is the slow-
down experienced by the request, i.e., its response time in the
actual system divided by its response time if it were alone in
the system (this later quantity being roughly proportional to
the file size if we neglect all latencies). Another important,
platform-oriented objective, is the aggregate throughput, or
aggregated bandwidth of I/O operations, achieved by the
system.

IV. TAPE ARCHIVAL POLICIES

Writing data to tapes is a challenging task, and particular
care is required to design and implement efficient archival
policies. In this section, we first review the well-known RAIT
policy. Then we introduce two novel I/O policies, VERTICAL
and PARALLEL.

A. RAIT

The first policy is called RAIT, for “Redundant Array
of Independent Tapes”, and is the counterpart of RAID for
tapes [4]. In order to overcome the performance and reliability
limitations of each individual tape drives, RAIT writes data
in parallel while keeping the usage of all tapes balanced.
In addition to the resiliency scheme X + Y , which requires
X + Y tape drives, RAIT is characterized by a block size B
which defines the transfer unit. In order to ensure resiliency,
RAIT computes Y EC blocks from X data blocks. These
EC blocks are computed in memory before data blocks are
actually written to tapes. This implies a memory footprint of
(X + Y )×B for each RAIT request running concurrently.
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Figure 1. Writing data with RAIT policy for X = 4 and Y = 1.

The behavior of RAIT is depicted on Figure 1: if all tapes
are empty, the first X blocks are written on tape drives TD1

to TDX , while the Y EC blocks are written on TDX+1 to
TDX+Y . The following sets of X data and Y EC blocks
are then periodically shifted (see Figure 1). Note that when
several consecutive requests of the same policy and resiliency
scheme are served using the same tapes, they are processed
with consecutive unit shifts as if we had a single large request.

Note that tape drives generally offer a hardware compres-
sion mechanism. Hence, although every block has a size of
B, the space occupied on tape may differ from block to
block. In particular, EC blocks are expected to be much less
compressible than data blocks. RAIT balances tape occupation
through its periodical shifting mechanism.

The use of X + Y tapes for each file transfer reduces the
number of concurrent transfers possible, and increases start-up
time. Moreover, as data and EC blocks are periodically shifted



across all tape drives, it is not possible to bypass EC blocks
on reads.

B. PARALLEL

One of the main drawbacks of RAIT is that data on tapes is
fragmented. In order to solve this issue, we introduce a novel
policy called PARALLEL. This policy keeps the parallel I/O
operations offered by RAIT but rather writes data as much
contiguously as possible.

Just like RAIT, PARALLEL is characterized by a block
size B. For a given resiliency scheme X +Y , it also requires
X+Y tape drives for writing data along with Y tape drives for
writing EC blocks. These EC blocks are computed in memory
from X data blocks before being actually written to tapes.
The memory footprint is therefore (X + Y ) × B for each
PARALLEL request running concurrently. However, unlike
RAIT, (i) all EC blocks are written on Y separate tapes; and
(ii) the system writes on each of the X data tapes the longest
possible sequence of consecutive data blocks. Thus, if the file
has S blocks, then each of the X data tapes will store either
dS/Xe or bS/Xc consecutive data blocks. In the simpler case
where S =W ×X then, at step i, the system transfers to X
data tapes the X file blocks Di, Di+W , . . . , Di+(X−1)W , and
transfers to the Y EC tapes the Y EC blocks computed from
the X data blocks. The scheme is depicted on Figure 2: first,
blocks D1, D7, D13 and D19 are held in memory and EC
block P1 is computed. Everything is then written on distinct
tape drives. Then, next sets of blocks are processed the same
way until a tape dedicated to data gets filled. Whenever this
happens, every tapes are replaced by new empty tapes. How-
ever, it may happen that some (or all) of the tapes dedicated
to store EC blocks get filled before data tapes (as depicted on
Figure 2(a)), EC blocks being generally less compressible. In
such a case, these tapes are ejected and replaced by new ones.
Overflowing EC blocks are then written onto those new tapes.
This is what happens on Figure 2(b).

Altogether, PARALLEL maintains the same level of con-
currency in the transfer of files to/from tape, but stores con-
tiguously as much data as possible. Because of the hardware
compression mechanism embedded in tape drives, and given
that EC blocks are generally less compressible than data
blocks, tape occupation is slightly unbalanced. This can lead
in some cases to the use of extra tapes to hold the Y EC
blocks, which could have an effect on performance. Like
RAIT, PARALLEL also has a significant impact on the level
of parallelism of the system, although lower than RAIT, since
X + Y tape drives are required for write operations, but only
X tape drives are needed for read operations.

We point out that adapting RAID-3/RAID-4 to tapes would
lead to a quite inefficient RAIT-4 policy. Indeed, RAIT-4 is
similar to the RAIT policy presented above, but with EC
blocks being not shifted among tapes, and instead being
written on Y dedicated tapes. There is a major difference
between RAIT-4 and PARALLEL: in RAIT-4, the blocks
written on a given (data) tape are Di, Di+X , Di+2X , . . .,
where are in PARALLEL, we have consecutive blocks

Di, Di+1, Di+2, . . .. Thus, RAIT-4 combines all drawbacks:
(i) it uses non-consecutive blocks, which is expected to slow
down the I/O operations on tapes; and (ii) it suffers from
imbalance in tape occupation, since it uses dedicated tapes
for EC blocks. This is why we have discarded RAIT-4 from
our policy evaluation.

C. VERTICAL
With both previous policies, parallelism and resiliency are

tightly coupled, which tends to decrease the overall level of
service provided by the system. In order to break this coupling,
we propose the VERTICAL policy, which also keeps data
entirely contiguous on tapes.

For a given X + Y resiliency scheme, VERTICAL writes
X data tapes before writing Y EC tapes (or more, according
to the compression rate). All writes are performed serially, on
one tape drive. In order to do so, VERTICAL requires enough
local storage space to store Y uncompressed tapes. Each time
a data block is written, the corresponding Y EC blocks are
updated; the computation of these EC blocks is completed
after X data blocks have been written. The scheme is depicted
on Figure 3. Several areas are allocated on disk dedicated to
hold the Y ECs. As data is received, ECs areas are updated
and data is written onto tape. When the tape (holding data) is
filled, it is replaced (as shown on Figures 3(a), 3(b) and 3(c)).

When the X th data tape has been filled or there is no more
data to be written (Figure 3(d)), the tape is replaced by the
first tape dedicated to ECs. EC blocks are then written onto
tape (as depicted on Figure 3(e)). However, similarly to the
PARALLEL policy, it may happen that some EC tape gets
filled before its entire EC block has been written. Whenever
this happens, the tape is ejected and replaced by a new tape
which will hold the remaining part of the EC block. This case
is depicted on Figure 3(f). This step is then repeated for each
remaining EC block.

It is clear that VERTICAL has a minimal impact on the
level of parallelism of the system since it requires only one
tape drive, regardless of the resiliency scheme used. Data is
contiguous on tape and EC blocks need not be read when data
is read.

However, this approach has several limitations: (i) the
erasure code cannot be computed in mover memory because
at least Y + 1 entire tapes should fit in this memory, which
is not possible. Therefore, these tapes must instead be stored
on disks. Like the PARALLEL policy, EC blocks are written
onto dedicated tapes, meaning that tape occupancy may be less
balanced than with RAIT. (ii) although the entire system may
be able to handle more requests concurrently, each request will
take more time to complete since there is no data parallelism
with VERTICAL. (iii) the tape drive is unavailable for
application I/O when writing the EC blocks.

V. SCHEDULING ARCHIVAL REQUESTS

Scheduling I/O requests on a petascale platform is a hard
task. Indeed, the tremendous number of parameters that need
to be taken into account makes it challenging.
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Figure 2. Writing data with PARALLEL policy with X = 4 and Y = 1.

We introduce an online scheduler which basically maps
tape I/O requests submitted to the system onto a mover node.
This scheduling process, denoted as MAIN-SCHEDULER in
the following, works hand in hand with a load balancing
process, denoted as LOAD-BALANCER, responsible for han-
dling requests which were impossible to schedule by MAIN-
SCHEDULER at the time of their arrival.

We choose a “dynamic” approach, where processes cor-
responding to different I/O policies are created on-the-fly
onto the mover nodes, rather than being statically allocated.
This creation process is done either by MAIN-SCHEDULER or
LOAD-BALANCER whenever a new process is required.

The MAIN-SCHEDULER process works as follows: as soon
as a request R is submitted to the system, it is handled by
MAIN-SCHEDULER. MAIN-SCHEDULER first checks whether
R can be served now, i.e., if there is no previous request(s)
regarding the same file or, if R is a read request, if the tapes
containing the concerned file are not currently in use. If R is
in use, it is delayed and placed in the waiting list.

Requests are identified by their type, which is defined as
their archival policy together with their resiliency scheme. For
instance (PARALLEL, 4 + 1) or (RAIT, 8 + 2) are possible
request types. If the request R can be scheduled, MAIN-
SCHEDULER tries the following actions:

• first, MAIN-SCHEDULER tries to find a currently running
process which matches the type of R. If such a process
P exists, and if no more than MAXLIGHTLOAD requests
are already scheduled onto this process, then R is mapped
on process P ;

• otherwise, MAIN-SCHEDULER tries to find a mover node
having enough idle tape drives to host a new process for

R, and it creates this process;
• then, if MAIN-SCHEDULER is unable to create a new

process for handling R, it tries to schedule it on a
currently running process P matching the type of R, but
this time regardless of the number of requests already
mapped onto P .

The rationale is to allocate requests to already running pro-
cesses, provided that their load remains reasonable, otherwise
it might be better to create new processes. The role of
the system parameter MAXLIGHTLOAD is to tune the load
threshold of the processes. Finally, if MAIN-SCHEDULER is
still not able to schedule R, the request is delayed and placed
in the waiting list.

In order to schedule the requests in the waiting list, as well
as to keep the load balanced across the system, the LOAD-
BALANCER is periodically executed every MINLBINTERVAL
units of time. However, in order to keep the number of inter-
ventions of LOAD-BALANCER within a reasonable amount,
one of the following conditions must be met:

• the oldest request has been delayed for more than
MAXWAITINGTIME, and its file is not currently in use;

• the number of non-scheduled pending requests in the
waiting list exceeds MAXREQCOUNT;

• the maximum imbalance of the system exceeds MAX-
IMBALANCE. Here, the imbalance is defined as the
difference between the most and the least loaded types,
were the load of a given type is the ratio between the
number of requests and the number of processes of that
type.

Whenever LOAD-BALANCER is triggered, it resets all pend-
ing requests and marks them as unscheduled. Only those
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Figure 3. Writing data with VERTICAL policy with X = 4 and Y = 1.

requests that are currently executed are not modified (and
continue their execution), but their processes are terminated,
while all other existing processes are canceled. Then LOAD-
BALANCER analyzes which process types are required by the
set of unscheduled requests. For each required type, a new
process is created on a mover node. Then, if idle tape drives
able to host a process still remain, a new process is created,
matching the type of the most loaded type. This action is then
repeated until no new process can be created.

Once LOAD-BALANCER has created new processes, it tries
to map each unscheduled request R. If the file concerned by
R is not currently used, or, if R is a read request, if the
tapes containing the concerned file are not currently in use,
R is mapped on the least loaded process matching its type.
Otherwise, R is delayed and placed in the new waiting list.

VI. PERFORMANCE EVALUATION

In order to assess the performance of each I/O policy, and
the behavior of our I/O request scheduling algorithm, we
have simulated an entire platform resembling that of a current
petascale supercomputer. We first describe the environmental

framework. We then conduct experiments where all requests
obey the same archival policy (RAIT, PARALLEL or VER-
TICAL), and we discuss the influence of file sizes on the
performance. Based upon the results of these experiments, we
evaluate a scenario mixing policies, which associates the best-
suited policy to each file size category.

A. Experimental framework

We have developed our own simulator using SimGrid [12],
[13], a discrete event simulator framework, in its 3.5 version.
The platform is simulated using distributed processes running
in parallel on multiple virtual hosts. Each component of the
model is represented by such processes. For instance, I/O
policies running concurrently on a single mover are simulated
by parallel processes on a single host, whereas each tape
drive is represented by a host and a dedicated process. The
same holds for the main scheduling and the load balancing
processes, which are running concurrently on a single host.

The simulated platform is depicted on Figure 4. The user
process simulates the arrival of the requests in the system.
Those requests are handled by the MAIN-SCHEDULER pro-
cess, which may create new I/O processes on the mover nodes



and assign tape drives to them. Unscheduled requests are
handled by the LOAD-BALANCER process. Finally, the tape
library controls multiple robotic arms dedicated to move the
tapes back and forth from the library to the tape drives.
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Figure 4. Model of the simulated platform

In the experiments, the platform is instantiated using one
tape library managing 20 robotic arms and 500 tape drives.
These tape drives are connected 10-by-10 to 50 mover nodes,
responsible for handling I/O operations. These parameters
match the size of today’s petascale supercomputers.

X + Y 1 + 0 2 + 1 3 + 1 3 + 2
pX+Y 0.025 0.025 0.05 0.1

X + Y 4 + 1 4 + 2 6 + 2 8 + 2
pX+Y 0.1 0.3 0.2 0.2

Table I
RESILIENCY SCHEMES USED IN THE EXPERIMENTS.

The major challenge that we face for the evaluation is
the lack of real traces of a storage system comparable with
the one of BLUE WATERS. The BLUE WATERS machine is
still being designed, and its use of tape storage significantly
differs from that of existing supercomputers. Contrarily to such
systems, tapes will be the main storage for BLUE WATERS,
and discs will only be used as a cache. Hence, tapes will
store large archival data as well as all data present in the
file system. Thus, it is important to test the storage policies
not only with large file sizes, but also for small and medium
sizes. This is why we generated random workloads following
a Poisson process with an arrival rate λ. File sizes are chosen

according to a random log-uniform distribution, which is a
simple approximation of the log-normal distribution of file
sizes observed in file systems [14] for files larger than a few
KB. The type of the I/O operation is chosen uniformly between
read and write. A new file is created in 90% of the cases if
the request is a write operation, and an existing file is written
again otherwise. Each request is provided with a resiliency
scheme X + Y , which is randomly chosen among a set of
representative schemes. These schemes and their respective
probability are given in Table I. Finally, for each file, the
compression rate of data blocks CD is chosen within [1, 3]
while the EC blocks compression rate CP belongs to [1, CD].

B. Results with a single policy

In a first step, only homogeneous scenarios are considered:
requests may have different resiliency schemes but use only
one I/O policy, either RAIT, PARALLEL or VERTICAL.
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Figure 5. Impact of RAIT block size B on average weighted response time.

The first experiment aims at analyzing the impact of the
block size B for the RAIT policy (contrarily to PARALLEL
and VERTICAL, RAIT requires a block size to be tuned,
since it impacts how data is written onto tape). The perfor-
mance of RAIT is computed in terms of the average weighted
response time. Request arrival rate is set to 180 requests per
hour, and file sizes range from 1 GB to 1 TB, while B varies
between 1 MB and 8 GB.

Results presented on Figure 5 show that B has a significant
impact on the average weighted response time of RAIT. For
the smallest values, RAIT performs worse than VERTICAL
whereas it almost ties PARALLEL for larger values. With
B = 1 MB, RAIT is about 80 times slower than with B =
192 MB, while the performance is constant between 192 MB
and 8 GB. Altogether, this experiment outlines the importance
of B value for RAIT policy, which clearly benefits from large
enough blocks in order to offer competitive performance. In
all the following experiments, B will be chosen according to
these results.

The next experiment intends to compare the performance
of all I/O policies for various arrival rates. The objective is



twofold : assessing the average performance of each policy,
and in particular, determining the maximum arrival rate which
can be handled by each policy. File sizes are chosen among
three subsets: small file sizes range from 10 MB to 1 GB,
medium file sizes from 1 GB to 100 GB, and large file sizes
from 1 TB to 100 TB. Arrival rates are chosen with respect of
these files sizes between a few requests per hour to hundreds
of requests per hour.
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Figure 6. Impact of arrival rates on the average weighted response time for
small files (B = 16 MB for RAIT).

For small files, as depicted in Figure 6, the best average
weighted response time is offered by VERTICAL, which
can sustain higher arrival rates than the other policies. RAIT
is able to serve requests with reasonable response time for
rates lower than 420 requests per hour. PARALLEL performs
better than RAIT since it can keep up with rates lower
than 600 requests per hour. The best policy in that case is
VERTICAL, which can tolerate rates up to 800 requests per
hour. This is due to the fact that with small files, extra latencies
paid by data parallel policies (RAIT and PARALLEL) are
not negligible. Also, recall that more files can be written
concurrently throughout the entire system with VERTICAL.
Contrarily to its contenders, VERTICAL can pipeline a large
number of files before having to write EC tapes, thereby
increasing average performance.

For medium sizes, results presented on Figure 7 show that,
as expected, the system benefits more from data parallelism,
latencies being now negligible. PARALLEL dominates other
policies in this case, being able to handle up to 150 requests
per hour while RAIT gets overloaded with arrival rates higher
than 95 requests per hour. The extra tape drives used by RAIT
as well as extra latencies when reading data have a significant
impact on the average weighted response time. In that case,
VERTICAL is the worst policy since it can only sustain up
to 80 requests per hour.

Finally for large files, results presented on Figure 8 outline
a behavior similar to that observed for medium sized files.
PARALLEL represents the best policy in terms of average
weighted response time. Using this policy, the system is able
to cope with 1.3 requests per hour while the second competitor,
RAIT, can only serve up to 1 request per hour without being
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Figure 7. Impact of arrival rates on the average weighted response time for
medium-size files (B = 256 MB for RAIT).
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Figure 8. Impact of arrival rates on the average weighted response time for
large files (B = 8 GB for RAIT).

overloaded. Unsurprisingly, VERTICAL suffers from the lack
of parallelism with these huge files, and can only bear 0.1
request per hour.

As a conclusion, these experiments show that PARALLEL
offers the best results overall. RAIT outperforms VERTICAL
whenever files are large enough. The fact that PARALLEL
dominates the other solutions means not only that data paral-
lelism is crucial, but also (and less expectedly) that balancing
parity across tapes (as in RAIT) has a negligible impact
compared to that of enforcing data sequentiality.

The next experiment aims at measuring how the differ-
ence of compressibility between data and EC blocks affects
the overall performance of each I/O policy. Indeed, neither
PARALLEL nor VERTICAL can balance the EC blocks
across tapes, possibly leading to more tape loads/unloads for
tapes dedicated to EC blocks. The underlying objective of this
experiment is therefore to assess the impact of this pitfall on
the average weighted response time. In order to do so, the
arrival rate is set to 65 requests per hour, RAIT block size
is B = 192 MB, and file sizes range between 1 GB and
1 TB. The compression rate of data is set to be 3x. The EC
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Figure 9. Impact of EC blocks compression rates on performance.

compression rate varies between 1x (no compression) and 3x
(same compression rate as data).

As shown on Figure 9, I/O policies do not display the same
sensitivity to EC compression rate. Both PARALLEL and
RAIT are more affected by compression than VERTICAL.
As a matter of a fact, while the later maintains its performance
regardless of EC compression rate, the average weighted
response time displayed by RAIT and PARALLEL increases
when EC blocks are less compressed. The lower sensitivity
of VERTICAL to EC compression comes from the fact that
several requests are served before writing EC blocks, because
these are aggregated. This is not the case for PARALLEL
and RAIT.

Moreover, with both PARALLEL and VERTICAL, data
tapes are always entirely filled, and EC blocks are written
onto dedicated tapes. When EC blocks are far less compressed
than data, tapes dedicated to EC are filled faster and require
more frequent EJECT/LOAD operations. This also explain the
higher sensitivity of PARALLEL to EC compression. On the
contrary, with RAIT, the difference of compression between
data and EC blocks degrades the balance of tape occupancy,
leading to extra EJECT/LOAD operations on every tape drive
(with RAIT, when a tape is filled, all loaded tapes are ejected).

Altogether, this experiment shows that both RAIT and
PARALLEL display higher sensitivity to compression than
VERTICAL. Whenever data is highly compressible, VER-
TICAL ties PARALLEL.

The following experiment focuses on the evaluation of the
impact of the load balancing period MINLBINTERVAL on the
average weighted response time. Indeed, this setting might sig-
nificantly influence the behavior of the system under intensive
workloads. Therefore, MINLBINTERVAL needs to be precisely
tuned in order to fully exploit the archival architecture. In this
experiment, file sizes are chosen between 1 GB and 1 TB,
RAIT block size is B = 192 MB, while the mean arrival
rate is set to λ = 65 requests per hour. Results depicted
on Figure 10 show that the load balancing period indeed has
a significant impact on performance: all three policies reach
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Figure 10. Impact of LOAD-BALANCER period on performance.

a minimum average weighted response time for a particular
value of MINLBINTERVAL. Interestingly, the best value of
MINLBINTERVAL is not the same for every policy: although
both RAIT and PARALLEL perform better when LOAD-
BALANCER is called at most every 6 days, VERTICAL
benefit from a significantly higher value: 24 days. This is
due to the fact that VERTICAL often has more pending
requests than the other policies, and requires more time to
serve each request. Remember that whenever an I/O process
is destroyed by LOAD-BALANCER, loaded tapes are ejected.
Therefore, calling the load balancing process too frequently
may cause (in the worst case) tapes to be unloaded after each
request has been served, leading to higher response times. All
in all, this experiment shows that the load balancing period
MINLBINTERVAL need to be precisely tuned in order to fully
benefit from the parallel storage system.

C. Results with multiple policies

Based on the previous results, a novel strategy using
multiple policies is introduced: HETERO. As seen above,
VERTICAL represents the best solution when writing small
files, while PARALLEL is the best choice for larger files. In
the following experiment, the I/O policy used to write a file
is now dynamically chosen by the system, based on its size.

The purpose here is to fully benefit from both policies
in order to enhance the overall performance of the storage
system. In order to assess the corresponding improvement, the
impact of the arrival rate on the average weighted response
time is again evaluated. File sizes are now chosen among a
broader range: from 10 MB to 10 TB. A file smaller than
1 GB will be processed using VERTICAL, while larger files
will use PARALLEL.

Results depicted on Figure 11 show that the HETERO strat-
egy clearly outperforms all single policy strategies. HETERO
can handle up to 7 requests of any size per hour while the
best single policy strategy, PARALLEL, is limited to 0.6
requests per hour. The single strategy using VERTICAL does
not perform well, since it is able to maintain a reasonable
average weighted response time until arrival rate reaches 0.003
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Figure 11. Impact of arrival rates on the average weighted response time (with small, medium-size and large file together, and B = 512 MB for RAIT).

requests per hour. RAIT does better with a maximum of 0.3
requests per hour.

Altogether, this experiment shows that a strategy using
multiple policies, carefully choosing the I/O policy that will
be used to handle a file based on its size, brings a dramatic
performance increase. The performance is sustained at signif-
icantly higher rates than with any singly policy strategy.

VII. CONCLUSION

In this paper, we have first discussed the well-known RAIT
policy for tape archival on a petascale supercomputer, and we
have identified its shortcomings. We have introduced two new
I/O policies, PARALLEL and VERTICAL, that either reduce
file fragmentation, or increase the number of requests that can
be served simultaneously, or both. Contrarily to RAIT which
requires to carefully choose a blocksize, the new policies do
not require any tuning.

We have conducted a comprehensive set of experiments
to assess the performance of the three RAIT, PARALLEL
and VERTICAL policies. We observed that for small files,
VERTICAL provides the best weighted response time, while
for medium-size and large files, PARALLEL is the clear
winner. This has led us to propose an heterogeneous solution
mixing policies (VERTICAL for small files, PARALLEL
otherwise). Altogether, this latter approach provides a dramatic
ten-fold improvement over each policy taken separately.

We hope that the lessons learnt in this study will help guide
the final design decisions of the BLUE WATERS supercom-
puter, and more generally, of future large-scale platforms that
will require even larger storage capacities, and always more
efficient archival scheduling policies.
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