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Abstract. In this paper, we consider the problem of scheduling divisi-
ble loads onto an heterogeneous star platform, with both heterogeneous
computing and communication resources. We consider the case where
the workers, after processing the tasks, send back some results to the
master processor. This corresponds to a more general framework than
the one used in many divisible load papers, where only forward com-
munications are taken into account. To the best of our knowledge, this
paper constitutes the first attempt to derive optimality results under
this general framework (forward and backward communications, hetero-
geneous processing and communication resources). We prove that it is
possible to derive the optimal solution both for LIFO and FIFO dis-
tribution schemes. Nevertheless, the complexity of the general problem
remains open: we also show in the paper that the optimal distribution
scheme may be neither LIFO nor FIFO.

1 Introduction

This paper deals with scheduling divisible load applications on heterogeneous
platforms. As their name suggests, divisible load applications can be divided
among worker processors arbitrarily, i.e. into any number of independent pieces.
This corresponds to a perfectly parallel job: any sub-task can itself be processed
in parallel, and on any number of workers. In practice, the Divisible Load Schedul-
ing model, or DLS model, is an approximation of applications that consist of
large numbers of identical, low-granularity computations.

Quite naturally, we target a master-worker implementation where the master
initially holds (or generates data for) a large amount of work that will be executed
by the workers. In the end, results will be returned by the workers to the master.
Each worker has a different computational speed, and each master-worker link
has a different bandwidth, thereby making the platform fully heterogeneous.
The scheduling problem is first to decide how many load units the master sends
to each worker, and in which order. After receiving its share of the data, each
worker executes the corresponding work and returns the results to the master.
Again, the ordering of the return messages must be decided by the scheduler.

The DLS model has been widely studied in the last several years, after having
been popularized by the landmark book [7]. The DLS model provides a practical
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framework for the mapping of independent tasks onto heterogeneous platforms,
and has been applied to a large spectrum of scientific problems. From a theo-
retical standpoint, the success of the DLS model is mostly due to its analytical
tractability. Optimal algorithms and closed-form formulas exist for important
instances of the divisible load problem. A famous example is the closed-form
formula given in [4, 7] for a bus network. The hypotheses are the following: (i)
the master distributes the load to the workers, but no results are returned to the
master; (ii) a linear cost model is assumed both for computations and for com-
munications (see Section 2.1); and (iii) all master-worker communication links
have same bandwidth (but the workers have different processing speeds). The
proof to derive the closed-form formula proceeds in several steps: it is shown that
in an optimal solution: (i) all workers participate in the computation, then that
(ii) they never stop working after having received their data from the master,
and finally that (iii) they all terminate the execution of their load simultane-
ously. These conditions give rise to a set of equations from which the optimal
load assignment αi can be computed for each worker Pi.

Extending this result to a star network (with different master-worker link
bandwidths), but still (1) without return messages and (2) with a linear cost
model, has been achieved only recently [5]. The proof basically goes along the
same steps as for a bus network, but the main additional difficulty was to find
the optimal ordering of the messages from the master to the workers. It turns
out that the best strategy is to serve workers with larger bandwidth first, inde-
pendently of their computing power.

The next natural step is to include return messages in the picture. This is very
important in practice, because in most applications the workers are expected to
return some results to the master. When no return messages are assumed, it is
implicitly assumed that the size of the results to be transmitted to the master
after the computation is negligible, and hence has no (or very little) impact on the
whole DLS problem. This may be realistic for some particular DLS applications,
but not for all of them. For example suppose that the master is distributing files
to the workers. After processing a file, the worker will typically return results in
the form of another file, possibly of shorter size, but still non-negligible. In some
situations, the size of the return message may even be larger than the size of the
original message: for instance the master initially scatters instructions on some
large computations to be performed by each worker, such as the generation of
several cryptographic keys; in this case each worker would receive a few bytes of
control instructions and would return longer files containing the keys.

Because it is very natural and important in practice, several authors have in-
vestigated the problem with return messages: see the papers [3, 8, 9, 2, 1]. How-
ever, all the results obtained so far are very partial. Intuitively, there are hints
that suggest that the problem with return results is much more complicated.
The first hint lies in the combinatorial space that is open for searching the best
solution. There is no reason for the ordering of the initial messages sent by the
master to be the same as the ordering for the messages returned to the mas-
ter by the workers after the execution. In some situations a FIFO strategy (the
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worker first served by the master is the first to return results, and so on) may be
preferred, because it provides a smooth and well-structured pipelining scheme.
In other situations, a LIFO strategy (the other way round, first served workers
are the last to return results) may provide better results, because faster workers
would work a longer period if we serve them first and they send back their re-
sults last. True, but what if these fast workers have slow communication links?
In fact, and here comes the second hint, it is not even clear whether all workers
should be enrolled in the computation by the master. This is in sharp contrast
to the case without return messages, where it is obvious that all workers should
participate. To the best of our knowledge, the complexity of the problem re-
mains open, despite the simplicity of the linear cost model. In [1], Adler, Gong
and Rosenberg show that all FIFO strategies are equally performing on a bus
network, but even the analysis of FIFO strategies is an open problem on a star
network.

The main contributions of this paper are the characterization of the best
FIFO and LIFO strategies on a star network, together with an experimental
comparison of them. While the study of LIFO strategies nicely reduces to the
original problem without return messages, the analysis of FIFO strategies turns
out to be more involved; in fact, the optimal FIFO solution may well not enroll
all workers in the computations. Admittedly, the complexity of the DLS problem
with return messages remains open: there is no a priori reason that either FIFO
or LIFO strategies would be superior to solutions where the ordering of the
initial messages and that of return messages are totally uncorrelated (and we
give an example of such a situation in Section 2). Still, we believe that our
results provide an important step in the understanding of this difficult problem,
both from a theoretical and practical perspective. Indeed, we have succeeded in
characterizing the best FIFO and LIFO solutions, which are the most natural and
easy-to-implement strategies. Due to space limitations, the overview of related
work is not included in this paper, please refer to the extended version [6].
Similarly, all proofs are omitted, but they are all detailed in [6].

2 Framework

2.1 Problem Parameters

A star network S = {P0, P1, P2, . . . , Pp} is composed of a master P0 and of p
workers Pi, 1 ≤ i ≤ p. There is a communication link from the master P0 to each
worker Pi. In the linear cost model, each worker Pi has a (relative) computing
power wi: it takes X.wi time units to execute X units of load on worker Pi.
Similarly, it takes X.ci time units to send the initial data needed for computing
X units of load from P0 to Pi, and X.di time units to return the corresponding
results from Pi to P0. Without loss of generality we assume that the master
has no processing capability (otherwise, add a fictitious extra worker paying
no communication cost to simulate computation at the master). Note that a
bus network is a star network such that all communication links have the same
characteristics: ci = c and di = d for each worker Pi, 1 ≤ i ≤ p.
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It is natural to assume that the quantity di

ci
is a constant z that depends

on the application but not on the selected worker. In other words, workers who
communicate faster with the master for the initial message will also communicate
faster for the return message. In the following, we keep using both values di and
ci, because many results are valid even without the relation di = zci, and we
explicitly mention when we use this relation.

Finally, we use the standard model in DLS problem for communications: the
master can only send data to, and receive data from, a single worker at a given
time-step. A given worker cannot start execution before it has terminated the
reception of the message from the master; similarly, it cannot start sending the
results back to the master before finishing the computation. However, there is
another classic hypothesis in DLS papers which we do not enforce, namely that
there is no idle time in the operation of each worker. Under this assumption, a
worker starts computing immediately after having received its initial message,
which is no problem, but also starts returning the results immediately after
having finished its computation: this last constraint does reduce the solution
space arbitrarily. Indeed, it may well prove useful for a worker Pi to stay idle
a few steps before returning the results, waiting for the master to receive the
return message of another worker Pi′ . Of course we could have given more load
to Pi to prevent it from begin idle, but this would have implied a longer initial
message, at the risk of delaying the whole execution scheme. Instead, we will
tackle the problem in its full generality and allow for the possibility of idle times
(even if we may end by proving that there is no idle time in the optimal solution).

The objective function is to maximize the number of load units that are
processed within T time-units. Let αi be the number of load units sent to, and
processed by, worker Pi within T time-units. Owing to the linear cost model, the
quantity

�p
i=1 αi

T = ρ does not depend on T (see Section 2.2 for a proof), and
corresponds to the achieved throughput, which we aim at maximizing.

2.2 Linear Program for a Given Scenario

Given a star platform with p workers, and parameters wi, ci, di, 1 ≤ i ≤ p, how
can we compute the optimal throughput? First we have to decide which workers
are enrolled. Next, given the set of participating workers, we have to decide for
the ordering of the initial messages. Finally we have to decide for the ordering of
the return messages. Altogether, there is a finite (although exponential) number
of scenarios, where a scenario refers to a schedule with a given set of participating
workers and a fixed ordering of initial and return messages. Then, the next
question is: how can we compute the throughput for a given scenario?

Without loss of generality, we can always perform all the initial communi-
cations as soon as possible. In other words, the master sends messages to the
workers without interruption. If this was not the case, we would simply shift
ahead some messages sent by the master, without any impact on the rest of the
schedule. Obviously, we can also assume that each worker initiates its compu-
tation as soon as it has received the message from the master. Finally, we can
always perform all the return communications as late as possible. In other words,



502 O. Beaumont, L. Marchal, and Y. Robert

P2

P1

Pp

Pi

αici αiwi
xi

αidi

Fig. 1. LIFO strategy. Dark grey rectangles (of length αqcq) represent the initial mes-
sages destined to the workers. White rectangles (of length αqwq) represent the com-
putation on the workers. Light grey rectangles (of length αqdq) represent the return
messages back to the master. Bold lines (of length xq) represent the idle time of the
workers.

once the master starts receiving data back from the first worker, it receives data
without interruption until the end of the whole schedule. Again, if this was not
the case, we would simply delay the first messages received by the master, with-
out any impact on the rest of the schedule. Note that idle times can still occur
in the schedule, but only between the end of a worker’s computation and the
date at which it starts sending the return message back to the master.

The simplest approach to compute the throughput ρ for a given scenario is
to solve a linear program. For example, assume that we target a LIFO solution
involving all processors, with the ordering P1, P2, . . . , Pp, as outlined in Figure 1.
With the notations of Section 2.1 (parameters wi, ci, di and unknowns αi, ρ),
worker Pi: (i) starts receiving its initial message at time trecvi =

∑i−1
j=1 αjcj ; (ii)

starts execution at time trecvi + αici; (iii) terminates execution at time ttermi =
trecvi + αici + αiwi; (iv) starts sending back its results at time tback

i = T −
∑i

j=1 αjdj . Here T denotes the total length of the schedule. The idle time of Pi

is xi = tback
i − ttermi , and this quantity must be nonnegative. We derive a linear

equation for Pi:

T −
i∑

j=1

αjdj ≥
i−1∑

j=1

αjcj + αici + αiwi.

Together with the constraints αi ≥ 0, we have assembled a linear program,
whose objective function is to maximize ρ(T ) =

∑p
i=1 αi. In passing, we check

that the value of ρ(T ) is indeed proportional to T , and we can safely define
ρ = ρ(1) as mentioned before. We look for a rational solution of the linear
program, with rational (not integer) values for the quantities αi and ρ, hence we
can use standard tools like Maple or MuPAD.

Obviously, this linear programming approach can be applied for any permu-
tation of initial and return messages, not just LIFO solutions as in the above
example. Note that it may well turn out that some αi is zero in the solution
returned by the linear program, which means that Pi is not actually involved
in the schedule. This observation reduces the solution space: we can a priori
assume that all processors are participating, and solve a linear program for each
pair of message permutations (one for the initial messages, one for the return
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messages). The solution of the linear program will tell us which processors are
actually involved in the optimal solution for this permutation pair.

For a given scenario, the cost of this linear programming approach may be
acceptable. However, as already pointed out, there is an exponential number of
scenarios. Worse, there is an exponential number of LIFO and FIFO scenarios,
even though there is a single permutation to try in these cases (the ordering of
the return messages is the reverse (LIFO) or the same (FIFO) as for the initial
messages). The goal of Sections 3 and 4 is to determine the best LIFO and FIFO
solution in polynomial time.

2.3 Counter-Examples

In Figure 2 we outline an example where not all processors participate in the
optimal solution. The platform has three workers, as shown in Figure 2(a). The
best throughput that can be achieved using all the three workers is obtained
via the LIFO strategy represented in Figure 2(b), and is ρ = 61/135. However,

P0

P1 P2 P3

d3 = 5d1 = 1

w1 = 1 w2 = 1 w3 = 5

c1 = 1
c2 = 1

c3 = 5

d2 = 1

(a) Platform

P2

P1

P3

(b) LIFO, ρ = 61/135

P2

P1

P3

(c) FIFO, 2 processors,
ρ = 1/2

Fig. 2. The best schedule with all the three workers (shown in (b)) achieves a lower
throughput than when using only the first two workers (as shown in (c))

P0

P1 P2 P3

c2 = 8c1 = 7 c3 = 12
d1 = 7 d3 = 12

w1 = 6 w2 = 5 w3 = 5

d2 = 8

(a) Platform

P2

P1

P3

(b) Optimal schedule
(ρ = 38/499 ≈ 0.076)

P2

P1

P3

(c) FIFO schedule (ρ =
47/632 ≈ 0.074)

P2

P1

P3

(d) LIFO schedule (ρ =
43/580 ≈ 0.074)

Fig. 3. An example where the optimal solution is neither FIFO nor LIFO
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the FIFO solution which uses only the first two workers P1 and P2 achieves
a better throughput ρ = 1/2. To derive these results, we have used the linear
programming approach for each of the 36 possible permutation pairs. It is very
surprising to see that the optimal solution does not involve all workers under
a linear cost model (and to the best of our knowledge this is the first known
example of such a behavior).

Next, in Figure 3, we outline an example where the best throughput is achieved
using neither a FIFO nor a LIFO approach. Instead, the optimal solution uses
the initial ordering (P1, P2, P3) and the return ordering (P2, P1, P3). Again, we
have computed the throughput of all possible permutation pairs using the linear
programming approach.

3 LIFO Strategies

In this section, we concentrate on LIFO strategies, where the processor that
receives the first message is also the last processor that sends its results back to
the master, as depicted in Figure 1. We keep the notations used in Section 2.2,
namely wi, ci, di and αi for each worker Pi.

In order to determine the optimal LIFO ordering, we need to answer the fol-
lowing questions: What is the subset of participating processors? What is the
ordering of the initial communications? What is the idle time xi of each partici-
pating worker? The following theorem answers these questions and provides the
optimal solution for LIFO strategies (see [6] for the proof):

Theorem 1. In the optimal LIFO solution, then: (i) all processors participate
to the execution; (ii) initial messages must be sent by non-decreasing values of
ci + di; and (iii) there is no idle time, i.e. xi = 0 for all i. Furthermore, the
corresponding throughput can be determined in linear time O(p).

4 FIFO Strategies

In this section, we concentrate on FIFO strategies, where the processor that
receives the first message is also the first processor to send its results back to
the master. We keep the notations used in Sections 2.2 and 3, namely wi, ci, di

and αi for each worker Pi. The analysis of FIFO strategies is much more difficult
than the analysis of LIFO strategies: we will show that not all processors are
enrolled in the optimal FIFO solution. In this section, we assume that di = zci

for 1 ≤ i ≤ p. The proof of the following theorem is long and technical, see [6]
for more details:

Theorem 2. In the optimal FIFO solution, then: (i) initial messages must be
sent by non-decreasing values of ci + di; (ii) the set of participating processors
is composed of the first q processors for the previous ordering, where q can be
determined in linear time; and (iii) there is no idle time, i.e. xi = 0 or all i.
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Furthermore, the optimal LIFO solution and the corresponding throughput can
be determined in linear time O(p).

5 Simulations

In this section, we present the results of some simulations conducted with the
LIFO and FIFO strategies. We cannot compare these results against the opti-
mal schedule, since we are not able to determine the optimal solution as soon
as the number of workers exceeds a few units. For instance, for a platform with
100 workers, we would need to solve (100!)2 linear programs of 100 unknowns
(one program for each permutation pair). Rather than computing the solution
for all permutation pairs, we use the optimal FIFO algorithm as a basis for
the comparisons. The algorithms tested in this section are the following: op-
timal FIFO solution, as determined in Section 4, called OPT-FIFO; optimal
LIFO solution, as determined in Section 3, called OPT-LIFO; a FIFO heuristic
using all processors, sorted by non-decreasing values of ci (faster communicat-
ing workers first), called FIFO-INC-C; a FIFO heuristic using all processors,
sorted by non-decreasing values of wi (faster computing workers first), called
FIFO-INC-W.

We present the relative performance of these heuristics on a master/worker
platform with 100 workers. For these experiments, we chose z = 0.8, meaning
that the returned data represents 80% of the input data. The performance pa-
rameters (communication and computation costs) of each worker may vary from
50% around an average value. The ratio of the average computation cost over
the average communication cost (called the w/c-ratio) is used to distinguish be-
tween the experiments, as the behavior of the heuristics highly depends on this
parameter.

Figure 4(a) presents the throughput of the different heuristics for a w/c-ratio
going from 1/10 to 100. These results are normalized so that the optimal FIFO
algorithm always gets a throughput of 1. We see that both OPT-FIFO and
FIFO-INC-C give good results. The other heuristics (FIFO-INC-W and OPT-
LIFO) perform not so well, except when the w/c-ratio is high: in this case,
communications have no real impact on the schedule, and almost all schedules
may achieve good performances.

In Section 4, we showed that using all processors is not always a good choice. In
Figure 4(b) we plot the number of processors used by the OPT-FIFO algorithm
for the previous experiments: for small values of the w/c-ratio, a very small
fraction of the workers is enrolled in the optimal schedule. Finally, Figure 4(c)
presents the relative performance of all heuristics when the size of the data
returned is the same as the size of the input data (z = 1). With the exception
of this new hypothesis (z = 1 instead of z = 0.8), the experimental settings are
the same as for Figure 4(a). We show that for a w/c-ratio less than 10, only the
OPT-FIFO algorithm gives good performance: the FIFO-INC-C heuristic is no
longer able to reach a comparable throughput. We also observe that when z = 1
the ordering of the workers has no importance: FIFO-INC-C and FIFO-INC-W
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are FIFO strategies involving all the workers but in different orders, and give
exactly the same results.
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Fig. 4. (a) (a): Performance of the heuristics (optimal FIFO schedule), for different
w/c-ratios. (b): Number of workers (optimal FIFO schedule), for different w/c-ratios.
(c): Performance of the heuristics (optimal FIFO schedule), when ci = di (z = 1), for
different w/c-ratios.
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6 Conclusion

In this paper we have dealt with divisible load scheduling on a heterogeneous
master-worker platform. We have shown that including return messages from
the workers after execution, although a very natural and important extension in
practice, leads to considerable difficulties. These difficulties were largely unex-
pected, because of the simplicity of the linear model.

We have not been able to fully assess the complexity of the problem, but
we have succeeded in characterizing the optimal LIFO and FIFO strategies,
and in providing an experimental comparison of these strategies against simpler
greedy approaches. Future work must be devoted to investigate the general case,
i.e. using two arbitrary permutation orderings for sending messages from, and
returning messages to, the master. This seems to be a very combinatorial and
complicated optimization problem.
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