
Optimal Bandwidth Sharing
in Grid Environments

Loris Marchal, Pascale Vicat-Blanc Primet, Yves Robert and Jingdi Zeng
Laboratoire de l’Informatique du Parallélisme, UMR CNRS-ENS Lyon-INRIA-UCB Lyon 5668

École Normale Supérieure de Lyon, France

Abstract

We consider the problem of bulk data transfers and
bandwidth sharing in the context of grid infrastructures.
Grid computing empowers high-performance comput-
ing in a large-scale distributed environment. Network
bandwidth, which makes the expensive computational
and storage resources work in concert, plays an active
role on carrying grid applications traffic. Due to specific
traffic patterns and application scenarios, grid network
resource management encounters new challenges. From
the bandwidth sharing perspective, this article looks at
network bandwidth shared among computing and stor-
age elements. Referred to as short-lived, grid data re-
quests with transmission window and volume are sched-
uled in the network. By manipulating the transmission
window, the request accept rate and network resource
utilization are to be optimized. The formulated optimiza-
tion problem is proven NP-complete. Associated with
proposed heuristics, simulations are carried out to il-
lustrate the pros and cons of each bandwidth sharing
strategy and its application scenarios. A tuning factor,
that allows for adapting performance objective, is intro-
duced to adjust network infrastructure and workload.

1. Introduction

Moving one step further from processor clusters, grid
computing is a promising technology that brings to-
gether large collection of geographically distributed re-
sources (e.g., computing, visualization, storage, infor-
mation, etc.) to build a very high-performance com-
puting environment for data-intensive or computing-
intensive applications [10]. Grid applications involve
multi-domain, very long distance heterogeneous net-
works, complex sets of network services, and local area
networks belonging to independent organizations. Het-

erogeneous traffic flows of grids have impact on grid
performance, resource utilization, and performance of
individual applications.

The data volume of data grids is in the order of Ter-
abytes and will likely reach Petabytes in the near future.
Transporting such enormous quantities of data among
grid networks poses specific challenges on the transport
protocol and control mechanisms. Data transfer proto-
cols [1, 2], which extend the standard FTP protocol, in-
clude features of various existing grid storage systems.
They provide security and support parallel, striped, par-
tial, and third-party transfers. But these tools inherit the
major issue of the underlying transport protocol, namely
the TCP protocol, that reacts poorly to bulk transfer
when links present large bandwidth delay product and
very strong bottlenecks [21].

How to allocate bandwidth to flows is a central and
classical issue in networking. This issue has been well
studied [18] within the TCP/IP context. The main as-
sumption in the Internet, that makes the TCP conges-
tion control algorithm robust and meaningful, is that the
source access rates are generally much smaller (c =
2Mbit/s for DSL lines) than the bottleneck capacity
(C = 2, 5Gbit/s, say); the link is not a bottleneck until
demand attains around 99% of link capacity. In such an
environment, the Max-Min fairness algorithm [4], that is
giving all flows the opportunity to make use of all the
available capacity in a "fair" way, is the goal of sta-
tistical bandwidth sharing strategies. But it has been
shown, in novel Internet usage scenarios [19], that in
overloaded networks, performance deteriorates rapidly.
Moreover, it is also not uncommon for the transfers to
fail entirely, because the TCP connections time out due
to packet losses. The TCP protocol is intensively studied
to work better in this context. But the proposed alterna-
tives to the congestion control algorithm still keep the
bandwidth sharing philosophy and objective function of
the Internet, and have great difficulty in dealing with

1441-4244-0307-3/06/$20.00 ©2006 IEEE.

high dynamic heavy traffic in large rate-delay product
contexts and in presence of deep bottlenecks. Pro-active
admission control is the only approach likely to preserve
performance [9].

In other respects, bandwidth sharing and transfers
scheduling in grids have to be coupled with the man-
agement of other types of grid resources. The effective
scheduling of jobs in large scale distributed systems is
a complex task, and network bandwidth has been iden-
tified as one of the primary parameters that affect the
performance [17]. To simplify, we can say that the com-
pletion time of typical datagrid applications is given by
the sum of the execution time and of the time taken to
transfer the data they need. In most cases, data trans-
fer time often dominates completion time. For bulk
data grid applications, moving terabytes (and sometimes
even petabytes) of data in the shortest and most pre-
dictable possible amount of time is then of great inter-
est. Network bandwidth sharing then surfaces as a part
of the grid resource management.

This paper proposes original solutions to control
bandwidth sharing considering the specificity of the
DataGrid context. Grid network resources are managed
to ensure bandwidth reservation of the dataset move-
ments. Three goals are pursued: (1) improving data
transfer time predictability; (2) enhancing transfer reli-
ability; and finally (3) improving transfer performance.
A lightweight and easy-to-deploy control plane that is
complementary to the data plane is introduced, based on
an overlay network approach. In other words, we pro-
pose to reconsider the bandwidth sharing optimisation
objective in the grid context, where the network model
is specific and where transfers are not as unpredictable
as in the Internet, and have to be tackled in a global in-
frastructure perspective.

In the rest of the paper, it is assumed that moving
data is easier than distributing and deploying applica-
tion codes. We consider scheduling algorithms that al-
locate computing (i.e., CPUs) and storage (i.e., memory
and disks) resources first, and then generate output as
data transfer requests, where each request has a spec-
ified time-window and volume. The proposed system
model hides the packet-level traffic and transport-level
dynamics inside discrete data transfer requests. The
bandwidth sharing problem is considered at the session
level, thus greatly reducing the complexity of the sys-
tem, and proposing an efficient alternative solution to
the TCP dynamic issue in large delay product environ-
ments.

Associated with the Grid 5000 project [7], an exper-
imental grid platform gathering 5000 processors over

eight geographically distributed sites in France, this ar-
ticle centers on network resource sharing in grids.

The rest of the article is organized as follows. Sec-
tion 2 gives the system model and defines optimization
problems of bandwidth sharing. Problem complexity is
discussed in Section 3. Heuristics and simulation re-
sults for short-lived rigid requests and short-lived flex-
ible requests are given in Section 4 and 5 respectively.
Section6 presents related work. The article concludes in
Section 7.

WAN

Disks

Cluster

I
B
M

Computers
I
B
M

Computers

Cluster

Disks

Figure 1. Ingress and egress points of the
network.

2. System model and problem definition

The system is a collection of grid sites interconnected
over a well-provisioned wide-area network. From the
resilient overlay network (RON) to other related archi-
tectures, the overlay infrastructure is adopted to provide
more control and functional flexibility to the network.
The edge routers of the grid network, referred to as grid
overlay routers in this article, are assumed to form a
fully-meshed overlay. Grid network middleware, resid-
ing in these routers, controls the resource sharing and the
transport of grid data. The network core is assumed to
be lossless and queuing delay-free. There are M over-
lay routers, with N connections per site, as depicted in
Figure 1. Bulk data transfers between two points are
not symmetrical, hence up to 2N(M − 1) bi-directional
links can be attached to an overlay router. The number
of connections among routers increases in the order of
O(MN).

The network core is assumed to have ample commu-
nication resources [20]. The aggregated capacity of a
site is larger than the capacity of its access point (i.e.,

145

the router), the capacity of each node is in the same or-
der as the access point, and the capacity of the network
core is larger than the aggregated capacity of all access
points.

Given a set of transmission requests, an ingress point
is where the traffic requires to enter the network, and an
egress point is where the traffic requires to leave the net-
work. These points, as depicted in Figure 1, are where
potential resource bottlenecks present.

2.1. Resource requests

Resource requests, corresponding to different appli-
cation scenarios, can be long-lived or short-lived. Long-
lived requests correspond to indefinite flows between
grid users, while short-lived requests represent discrete
data transfer tasks. The problem of long-lived request
has been studied in [13]. Contrarily to the classical con-
cept of flows that last indefinite time, in this article we
deal with flows that represent finite-size large data trans-
fers. We also use the term short-lived requests to denote
such finite transfers. Short-lived requests have specified
time-windows, and the scheduler must enforce induced
constraints. The scheduling of short-lived requests can
be difficult, due to their flexible time-windows and thus
flexible bandwidth assignments.

Flows arrive at the network edge according to a Pois-
son distribution, and each flow is associated with a
source and a destination. Flows are unidirectional, given
the fact that grid traffic volume between two grid entities
(storage and computing elements) is often asymmetrical.

We use the following notations:

• a set of requestsR = {r1, r2, . . . , rK}.

• a set of ingress points I = {i1, i2, . . . , iM}, with
Bin(i) as the capacity (i.e., bandwidth) of ingress
point i ∈ I.

• a set of egress points E = {e1, e2, . . . , eN}, with
Bout(e) as the capacity (i.e., bandwidth) of egress
point e ∈ E .

• each request has a required transmission window
of [ts(r), tf (r)], and an assigned transmission win-
dow of [σ(r), τ(r)] when accepted.

• each request has its volume vol(r) specified either
in Bytes or other meaningful units.

• each request has the transmission limit of its at-
tached host MaxRate(r).

• each request, if accepted, has an assigned
bandwidth bw(r).

If request r is accepted at time σ(r) = t, both points
ingress(r) and egress(r) devote a fraction of their ca-
pacity, that is, bw(r), to request r from time t to time
τ(t) = t + vol(r)

bw(r) .

tf (r)ts(r)
(time)

(bandwidth)

MaxRate

MinRate

minimum possible
value for τ(r)

Figure 2. The flexible bandwidth assign-
ment.

The flexibility of bandwidth assignment is illustrated
as in Figure 2. For the sake of simplicity, whe choose
not to changed the requested transmission starting time:
in other words, the assigned staring time is σ(r) =
ts(r). Provided with a manipulatable finishing time
tf (r), the assigned bandwidth bw(r) lies in the inter-
val of [MinRate(r),MaxRate(r)]. Here, MinRate(r)
is determined by the requested time window:

MinRate(r) =
vol(r)

tf (r)− ts(r)
.

Obviously, the assigned finishing time τ(r) should not
exceed the value of the requested finishing time tf (r).
Accordingly, we have

τ(r) = σ(r) +
vol(r)
bw(r)

= ts(r) +
vol(r)
bw(r)

6 tf (r)

and
bw(r) > MinRate(r)

Moreover, the capacity of ingress or egress points im-
plicates a limit on the number of scheduled requests.
The resource sharing constraints are then stated as the
following:

∀t, ∀i ∈ I,
∑

r∈R, ingress(r)=i,
σ(r)6t<τ(r)

bw(r) 6 Bin(i)

∀t, ∀e ∈ E ,
∑

r∈R, egress(r)=e,
σ(r)6t<τ(r)

bw(r) 6 Bout(e),

∀r, MinRate(r) 6 bw(r) 6 MaxRate(r) (1)

where ingress(r) ∈ I and egress(r) ∈ E are the ingress
and egress point of request r, respectively.

146

2.2. Optimization objectives

To formulate the optimization problem, xk is defined
as a boolean variable; it is equal to 1 if and only if re-
quest rk is accepted. Using the notations provided in
Subsection 2.1, we define the following first two opti-
mization objectives:

MAX-REQUESTS Under the constraints in (1), one
may want to maximize the ratio of the number of ac-
cepted requests to the total number of requests. The ob-
jective function, referred to as MAX-REQUESTS, is:

MAXIMIZE

K∑
k=1

xk

RESOURCE-UTIL Under the same constraints, one
may aim at maximizing the resource utilization ratio,
that is, the ratio of granted resources to total resources.
The objective function, referred to as RESOURCE-UTIL,
is:

MAXIMIZE

∑K
k=1 xk.bw(rk)

1
2

(∑M
i=1 B scaled

in (i) +
∑N

e=1 B scaled
out (e)

) ,

where the numerator
∑K

k=1 xk.bw(rk) is the total
bandwidth that has been assigned to requests. Since
one bandwidth request is counted twice, that is, at both
ingress and egress points, a factor of 1/2 is used to
"scale" the utilization value between 0 and 1.

Furthermore, we have defined

B scaled
in (i) = min

(
Bin(i),

∑
r∈R,ingress(r)=i

bw(r)
)

and

B scaled
out (e) = min

(
Bout(e),

∑
r∈R,egress(r)=e

bw(r)
)
,

B scaled
in (i) and B scaled

out (e) are adopted to rule out the
possibility where one access point has no requests at all;
thus, the capacity of this point shall be excluded when
calculating resource utilization.

2.3. Another optimization objective for
flexible requests

When a request r is such that MinRate = MaxRate ,
there is no choice to assign its bandwidth: when ac-
cepting r, we need to enforce bw(r) = MinRate(r) =
MaxRate(r). In such a case, we say that the request is

rigid. However, there are situations where we have more
freedom: if the request time-window is large enough, we
can decide between a whole range of admissible values
of bw(r) in the interval [MinRate(r),MaxRate(r)]. In
such a case, we say that the request is flexible.

When we aim at optimizing for MAX-REQUESTS,
the first optimization objective, accepted requests are
very likely to be granted the minimum bandwidth
MinRate(r). However, grid computing applications
may bring new elements into the decision making proce-
dure. To fulfill a grid computing task, the CPU, storage,
and network bandwidth resources have to be considered
simultaneously. If a transmission task gets served faster
than what it originally requests, it implies the earlier
release of computing and storage resources. These re-
sources will be returned to the available resource pool
and can be used for other application requests. The
application scenario of grid computing, therefore, sug-
gests that assigning to flexible requests more bandwidth
than the authorized minimum will benefit grid applica-
tions. Nevertheless, given the same amount of network
resource, assigning more bandwidth will perhaps lessen
the accept rate. What is the relationship between in-
creased assigned bandwidth and decreased accept rate?
What is the trade-of regarding performance gain?

Instead of assigning the requested bandwidth of
MinRate(r) to an accepted request, one may grant a
fraction of the maximum bandwidth MaxRate(r) that a
grid user can utilize. Let f denote this fraction, then the
value f = 0.8 guarantees 80% of MaxRate(r) for each
accepted request. The number of accepted requests,
given the factor f , is to be maximized as follows:

#guaranteed = max {r ∈ R,
bw(r) > max(f ×MaxRate(r),MinRate(r))}

The factor f may be adopted as a single value that
gives a reference on how much faster all requests are
transmitted through the network. From a customer
and service provider relationship perspective, customers
now have two choices: they can stick with their re-
quested network resource, that is, MinRate (r), and have
a better chance of being accepted at this time. They can
also stand the risk of being rejected and try later, but
take the advantage of being transmitted more quickly.
Obviously, how much more quickly a request gets trans-
mitted depends on the global grid system configuration
and load.

3. Problem complexity

Scheduling problems are known to be difficult, and
the one addressed in this paper is no exception. Schedul-

147

ing long-lived and short-lived rigid requests has already
been proven NP-hard [13, 14], even in the case of an
uniform network (same bandwidth for each ingress and
egress port). However, it was also shown in [14] that
the optimal solution for scheduling uniform long-lived
requests (bw(r) = b for all r ∈ R) can be computed in
a polynomial time.

In this section, we show that scheduling uniform
short-lived flexible requests is NP-complete. This
clearly shows the combinatorial nature of the problem,
and the intrinsic complexity added by the possibility to
route a request at different time-steps. We state the de-
cision problem formally:

Definition 1 (MAX-REQUESTS-DEC). Consider a
problem-platform pair (R, I, E) with uniform (unit-
size) requests:

∀r ∈ R, bw(r) = MinRate(r) = MaxRate(r) = 1

For each request r ∈ R, the transmission window
[ts(r), tf (r)] is known at the beginning (off-line prob-
lem). Given a bound K on the number of requests to
satisfy, is there a feasible solution to such that at least
K requests are accepted?

Theorem 1. MAX-REQUESTS-DEC is NP-complete.

It is worth noting that if the platform reduces to a
single ingress-egress pair, the problem is polynomial (a
greedy algorithm is optimal).

Proof. Clearly, MAX-REQUESTS-DEC belongs to NP;
we prove its completeness by reduction from 3-DM
(3-Dimensional Matching), a well-known NP-complete
problem [12]. Consider an instance B1 of 3-DM: given
X = {x1, x2, . . . , xn}, Y = {y1, y2, . . . , yn}, and
Z = {z1, z2, . . . , zn} three disjoint sets of same cardi-
nal n, and given a set of triples T ⊆ X×Y ×T , does T
contain a matching T ′, i.e. a set of n triples such that no
two elements of T ′ agree in any coordinate? We build
the following instance B2 of MAX-REQUESTS-DEC:

• There are M = n+1 ingress points and N = n+1
egress points. For ingress points we let Bin(i) =
1 if 1 6 i 6 n and Bin(n + 1) = n − 1. For
egress points, we let Bout(e) = 1 if 1 6 e 6 n and
Bin(n + 1) = n − 1. Both points Bin(n + 1) and
Bout(n + 1) are called special, while the 2n other
points are called regular.

• There are |T | + 2n(n − 1) requests in R, and
bw(r) = 1 for all r ∈ R. Each of the first |T | re-
quests is called regular and is associated to a triple
in T , while the remaining 2n(n − 1) requests are
called special.

• For each triple (xi, yj , zk) ∈ T , we define a reg-
ular request r as follows: we let Bin(r) = i,
Bout(r) = j and [ts(r), ft(r)] = [k, k + 1]. In
other words, there is no flexibility for regular re-
quests; if accepted, r must be scheduled at time
σ(r) = k.

• Special requests involve one special point and are
flexible. More precisely, for each ingress point i we
define n−1 identical requests r such that Bin(r) =
i, Bout(r) = n + 1 and [ts(r), ft(r)] = [1, n +
1]. Similarly, for each ingress point e we define
n − 1 identical requests r such that Bin(r) = n +
1, Bout(r) = e and [ts(r), ft(r)] = [1, n + 1].
Therefore, a special request can be scheduled at any
time-step between 1 and n.

• Finally, we let K = n + 2n(n− 1).

The size of B2 is polynomial (and even linear) in the size
B1. We have to show that B1 has a solution if and only
if B2 has a solution.

Assume first that B1 has a solution. Let T ′ be the
matching. For each time-step k, 1 6 k 6 n, there is
a single triple in T ′ whose last coordinate is zk. Let
(xi, yj , zk) be this triple, and r its associated regular re-
quest. Together with r, we route 2(n − 1) special re-
quests at step k, one from each ingress point except i,
and one to each egress point except j. Because T ′ re-
alizes a permutation in the first and second coordinates
of its triples, each regular point is active exactly n − 1
times during the n scheduling steps. All regular points
will thus accept all their n − 1 special requests. To-
gether with the n regular request (one per step), we have
accepted K requests, hence a solution to B2.

Conversely, assume now that B2 has a solution. K =
n+2n(n−1) request are accepted during the n schedul-
ing steps. But at a given step, no more than 2n − 1 re-
quests can be accepted, and this is only feasible if 2n−2
of them are special requests. Therefore, at each step ex-
actly 2(n − 1) special requests and one regular request
are accepted. Let T ′ be the set of the triples associated to
these n regular requests, we claim that T ′ is the desired
matching. By construction, no two triples of T ′ agree
in the third coordinate. Assume that two triples would
share the same first coordinate, say xi. This means that
ingress point i is activated at two different time-steps for
two regular requests. At most n − 2 special requests
with ingress i will be accepted. But this is a contradic-
tion, because all special requests are accepted (there are
2n(n − 1) of them, and 2(n − 1) are accepted at each
step). For the second coordinate the reasoning is identi-
cal. We have found a solution to B1.

148

4. Polynomial heuristics and simulations for
short-lived rigid requests

As proved in Section 3, the optimization problem for-
mulated in Section 2 is NP-complete. Heuristics are then
needed to solve the problem. As illustrated in Subsec-
tion 2.1, if request r with time window [ts(r), tf (r)] is
accepted at time σ(r) = t, a fraction of system capacity,
that is, bw(r), is scheduled to request r from time t to
time τ(t) = t+ vol(r)

bw(r) . Assume that time constraints are
rigid, that is, σ(r) = ts(r) and τ(r) = tf (r). Requests
are then accepted or rejected as they are.

4.1. FCFS

Scheduling requests in a “first come first serve” man-
ner, the FCFS heuristic accepts requests in the order of
their starting times. If several requests happen to have
the same starting time, the request demanding the small-
est bandwidth is scheduled first.

4.2. Time window decomposition

To make the problem more tractable, we would like
to be able to slice the whole scheduling problem into
time-intervals such that no requests starts or stop dur-
ing one interval. Pre-defined starting and finishing times
are used as reference points for resource scheduling (see
Figure 3. Given intervals [t0, t1], [t1, t2], . . . , [ti−1, iN],
for each ti, there exists a request r such that ts(r) = ti
or tf (r) = ti. The FCFS strategy is then applied to
each time-interval, with two situations explained in the
following paragraphs.

t

r

tf (r)ts(r)
time-intervals:

requests:

Figure 3. Decomposition of requests with
time windows.

For a request that spreads over multiple time inter-
vals, first, if it gets rejected in its first time interval, it will
be discarded permanently; second, if it gets accepted in
its first time interval, it shall be granted certain priority
when competing with other requests in its future time
intervals.

Taking the duration of a request and the scheduling
decisions in previous time intervals into consideration, a

priority factor is used to represent the importance of a
scheduling request r on a given time-interval. Assume
requests in time-intervals [t0, t1], [t1, t2], . . . , [ti−1, ti]
have been scheduled, For interval [ti, ti+1], the priority
factor is defined as the sum of the time already allocated
to the request (ti− ts(r)) and the duration of the current
interval (ti+1 − ti) over the total request duration, that
is,

priority(r, [ti, ti+1]) =
ti+1 − ts(r)
tf (r)− ts(r)

To each request we associate a cost factor defined as
follows:

cost(r, [ti, ti+1]) =
bw(r)

bmin × priority(r, [ti, ti+1])

where bmin = min
{
Bin(ingress(r)),Bout(egress(r))

}
By adopting this cost factor, for requests with the

same starting time, a higher priority is given to requests
with smaller duration; it maximizes the accepted num-
ber of requests. For requests within the same time inter-
val, a higher priority is given to requests that have been
granted more resources. The complete heuristic is de-
tailed in Algorithm 1, where ali(i) denotes the amount
of bandwidth which is currently allocated for ingress
i ∈ I, and which should never exceed Bin(i) (and simi-
larly ale(e) for e ∈ E).

Following the same time window decomposition
technique, two variants of the previous heuristic, that
is, MINBW-SLOTS and MINVOL-SLOTS, are proposed
with re-defined cost factor cost(r, [ti, ti+1)] = bw(r)
and cost(r, [ti, ti+1)] = vol(r), respectively.

4.3. Simulation settings

There are 10 ingress and 10 egress points, respec-
tively, with a capacity of 1GB/s. Requests may oc-
cur between any pair of different points, and their vol-
umes are randomly chosen from a set of values: {100G,
200GB, . . . , 90GB, 100GB, 200GB, . . . , 900GB, 1TB}.
Following the Poisson distribution, the request arrival
rate determines the system load. The number of requests
is determined by the system load, which is defined as the
ratio of the sum of demanded bandwidth and of the sum
of available bandwidth in the system:

load =

∑
r∈R

bw(r)

1
2

(∑
i∈I

Bin(i) +
∑
e∈E

Bout(e)

)

149

CUMULATED-SLOTS (R, I, E)
TimeIntervals ← {ts(r), tf (r) for some r ∈ R}
sort TimeIntervals and remove duplicated dates
take the first element t1 of TimeIntervals
while TimeIntervals is not empty do

take the first element t2 of TimeIntervals
{we work on the interval [t1, t2]}
for each ingress i in I do ali(i)← 0
for each egress e in E do ale(i)← 0
ActiveRequests ← {r ∈ R,

ts(r) 6 t1 and tf (r) > t2}
sort ActiveRequests by non-decreasing cost
for each request r in ActiveRequests do

if ali(ingress(r))+bw(r) 6 Bin(ingress(r))
and ale(egress(r)) + bw(r) 6
Bout(egress(r)) then

allocate request r on interval [t1, t2]
ali(ingress(r))← ali(ingress(r))+bw(r)
ale(egress(r))← ale(egress(r)) + bw(r)

else
remove request r from all previous intervals
remove request r fromR

Algorithm 1: The time-window heuristic for rigid re-
quests.

4.4. Simulation results and discussion

As illustrated in Figure 4, first, FIFO shows very poor
performance on both accept rate (10%) and utilization
ratio (under 20%). The fact that FIFO lets requests block
each other indicates that selectively reject is an impor-
tant step towards good performance. Second, MINVOL-
SLOTS does not perform as well as MINBW-SLOTS and
CUMULATED-SLOTS. In fact, accepting a request with
the minimum volume may not always be a good deci-
sion. If the time window is small, the request will likely
take the majority of the bandwidth; this lowers the value
of the accept rate and thus the utilization ratio. Last,
CUMULATED-SLOTS and MINBW-SLOTS have very
close performance. CUMULATED-SLOTS should have
good performance because its decision is made based
on both demanded bandwidth and resource reservation
in the past; it prevents a request from being rejected in
the late stage of its time window. MINBW-SLOTS ac-
cepts the requests with smaller bandwidth requirements;
these requests are unlikely to be rejected later, unless
other requests with small bandwidth demand surges at
one point. Under some circumstances, MINBW-SLOTS

performs as well as CUMULATED-SLOTS, even without
resource reservation history.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0.6 0.8 1 1.2 1.4 1.6 1.8 2

ac
ce

pt
 r

at
e

(%
)

load

FIFO
minBW-Slots
minVol-Slots

Cumulated-Slots

 0

 20

 40

 60

 80

 100

 120

 0.6 0.8 1 1.2 1.4 1.6 1.8 2

ut
ili

za
tio

n
ra

tio
 (

%
)

load

FIFO
minBW-Slots
minVol-Slots

Cumulated-Slots

Figure 4. Comparison of the heuristics ac-
cording to two different metrics

5. Polynomial heuristics and simulations for
short-lived flexible requests

In this case, we consider that requests have flexible
time-windows. It is then possible to start scheduling a
request some time after its arrival, while matching the
deadline. Given that the starting time and finishing time
are not violated, that is, tf (r) > ts(r) + vol(r)

bw(r) , the con-
straint on the assigned bandwidth is stated as bw(r) >
MinRate(r). Algorithms that adopt different bandwidth
assignment policies, either granting MinRate(r) to each
accepted request, or ensuring max(MinRate(r), f ×
MaxRate(r)) for a prescribed tuning factor f , are intro-
duced in the following sections. One major character-
istic of all our proposed heuristics here is that they are
on-line. We take decisions either on the fly (on a pure
greedy basis) or after a short delay (scheduling within
each time interval). There is no need for the a priori
knowledge of the whole set of requests.

The heuristics can be classified according to the de-
cision procedure:

FCFS Requests are accepted or rejected on a first-come
first-serve basis. If two requests have the same
arrival time ts(r), we schedule the one with the
smallest MinRate(r).

150

Interval-based Requests are accepted or rejected
within consecutive time intervals. These intervals
have the same length. The scheduler considers all
the requests whose arrival time lies within the cur-
rent interval. More requests are expected to be pro-
cessed in longer intervals; this leaves more space
for optimization, at the price of a longer response
time for grid users.

5.1. FCFS heuristics

Both proposed greedy heuristics schedule requests
as soon as they arrive. However, they assign differ-
ent bandwidth to each accepted request r: one is the
minimum rate MinRate(r) as originally requested by
the user, the other one is a prescribed fraction f ×
MaxRate(r). The parameter f varies in experiments.
To simplify the notation, we use

bw(r)← BANDWIDTHASSIGNALG(r),

where BANDWIDTHASSIGNALG denotes any of the
previous bandwidth assignment strategies.

The pseudo code of FCFS heuristics is shown in Al-
gorithm 2, where tbegin and tend denote the times at
which execution begins and ends. A is the set of ac-
cepted requests.

GREEDY(R, I, E)
A ← ∅ for each ingress i in I do ali(i) ← 0 for
each egress e in E do ale(i)← 0
for t = tbegin to t = tend do

if t = tf (r) for some request r ∈ A then
{reclaim bandwidth allocated to r}
ali(ingress(r))← ali(ingress(r))− bw(r)
ale(egress(r))← ale(egress(r))− bw(r)

if t = ts(r) for some request r ∈ A then
{try to schedule r}
bw(r)← BANDWIDTHASSIGNALG(r)
i← ingress(r)
e← egress(r)
if (ali(i) + bw(r) 6 Bin(i)) and (ale(e) +
bw(r) 6 Bout(e) then
A ← A∪ {r}
ali(i)← ali(i) + bw(r)
ale(e)← ale(e) + bw(r)

return A

Algorithm 2: FCFS heuristics for flexible requests.

5.2. Interval-based heuristics

Interval-based heuristics do not schedule requests as
soon as they arrive. Instead, they take decisions ev-
ery time step tstep . The execution is thus divided into
time intervals of length tstep . At the end of each in-
terval [t, t + tstep [, scheduling decisions are taken for
all candidate requests, i.e. request r whose arrival time
lie in the interval: t 6 ts(r) < t + tstep . As for the
FCFS heuristics, we keep track of the bandwidth ali(i)
and ale(e) already allocated on each ingress and egress
ports. The first thing to do is to reclaim the bandwidth
assigned to accepted requests r whose execution is fin-
ished in the previous interval, i.e. requests satisfying
t − tstep 6 tf (r) < t + tstep . Then we compute a
cost associated with each candidate request. The intu-
ition is to balance the resource assignments among ac-
cess points. A request of high cost is likely to saturate its
ingress or egress point, thereby hindering the possibility
of scheduling more requests later.

The cost of a request r is computed as the follow-
ing. Let i = ingress(r), e = egress(r), and bw(r)
the bandwidth assigned to r if accepted. As before,
bw(r) will be either the minimum rate MinRate(r)
or a prescribed fraction f × MaxRate(r). If r is ac-
cepted, the utilization rate of its ingress point i be-
comes ali(i)+bw(r)

Bin(i) , and that of its egress point e be-

comes ale(e)+bw(r)
Bout (e)

. We define the cost of r as the max-
imum value of these two quantities, that is,

cost(r) = max
(

ali(i) + bw(r)
Bin(i)

,
ale(e) + bw(r)

Bout(e)

)
The candidate request with minimum cost will be ac-
cepted. The pseudo code of the interval-based heuristics
is shown in Algorithm 3.

5.3. Simulations and discussions for
short-lived flexible requests

In this section, simulations are carried out to illustrate
and compare the performance of the heuristics given in
the previous section. The simulated grid network and
load is similar to the framework for short-lived rigid
requests. The transmission time varies from a couple
of minutes to about one day, by randomly generating
bandwidth requests between 10MB/s and 1GB/s. As de-
scribed in Section 2.2, the optimization objective is the
accept rate, that is, the number of accepted requests over
the number of total requests.

A heavy loaded scenario is illustrated as in Figure 5.
The average arrival time of requests vary from 0.1 to

151

WINDOW(R, I, E)
A ← ∅ for each ingress i in I do ali(i) ← 0 for
each egress e in E do ale(i)← 0
for t = tbegin to t = tend by step tstep do

{reclaim bandwidth of finished requests}
for each request r ∈ A s.t. t− tstep 6 tf (r) < t
do

ali(ingress(r))← ali(ingress(r))− bw(r)
ale(egress(r))← ale(egress(r))− bw(r)

{determine set of candidate requests}
C ← ∅
for each request r ∈ R s.t. t 6 ts(r) < t + tstep
do
C ← C ∪ {r}
bw(r)← BANDWIDTHASSIGNALG(r)

{schedule candidate requests}
continue ← true
while (C 6= ∅) and continue do

select rmin such that cost(rmin) 6 cost(r)
for all r ∈ C
if (cost(rmin) > 1) then

continue ← false
else
C ← C \ {r}
A ← A ∪ {r}
ali(ingress(r))← ali(ingress(r))+bw(r)
ale(egress(r))← ale(egress(r)) + bw(r)

return A

Algorithm 3: Interval-based heuristics for flexible re-
quests.

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

ac
ce

pt
an

ce
 r

at
e

(%
)

average arrival time (sec)

GREEDY
INTERVAL (50)

INTERVAL (100)
INTERVAL (200)
INTERVAL (400)

INTERVAL (1000)

Figure 5. Comparison of FCFS and
Interval-based (with different window
lengths) heuristics in heavy loaded
context

5 seconds. The bandwidth assignment policy assigns
f × MaxRate(r) with f = 1. The simulation results
show that in a very loaded network, the interval-based
heuristics achieves a better accept rate than FCFS. And
for the interval-based algorithms, the larger the time in-
terval, the better the request accept rate.

 10

 20

 30

 40

 50

 60

 0 1 2 3 4 5

ac
ce

pt
an

ce
 r

at
e

(%
)

average arrival time (sec)

MIN_BW
RATIO 50%
RATIO 80%

RATIO 100%

 40

 45

 50

 55

 60

 65

 70

 5 10 15 20

ac
ce

pt
an

ce
 r

at
e

(%
)

average arrival time (sec)

MIN_BW
RATIO 50%
RATIO 80%

RATIO 100%

Figure 6. Performance of the FCFS heuris-
tic with different bandwidth allocation
policies (f factor) under heavy loaded con-
ditions (left) or underloaded conditions
(right)

Figure 6 presents the performance of the FCFS
heuristic. The network is less loaded (average ar-
rival time goes from 3 to 20 seconds). Different
bandwidth assignment policies apply: either the mini-
mum bandwidth to every accepted request (MIN_BW),
or a fixed ratio f of the maximum transmission rate
MaxRate . As expected, a smaller bandwidth to each re-
quest results in more accepted requests, especially when
the network is not too much loaded. This is no longer
true, however, for heavy loaded networks. For exam-
ple, assigning a request the maximum rate of the its
user leads to a smaller transmission time, thus the cor-
responding ingress/egress points are freed to other re-
quests more quickly. The same set of simulation is run
for the interval-based heuristics, and the results are de-
picted in Figure 7. The same conclusions as for the
greedy heuristics hold, except that we obtain slightly
better results for small values of the average arrival time.

These simulations show that greedy and interval

152

based heuristics have similar performance when the net-
work is not heavily loaded. Results show an average of
an acceptance rate of 50% (ie. with bandwidth guar-
antee) for both strategies. The advance knowledge of
requests does not improve the system. In a busy net-
work as the one discussed in this article, interval-based
approach improves a lot the accept rate while greedy
strategy have an acceptance rate less than 20%. Further-
more, we show that the longer the interval, the better
the accept rate. Longer intervals imply chances of hav-
ing a better knowledge and more requests to schedule;
it thus provides more room for the scheduling algorithm
to optimize the bandwidth sharing. With large schedul-
ing windows, more than 50% of bandwidth requests for
bulk data transfers will be guaranteed, while it has been
observed in such an overloaded context that concurrent
high speed TCP flows have great difficulties in obtain-
ing bandwidth, and that the largest flows suffer denial of
service. In these conditions, bulk transfers often fails be-
fore ending. The proposed control may improve transfer
reliability (goal 2) while insuring predictability of trans-
fer time (goal 1).

We study the behavior of the tuning factor f through
simulations. Between the value of 0 and 1, the tun-
ing factor supplies requests an opportunity of actually
obtaining more bandwidth for improving transfer du-
ration (goal 3) and then application completion time.
We understand that by pushing requests out of the net-
work at an earlier time, the network may accommo-
date more requests in the future. Moreover, assigning
more bandwidth to each request will certainly decrease
the number of accepted requests. Simulation results il-
lustrate the dynamic between the tuning factor and the
refined request accept rate. Both greedy and interval-
based strategy take advantage of this factor under very
underloaded conditions. In these conditions, allocating
80% of the maximum bandwidth improves the accep-
tance rate by a factor 0, 2 (linear with (1 − f)) while a
value of f = 0, 5 gives only a gain of 0, 3. This tun-
ing factor enables the grid manager to adjust the global
system with its own characteristics and the actual work-
load without modifying the bandwidth allocation strat-
egy. See [15] for further details.

5.4. Implementation considerations

From the implementation point of view, this
bandwidth sharing approach can reutilize most of the
RSVP protocol features (client side and RSVP request
format). The main difference lies in how the reserva-
tion requests are routed and processed. Our requests
are routed within the grid overlay network from a client

to his access router and then broadcast to all grid ac-
cess routers implied in the request (egress points) rather
within the flat IP network, according to the IP rout-
ing algorithm for the classical RSVP approach. Sec-
ondly, the decision is made by the local ingress access
router, that returns directly a scheduled time window
and allocated rate to the client. To enforce the allo-
cation policy, lightweight mechanisms are studied: lo-
cal bandwidth control on the client side (token bucket
based) and high performance data flow control at access
point level. We have experimented an hardware assist
solution, based on INTEL IXP2400 network processors
within the Grid5000 project. This control ensures that
the bulk data flows are conform to the scheduling, and,
if not, that they are automatically dropped so as not to
hurt other well behaving TCP flows. Our first exper-
iments show that new high speed TCP protocols, like
BIC protocol, but also well tuned RENO protocols, in
such controlled environments, are performing much bet-
ter than [16]. Ensuring a stable bandwidth by an in-
dependent control plane, enables well tuned TCP flows
to fully utilize their allocated capacity, to offer a pre-
dictable transfer delay to end applications, and to in-
crease reliability of all transfers.

 10

 20

 30

 40

 50

 60

 0 1 2 3 4 5

ac
ce

pt
an

ce
 r

at
e

(%
)

average arrival time (sec)

MIN_BW
RATIO 50%
RATIO 80%

RATIO 100%

 40

 45

 50

 55

 60

 65

 70

 5 10 15 20

ac
ce

pt
an

ce
 r

at
e

(%
)

average arrival time (sec)

MIN_BW
RATIO 50%
RATIO 80%

RATIO 100%

Figure 7. Performance of the Windows
heuristic (with length 400) with different
bandwidth allocation policies (f factor) un-
der heavy loaded conditions (left) or un-
derloaded conditions (right).

153

6. Related Work

Admission control and reservation in the Internet
have been studied for real-time traffic and generally with
immediate reservation, that is, QoS takes effect imme-
diately and remains in effect for an indefinite duration.
Consequently, traditional admission control and reserva-
tion algorithms [5] adopt greedy strategies. The RSVP
protocol enables individual routers to optimize locally
the usage of their reserved resources. In a grid context,
QoS guarantees apply to TCP-dominated traffic, and a
certain degree of isolation is required between connec-
tions in order to support performance guarantees with-
out precluding multiplexing. Grid context presents also
a great difference in terms of transfer durations (hours,
days...) that are bounded, even though they are sev-
eral orders of magnitude greater than those of the In-
ternet. Flow transfer reliability is a very important issue,
as other grid resources (CPUs, disks) have been sched-
uled, and a large amount of resources could be wasted
when long transfer failure occurs. Finally, the grid net-
work exhibits a specific topology, that is, heterogeneous
and highly hierarchical. Ingress/egress links act both as
natural aggregation points and constitute expected over-
loaded points as their capacity is in the same order of
the access rate of the sources. Similar topology and
bandwidth sharing problem are analyzed at different rate
scales, in radio access networks. But in Grids we have
to consider both sides of the network and the load matrix
is given.

The fairness issue between short and long TCP
flows [3], that is, between mice and elephants, gained
wide attention. Besides, the sharing is closely coupled
with routing path search. The work in this article, how-
ever, assumes that grid bulk data are separated from the
rest of the traffic (mice). TCP/IP protocols [22] have
been adapted to carry high-volume grid data applica-
tions over long distance. The reliability, RTT fairness,
TCP-friendliness issues are in the center of the investi-
gation. These TCP enhancements for large bandwidth-
delay product paths focus on Internet context (max-min
fairness). However, we consider the work on end-to-
end protocol improvement could be of great interest in
this controlled context. The routing path search has also
been integrated into the picture. This article looks at grid
network access points where the traffic enters and leaves
the network. The requests have a predefined route from
source to destination in this topology. The performance
predictability is of more interest here.

While computational/storage resource sharing has
been intensively investigated [8], the idea of incor-

porating network/communication resource management
into grid environments has gained attention. For in-
stance, network resource reservation [11] was proposed
to be studied within the grid scope. The Globus Ar-
chitecture for Reservation and Allocation (GARA) in-
troduced the idea of advance reservations and end-to-
end management for QoS on different types of re-
sources (bandwidth, storage, and computing). Herein,
grid middleware itself takes the network resource into
account, if not from a perspective that is totally dif-
ferent from other applications. As proposed by the
Grid High-Performance Networking (GHPN) group of
Global Grid Forum (GGF), grid network service is de-
fined based on the term of grid service; it integrates
the network layer operations into grid applications. In
line with this direction, this article further explores the
optimization of bandwidth sharing given the specified
grid network topology and traffic pattern. A similar
bandwidth sharing problem has been investigated in [6].
Although this article also focus on resource requests
with transmission time windows, it tackles optimal re-
source sharing, instead of investigating the impact of the
percentage of book-ahead periods and that of malleable
reservations on the system. The physical characteris-
tics of optical medium makes it an excellent candidate
for supporting grid bulk data applications [20]. Exist-
ing work centers on the feasible network architectures.
Assuming a system model that complies to optical do-
main topology and conditions, however, the bandwidth
sharing mechanisms of this article can be deployed as
part of the optical burst switching intelligent manage-
ment system.

7. Conclusions

Network bandwidth sharing in data grids is investi-
gated in this article. With bottlenecks at the network
edge, requests are scheduled based on the concept of
what enters the network shall be able to leave the net-
work. Referred to as short-lived requests, data transfer
requests of grid applications are scheduled with respect
to optimizing the request accept rate. The problem is
proven NP-complete, and polynomial heuristics are in-
vestigated. These algorithms are studied and compared
by simulations. We have demonstrated that such an ap-
proach may contribute to solve the problem of network
resource allocation and performance optimisation in a
high performance computing and data management con-
text.

Along with other protocols and interfaces, the
bandwidth sharing strategies studied here are going to

154

be integrated in the grid network middleware of the Grid
5000 project. They may work closely with the schedul-
ing of other resources, such as computational and stor-
age but also with optimized transport protocol and ser-
vices. Heuristics and optimization objectives will be re-
fined so as to take the specificity of different grid in-
frastructures and usages into account. Future work will
be continued in the direction of relieving tentative hot
spots in the network, that is, ingress/egress points that
are heavily demanded, and in the direction of real-time
resource reservation. We will also investigate further the
implementation issues and will consider fully distributed
allocation algorithms to study the scalability of the ap-
proach.

8. Acknowledgment

This work has been funded by the French Ministry
of Education and Research, INRIA, and CNRS, via ACI
GRID’s Grid5000 project.

References

[1] W. Allcock, J. Bester, J. Bresnahan, A. Chervenak,
I. Foster, C. Kesselman, S. Meder, V. Nefedova,
D. Quesnel, and S. Tuecke. Data management and
transfer in high performance computational grid envi-
ronments. Parallel Computing, 28:749–771, May 2002.

[2] W. Allcock, J. Bresnahan, R. Kettimuthu, M. Link,
C. Dumitrescu, I. Raicu, and I. Foster. The globus
striped gridftp framework and server. In Proceedings of
the ACM/IEEE Symposium on Supercomputing (SC’05).
IEEE Computer Society Press, 2005.

[3] K. Avrachenkov, U. Ayesta, P. Brown, and E. Nyberg.
Differentiation between short and long TCP flows: Pre-
dictability of the response time. In INFOCOM. IEEE
Communications Society Press, 2004.

[4] D. Bertsekas and R. Gallager. Data Networks. Prentice
Hall, 1987.

[5] R. Braden. Resource reservation protocol (rsvp) version
1 functional specification, 1997.

[6] L. Burchard, H.-U. Heiss, and C. A. F. D. Rose. Per-
formance issues of bandwidth reservations for grid com-
puting. In Proc. IEEE the 15th Symposium on Computer
Architecture and High Performance Computing (SBAC-
PAD’03), pages 82–90, Nov. 2003.

[7] F. Cappello, F. Desprez, M. Dayde, E. Jeannot, Y. Jegou,
S. Lanteri, N. Melab, R. Namyst, P. Primet, O. Richard,
E. Caron, J. Leduc, and G. Mornet. Grid’5000: A large
scale, reconfigurable, controlable and monitorable grid
platform. In Proceedings of the 6th IEEE/ACM Interna-
tional Workshop on Grid Computing (Grid’2005). IEEE
Computer Society Press, 2005.

[8] K. Czajowski, I. Foster, and C. Kesselman. Resource
co-allocation in computational grids. In Proc. IEEE
8th International Symposium on High Performance Dis-
tributed Computing (HPDC), pages 219–228. IEEE
Computer Society Press, 1999.

[9] V. Firoiu, J. L. Boudec, D. Towsley, and Z. Zhang. Theo-
ries and models for internet quality of service. Proceed-
ings of the IEEE, 90:1565–1591, Sept. 2002.

[10] I. Foster. The Grid 2: Blueprint for a New Computing
Infrastructure. Morgan Kaufmann, 2004.

[11] I. T. Foster, M. Fidler, A. Roy, V. Sander, and L. Winkler.
End-to-end quality of service for high-end applications.
Computer Communications, 27(14):1375–1388, 2004.

[12] M. R. Garey and D. S. Johnson. Computers and In-
tractability, a Guide to the Theory of NP-Completeness.
W.H. Freeman and Company, 1979.

[13] L. Marchal, P. V. blanc Primet, Y. Robert, and J. Zeng.
Optimizing network resource sharing in grids. In
IEEE Global Telecommunications Conference Globe-
Com’2005. IEEE Communications Society Press, 2005.

[14] L. Marchal, P. Primet, Y. Robert, and J. Zeng. Optimiz-
ing network resource sharing in grids. Research Report
2005-10, LIP, ENS Lyon, France, Mar. 2005.

[15] L. Marchal, P. Primet, Y. Robert, and J. Zeng. Schedul-
ing network request with transmission window. Re-
search Report 2005-31, LIP, ENS Lyon, France, July
2005.

[16] P. V.-B. Primet, T. Takano, Y. Kodama, T. Kudoh,
O. Gluck, and C. Otal. Large scale gigabit emulated
testbed for grid transport evaluation. In In Proceed-
ings of the International workshop on Protocols for Very
Long Distance Networks (PFLDNET 2006), NARA,
Japan, February 2006.

[17] K. Ranganathan and I. Foster. Decoupling computation
and data scheduling in distributed data-intensive appli-
cations. In Proc. IEEE the 11th Symposium on High
Performance Distributed Computing(HPDC’02), pages
352–358, July 2002.

[18] J. W. Roberts. A survey on statistical bandwidth
sharing. Computer Networks: The International Jour-
nal of Computer and Telecommunications Networking
archive, 45:319–332, June 2004.

[19] R. Sherwood, R. Braud and B. Bhattacharjee. Slurpie: A
co-operative bulk data transfer protocol. In INFOCOM.
IEEE Communications Society Press, 2004.

[20] L. L. Smarr, A. A. Chien, T. Defanti, J. Leigh, and P. M.
Papadopoulos. The optiputer. Communications of the
ACM (special issue: blueprint for the future of high-
performance networking), 46:58–67, Nov. 2003.

[21] M. Weltz, E. He, P. Vicat-Blanc Primet, and al. Survey
of protocols other than TCP. Technical report, Global
Grid Forum documents GFD 55, April 2005.

[22] L. Xu, K. Harfoush, and I. Rhee. Binary increase con-
gestion control (BIC) for fast long-distance networks. In
INFOCOM. IEEE Communications Society Press, 2004.

155

