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Abstract

In this paper, we focus on scheduling jobs on computing
Grids. In our model, a Grid job is made of a large col-
lection of input data sets, which must all be processed by
the same task graph or workflow, thus resulting in a series
of workflow problem. We are looking for an efficient so-
lution with regard to throughput and latency, while avoid-
ing solutions requiring complex control. We thus only con-
sider single-allocation strategies. We present an algorithm
based on mixed linear programming to find an optimal al-
location, and this for different routing policies depending
on how much latitude we have on communications. Then,
using simulations, we compare our allocations to reference
heuristics. The results show that our algorithm almost al-
ways finds an allocation with good throughput and low la-
tency, and that it outperforms the reference heuristics, es-
pecially under communication-intensive scenarios.

Keywords: Workflows, DAGs, scheduling, heterogene-
ity, computing Grid.

1. Introduction

Computing Grids gather large-scale distributed and het-
erogeneous resources, and make them available to large
communities of users [7]. Such platforms enable large
applications from various scientific fields to be deployed
on large numbers of resources. These applications come
from domains such as high-energy physics [4], bioinformat-
ics [12], medical image processing [10], etc. Distributing an
application on such a platform is a complex duty. As far as
performance is concerned, we have to take into account the
computing requirements of each task, the communication
volume of each data transfer, as well as the platform het-
erogeneity: the processing resources are intrinsically het-
erogeneous, and run different systems and middlewares; the
communication links are heterogeneous as well, due to their
various bandwidths and congestion status. In this paper, we
investigate the problem of mapping an application onto the

computing platform. We are both interesting in optimizing
the performance of the mapping (that is, process the data as
fast as possible), and to keep the deployment simple, so that
we do not have to deploy complex control softwares on a
large number of machines.

Applications are usually described by a (directed) graph
of tasks, what is usually called a workflow in the Grid litera-
ture. The nodes of this graph represent the computing tasks,
while the edges between nodes stand for the dependences
between these tasks, which are usually materialized by files:
a task produces a file which is necessary for the processing
of some other task. In this paper we consider Grid jobs in-
volving a large collection of input data sets that must all be
processed by the same application. In other words, the Grid
Jjobs we consider are made of the same workflow applied to
a large collection of different input data sets. We can evenly
consider that we have a large number of instances of the
same task graph to schedule. Such a situation arises when
the same computation must be performed on independent
data, independent parameter sets, or independent models.
We thus concentrate on how to map several instances of a
same workflow onto a computing platform, that is, on how
to decide on which resource a task has to be processed, and
on which route a file has to be transfered, if we assume that
we have some control on the routing mechanism. We will
study several scenarios, with different routing policies.

We start by motivating our problem (Section 2), then
we formally define it (Section 3) and describe our solutions
(Section 4). Finally, we assess the quality of these solutions
through simulations (Section 5) and conclude (Section 6).
Due to lack of space, we refer the interested reader to the
companion research report [9] for a comprehensive review
of related work.

2. Problem motivation
2.1. Dynamic vs. static scheduling

Many scheduling strategies use a dynamic approach:
task graphs, or even tasks, are processed one after the other.
This is usually done by assigning priorities to waiting tasks,



and then by allocating resources to the task with highest pri-
ority, as long as there are free resources. This simple strat-
egy is the best possible in some cases: (i) when we have no
knowledge on the future workload (i.e., the tasks that will be
submitted in the near future, or released by the processing
of current tasks), or (ii) under a very unstable environment,
where machines join and leave the system with a high churn
rate.

On the contrary to the typical use case of dynamic
schedulers, we have much knowledge on the system when
scheduling several instances of a workflow. First, we can
take advantage of the regularity of the workflows: the in-
put is made of a large collection of data sets that will result
in the same task graph. Second, the computing platform
is considered to be stable enough so that we can use per-
formance measurement tools like NWS [15] in order to get
some information on machine speeds and link bandwidths.
Taking advantage of this knowledge, we aim at using static
scheduling techniques, that is to anticipate the mapping and
the scheduling of the whole workload at its submission date.

2.2. Data parallelism vs. control parallelism

In the context of scheduling series of task graphs, we
can take advantage of two sources of parallelism to increase
performance. First, parallelism comes from the data, as we
have to process a large number of instances. Second, each
instance consists in a task graph which may well include
some parallelism: some tasks can be processed simultane-
ously, or the processing of consecutive tasks of different in-
stances can be pipelined, using some control parallelism. In
such a context, several scheduling strategies may be used.

We may only make use of data parallelism. Then, the
whole workflow corresponding to the processing of a single
input data set is executed on a single resource, as if it was
a large sequential task. Different workflow instances are si-
multaneously processed on different processors. This is po-
tentially the solution with the best degree of parallelism, be-
cause it may well use all available resources. This imposes
that all tasks of a given instance are performed on each pro-
cessor, therefore that all services must be available on each
participating machine. However, it is likely that some ser-
vices have heterogeneous performance: many legacy codes
are specialized for specific architectures and would perform
very poorly if run on other machines. Some services are
even likely to be unavailable on some machines. In the ex-
treme, most specified case, it may happen that no machine
can run all services; in that case the pure data-parallelism
approach is infeasible. Moreover, switching, on the same
machine, from one service to another may well induce some
latency to deploy each service, thus leading to a large over-
head. At last, a single input data set may well produce a
large set of data to process or require a large amount of

memory. Processing the whole workflow on a single ma-
chine may lead to a large latency for this instance, and
may even not be possible if the available storage capacity
or memory of the machine cannot cope with the workflow
requirements. For these reasons, application workflows are
usually not handled using a pure data-parallelism approach.

Another approach consists in simultaneously taking ad-
vantage of both data and control parallelism. We have pre-
viously studied this approach [1, 2] and proved that in a
large number of cases, when the application graph is not
too deep, we can compute an optimal schedule, that is a
schedule which maximizes the system throughput. This ap-
proach, however, asks for a lot of control as similar files
produced by different data sets must follow different paths
in the interconnection network. In this paper, we focus on
a simpler framework: we aim at finding a single mapping
of the application workflow onto the platform. This means
that all instances of a given task must be processed on the
same machine. Thus, the corresponding service has to be
deployed on a single machine, and all instances are pro-
cessed the same way. Thus, the control of the Grid job is
much simpler, and the number of needed resources is kept
low.

2.3. Steady-state operation and throughput
maximization

As in our previous work for scheduling application
graphs on heterogeneous platforms, this study relies on
steady-state scheduling. The goal is to take advantage of the
regularity of the series of workflows; as we consider that the
Grid job input is made of a large number of data sets which
should be processed using the same task graph, we relax the
scheduling problem, and consider a steady-state approach:
we assume that after some transient initialization phase, the
throughput of each resource will become steady.

In scheduling, the classical objective is to minimize the
running time of the job, or makespan. However, by using
steady-state techniques, we relax this objective and concen-
trate on maximizing the system throughput. Then, the to-
tal running time is composed of one initialization phase,
a steady-state phase, and a clean-up phase. As initializa-
tion and clean-up phases do not depend on the total number
of instances, we end up with asymptotically optimal sched-
ules: when the number of instances becomes large, the time
needed to perform initialization and clean-up phases be-
comes negligible in front of the overall running time.

3. Notations, hypotheses, and complexity

We now detail our model and assess the problem com-
plexity.



3.1. Platform and application model

We denote by Gp = (Vp, Ep) the undirected graph rep-
resenting the platform, where Vp = {Py,...,P,} is the
set of all processors. The edges of Ep represent the com-
munication links between these processors. The maximum
bandwidth of the communication link P, — P, is denoted
by bw, .. Moreover, we suppose that processor F, has a
maximum incoming bandwidth B;‘In and a maximum outgo-
ing bandwidth Bg“t. Figure 1(a) gives an example of such a
platform graph. A path from processor P, to processor P,
denoted P, ~ P, is a set of adjacent communication links
going from F, to P,.

We use a bidirectional multiport model for communica-
tions: a processor can perform several communications si-
multaneously. In other words, a processor can simultane-
ously send data to multiple targets and receive data from
multiple sources, as soon as the bandwidth limitation is ex-
ceeded neither on links, nor on incoming or outgoing ports.

We denote by G 4 = (Via, F4) the Directed Acyclic ap-
plication Graph (DAG), where V4 = {T1,...,T,} is the
set of tasks, and F 4 represents the dependences between
these tasks, that is, F; ; = (T;,1;) € Ea4 is the file pro-
duced by task 7T; and consumed by task 7}. The depen-
dence file F; ; has size data; j, so that its transfer through
‘f‘;ia: Figure 1(b) gives an
example of application graph. C(I(;mputation task T}, needs
a time w; i to be entirely processed by processor F;. This
last notation corresponds to the so-called unrelated-machine
model: a processor can be fast for a given type of tasks and
slow for another one. Using these notations, we can model
the benefits which can be drawn on some specific hardware
architectures by specially optimized tasks.

link P, — P, takes a time

3.2. Allocations

As described in the introduction, we assume that a large
set of input data sets has to be processed. These input data
sets are originally available on a given source processor
P.ource. Each of these data sets contains the data for the
execution of one instance of the application workflow. For
the sake of simplicity, we are looking for strategies where
all tasks of a given type T; are performed on the same re-
source, which means that the allocation of tasks to proces-
sors is the same for all instances. We now formally define
an allocation.

Definition 1 (Allocation). An allocation of the application
graph to the platform graph is a function o associating:
e {0 each task T;, a processor o(T};) which processes all
instances of T;;
e to each file F; j, a set of communication links o(F; ;)
which carries all instances of this file from processor
o(T;) to processor o (T).

A file F; ; may be transfered differently from o (T;) to
o(T}) depending on the routing policy enforced on the plat-
form. We distinguish three possible policies:

Single path, fixed routing. The path for any transfer from
P, to P, is fixed a priori. We do not have any free-
dom on the routing. This scenario corresponds to the
classical case where we have no freedom on the rout-
ing between machines: we cannot change the routing
tables of routers.

Single path, free routing. We can choose the path from P,
to P,, but a single route must be used for all data orig-
inating from P, and targeting P,. This policy corre-
sponds to protocols allowing us to choose the route for
any of the data transfer, and to reserve some bandwidth
on the chosen routes. Although current network proto-
cols do not provide this feature, bandwidth reservation,
and more generally resource reservation in Grid net-
work, is the subject of a wide literature, and will prob-
ably be available in future computing platforms [8].

Multiple paths. Data from P, to P, may be split along
several routes taking different paths. This corresponds
to the uttermost flexible case where we can simulta-
neously reserve several routes and bandwidth fractions
for concurrent transfers.

The three routing policies allow us to model a wide range

of practical situations, current and future. The techniques

exposed in Section 4 enable us to deal with any of these
models and even with combinations of them.

In the case of single path policies, o (F; ;) is the set of
the links constituting the path. In the case of multiple paths,
o(F; ;) is a weighted set of paths {(w,, P,)}: for exam-
ple O'(F778) = {(Ol,Pl — Pg), (Og,Pl — P2 — Pg)}
means that 10% of the file F7 g go directly from P; to P
and 90% are transfered through Ps.

3.3. Throughput

We first formally define what we call the “throughput”
of a schedule. Then, we will derive a tight upper bound on
the throughput of any schedule.

The definition of throughput. We focus on the optimiza-
tion of the steady state. Thus, we are not interested in min-
imizing the execution time for a given number of workflow
instances, but we concentrate on maximizing the through-
put of a solution, that is the average number of instances
that can be processed per time-unit in steady state.

Definition 2. Assume that the number of instances to be
processed is infinite, and note N (t) the number of instances
totally processed by a schedule at time t. The throughput p

N(t)

of this schedule is given by p = tlim B
—00



This definition is the most general one, as it is valid for
any schedule. We are only interested in very specific sched-
ules, consisting of only one allocation. We now show how
to compute an upper bound on the achievable throughput for
a given allocation. We later show that this bound is tight.

Upper bound on the achievable throughput. First, we
consider the time spent by each resource on one instance of
a given allocation o. In other words, we consider the time
spent by each resource for processing a single copy of our
workflow under allocation o.
e The computation time spent by a processor P, for pro-
cessing a single instance is: ;""" = Z Wi g-
i,0(T;)=Pq
e The total amount of data carried by a communi-
cation link P, — P, for a single instance is

g = >

(4,5), Pq—Pr€o(Fs,;)

cies, and dg, = Z Z

Fij (wa,Pa)€c(Fi ;)
P,—P.€P,

the multiple-paths policy. This allows us to compute
the time spent by each link, and each network inter-
face, on this instance:
— onlink P, — P,: ty, =dg,/bwgr;
— on P, outgoing interface: " =3, dg.r/ Bgut;
— on P, incoming interface: ¢! = ) d, /B
We can now compute the maximum time 7 spent by
any resource for the processing of one instance: 7 =

data; ; for single-path poli-

w, x data; ; for

max {H}%X{tflomp’tgut7tgl}7 Pirlj)lgr tq,,.} . This gives us an
upper bound on the achievable throughput: p < ppax =
1/7. Indeed, as there is at least one resource which spends a
time 7 to process its share of a single instance, the through-
put cannot be greater than 1 instance per 7 units of time.
We now show that this upper bound is achievable in prac-
tice, i.e., that there exists a schedule with throughput pyax.
In the following, we call “throughput of an allocation” the

optimal throughput py,.x of this allocation.

The upper bound is achievable. Here, we will only ex-
plain on an example how one can built a periodic sched-
ule achieving the throughput p,,.x. Indeed, we are not
interested here in giving a formal definition of periodic
schedules, or to formally define and prove schedules which
achieve the desired throughput, as this goes far beyond the
scope of this paper. The construction of such schedules, for
applications modeled by DAGs, was introduced in [1], and
a fully comprehensive proof can be found in [2].

Figure 1 illustrates how to build a periodic schedule of
period 7 for the workflow described on Figure 1(b), on the
platform of Figure 1(a), using the allocation of Figure 1(c).
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(d) Example of a periodic schedule

Figure 1. Example of periodic schedule. Only
the first instance is represented with task and
file labels.

Once the schedule has reached its steady state, that is af-
ter 67 in the example, during each period, each processor
computes one instance of each task assigned to it. More
precisely, in steady state, during period k (k > 6), that is
during time-interval [k7; (k+1)7], the following operations
happens:

e P, computes task 77 of instance k,
Py sends F} 2 and F} 3 of instance k — 1 to P,
P; processes 15 and T3 of instance k — 2,
P, sends F> 4 and F3 5 of instance k — 3 to Ps (via P3),
P, processes tasks Ty and 75 of instance k — 4,
Ps sends F g and F5 ¢ of instance k — 5 to P,

e P processes task Tg of instance k — 6.
One instance is thus completed after each period, achieving
a throughput of 1/7.

3.4. NP-completeness of throughput opti-
mization

We now formally define the decision problem associated
to the problem of maximizing the throughput. The proof
of this result is a simple reduction from Minimum Multi-
processor Scheduling, and is available in the companion re-
search report [9].

Definition 3 (DAG-Single-Alloc). Given a directed acyclic
application graph G 4, a platform graph G p, and a bound
B, is there an allocation with throughput p > B?

Theorem 1. DAG-Single-Alloc is NP-complete for all rout-
ing policies.



4. Mixed linear program formulation for opti-
mal allocations

In this section, we present a mixed linear program for-
mulation that allows to find optimal allocation with respect
to the total throughput.

4.1. Single path, fixed routing

In this section, we assume that the path to be used to
transfer data from a processor P, to a processor P, is deter-
mined in advance; we have thus no freedom on its choice.
We then denote by P, ~» P, the set of edges of Ep which
are used by this path.

Our linear programming formulation makes use of both
integer and rational variables. The resulting optimization
problem, although NP-complete, is solvable by specialized
softwares (see Section 5 about simulations). The integer
variables can take O or 1 value. The only integer variables
are the following:

e y’s variables which characterize where each task is

processed: yfj = 1 if and only if task T}, is processed
on processor P,;

e z’s variables which characterize the mapping of file
transfers: %L = 1 if and only if file F}; is trans-
fered using path P, ~» P,.; note that we may well have
x>l = 1 if processor P, executes both tasks Ty and
1.

Obviously, these two sets of variables are related. In par-

ticular, for any allocation, x’;f = y(’; x L. This redundancy
allows us to write linear constraints.

MINIMIZE 7 UNDER THE CONSTRAINTS

(la) VFu, VP~ P, alle{0,1}, yre{o1}

() VTy, ¥p s =1

(Ic) VEFu VP~ Pp, ahl <yF
k k.l 1

(1d) VI,,VFy 1, VP, vy’ + ZPq»\»Py, Tgr 2 Yp

(le) VP, ZTk y(’;w%k <r

(f) VPy— Pr, dgp= Y Y aiidatay

P~ P; with Fk,,l
P,—P.cP,~P,

() VP, — P, bdvﬁ;l <7

dg,r
(lh) VPq EPqHP,.EEP W S T

. dy »
(11) VP’I‘ ZPQ—>P,»€EP quzl“ é T

6]

Linear program (1) expresses the optimization problem
for the fixed-routing policy. The objective function is to
minimize the maximum time 7 spent by all resources, in

order to maximize the throughput 1/7. The intuition behind
the linear program is the following:

e Constraints (1a) define the domain of each variable:
x,y lie in {0, 1}, while 7 is rational.

e Constraint (1b) ensures that each task is processed ex-
actly once.

e Constraint (1c) asserts that a processor can send the
output file of a task only if it processes the correspond-
ing task.

e Constraint (1d) asserts that the processor computing a
task holds all necessary input data: for each predeces-
sor task, it either received the data from that task or
computed it.

e Constraint (le) ensures that the computing time of a
processor is no larger that 7.

e In Constraint (1f), we compute the amount of data
carried by a given link, and the following con-
straints (1g,1h,1i) ensure that the time spent on each
link or interface is not larger than 7, with a formula-
tion similar to that of Section 3.3.

We denote pop = 1 / Topt> Where Top is the value of 7 in
any optimal solution of Linear Program (1). The following
theorem states that p,p is the maximum achievable through-
put. Due to lack of space, the proof of this result is available
in the companion research report [9].

Theorem 2. An optimal solution of Linear Program (1) de-
scribes an allocation with maximal throughput for the fixed
routing policy.

4.2. Single path, free routing

We now move to the free routing setting. The transfer of
a given file between two processors can take any path be-
tween these processors in the platform graph. We introduce
a new set of variables to take this into account. For any file
Fyand link P; — P, fi]f}.l is an integer value, with value 0
orl: ka 3! = 1if and only if the transfer of file F}, ; between
the processor processing T} to the one processing 7; takes
the link P; — P;. Using these new variables, we transform
the previous linear program to take into account the free
routing policy. The new program, Linear Program (2) has
exactly the same constraints than Linear Program (1) except
for the following: (i) the new variables are introduced (Con-
straint (2a)); (ii) the computation of the amount of data in
Constraint (1f) is modified into Constraint (2f) to take into
account the new definition of the routes; (iii) the new set
of constraints (2j) ensures that a flow of value 1 is defined
by the variables f*! from the processor executing T}, to the
one executing T}.



MINIMIZE 7 UNDER THE CONSTRAINTS
\V/Fk,l7qu ~ P,
(2a)
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Qf) VPy— P, dgy =5 £ data,
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The following theorem states that the linear program
computes an allocation with optimal throughput: again, we
denote pop = 1 / Topt> Where 7o is the value of 7 in any op-
timal solution of this linear program. As previously, all the
proofs are available in the companion research report [9].
The proof is based on the following remark: for a given file
Fy. 1, proving that the links P, — P, such that f¥! =1
define a route from some processor Ppoq to some other pro-
cessor Py 1 equivalent to proving that for all processor
P Y= N p3is equal to 1if Ppg = Pyog,

P,—P, P.,—P,
—1if P, = P and 0 otherwise.

Theorem 3. An optimal solution of Linear Program (2) de-
scribes an allocation with optimal throughput for the free
routing policy.

4.3. Multiple paths

Finally, we present our linear programming formulation
for the most flexible case, the multiple-paths routing: any
transfer may now be split into several routes in order to in-
crease its throughput. The approach is extremely similar to
the one used for the single route, free routing policy: we
use the same set of f variables to define a flow from pro-
cessors producing files to processors consuming them. The
only difference is that we no longer restrict f to integer val-
ues: by using rational variables in [0; 1], we allow each flow
to use several concurrent routes. Theorem 4 expresses the
optimality of the allocation found by the linear program. Its
proof is very similar to the proof of Theorem 3.

MINIMIZE 7 UNDER THE CONSTRAINTS
VF}CJ,VPQ I d Pr,

aBl e 0,1}, yF {01}, £ € [0;1]

AND (1b), (10), (1d), (1e), (2f), (1g), (1h), (11), (2))
3)

(3a)

Theorem 4. An optimal solution of Linear Program (3) de-
scribes an allocation with optimal throughput for the multi-
ple paths policy.

5. Performance evaluation

In this section, we present the simulations performed to
study the performance of our strategies. Simulations allow
us to test different heuristics on the very same scenarios,
and also to consider far more scenarios than real experi-
ments would. We can even test scenarios that would be
quite hard to run real experiments with. This is especially
true for the flexible or multiple-path routing policies. Our
simulations consist here in computing the throughput ob-
tained by a given heuristic on a given platform, for some
application graphs. We also study another metric: the la-
tency of the heuristics, that is the time between the begin-
ning and the end of the processing of one input data set. A
large latency may lead to a bad quality of service in the case
of an interactive workflow (e.g., in image processing), and
to a huge amount of temporary files. This is why we intend
to keep the latency low for all input data sets.

5.1. Reference heuristics

In order to assess the quality and usefulness of our strate-
gies, we compare them against four classical task-graph
scheduling heuristics. Some of these heuristics (Greedy and
HEFT) are dynamic strategies: they allocate resources to
tasks in the order of their arrival. As this approach is not
very practical when scheduling a series of identical work-
flows, we transform these heuristics into static scheduling
strategies: the mapping of a single allocation is computed
with the corresponding strategy (Greedy or HEFT), and
then this allocation is used in a pipelined way for all in-
stances.

Greedy. This strategy maps the tasks onto the platform
starting from the task with the highest w; . value, i.e., the
task which can reach the worst computation time. The pro-
cessor that would process this task the fastest is then allo-
cated to this task, and the processor is “reserved” for the
time needed for the processing. The allocation proceeds
until all tasks are scheduled. Communications are sched-
uled using either the compulsory route, or the shortest path
between allocated processors in case of flexible routing.

HEFT. This heuristic builds up an allocation for a single
instance using the classical Heterogeneous Earliest Finish
Time [14]. Then, this allocation is used for all instances.

Pure data-parallelism. We also compare our approach
to a pure data-parallelism strategy: in this case, all tasks
of a given instance are processed sequentially on a given
processor, as detailed in the introduction.

Multi-allocations upper bound. In addition to the pre-
vious classical heuristics, we also study the performance
when mixing control- and data-parallelism. This approach



uses concurrent allocations to reach the optimal throughput
of the platform, as is explained in details in [2]. Rather than
using the complex algorithm described in that paper for task
graphs with bounded dependences, we use an upper bound
on the throughput based on this study, which consists of a
simple linear program close to the one described in this pa-
per, and solved over the rational numbers. This bound is
tight when the task graph is an in- or out-tree, but may not
take all dependences into account otherwise. This upper
bound, however, has proved to be a very good comparison
basis in the following, and is used as a reference to assess
the quality of other heuristics. No latency can be derived
from this bound on the throughput, since no real schedule is
constructed.

5.2. Simulation settings

Platforms. We use several platforms representing ex-
isting computing Grids. The descriptions of the plat-
forms were obtained through the SimGrid simulator reposi-
tory [3]:
e DAS-3, the Dutch Grid infrastructure,
e Egee, a large-scale European multi-disciplinary Grid
infrastructure, gathering more than 68.000 CPUs,
e Grid5000, a French research Grid with targets 5000
processors,
o GridPP, the UK Grid infrastructure for particle physics.
Users are often limited to a small number of processors
of a given platform. To simulate this behavior, a subset of
the available processors is first selected and then used by all
heuristics. It is composed of 10 to 20 processors. To evalu-
ate our fixed-routing strategies, we pre-compute a shortest-
path route between any pair of processors, which is used as
the compulsory route.

Applications. Several workflows are used to assess the
quality of our strategies, with a number of tasks between
8 and 12: (i) pipeAlign [13], a protein family analysis tool,
(ii) several random task graphs generated by the TGFF gen-
erator [6]. In order to evaluate the impact of communica-
tions on the quality of the result, we artificially multiply
by different factors all communications of the application
graphs. There are many ways to define a communication-to-
computation ratio (CCR) for a given workflow. We choose
to define an average computation time ¢¢omp by dividing the
sum of all tasks by the average computational power of the
platform (excluding powerless nodes like routers), and an
average communication time t.op, by dividing the sum of all
files by the average bandwidth. Then the CCR is given by
the ratio t.om /tcomp- Finally, we impose the first task and the
last one to be processed on the first processor. These tasks
have a size 0 and correspond to the storage of input and out-
put data. Our application setting includes both related and

unrelated application, as discussed in Section 3.1, but we do
not distinguish them as they lead to comparable results.

5.3. Results

5.3.1 Throughput and Latency

We compare both throughput and latency for each solu-
tion. For each of the 233 application/platform scenarios,
results are normalized to the best one: the performance of a
heuristic on an instance is divided by the best performance
achieved by a heuristic on that instance (or by the upper
bound for throughput); therefore, the closer to 1, the bet-
ter. Figure 2(a) gives the observed throughput, while Fig-
ure 2(b) presents the latencies. The strategies based on
Mixed Linear Programing are noted MLP in the following.
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Figure 2. Performance of different strategies.

Data-parallel. When dealing with a low CCR, the data-
parallel strategy offers the best throughput since all proces-
sors are working at full speed. Since sending input and out-
put data requires communications, performance decreases
with the CCR, down to 10% of the upper bound for a CCR
greater than 10. Moreover, as it makes use of all proces-



sors, even slow ones, the data-parallel heuristic leads to a
very high latency, which increases with the CCR.

Greedy and HEFT. The reference heuristics have rather
good results when the CCR is very low: around 80% of
the upper bound for ratios below 0.1. When the scenario
becomes more communication-intensive (CCR equal to, or
greater than, 1), their performance is dropping to 30% of
the upper bound, and even to 10% when CCR > 10. On
the other hand, these strategies build schedules whose la-
tency is often very large compared to those of own MLP
strategies. Like the data-parallel strategy, relative latencies
increase with the CCR, leading to latencies 100 times worse
the best one when the CCR is greater than 10.

MLP strategies. The three strategies based on linear pro-
grams often return similar results: the best one is MLP-
multiple-paths, followed by MLP-free-routing, and MLP-
fixed-routing. This is quite natural: the more flexible the
routing, the better the results. For CCRs below 10, these
strategies obtain throughputs between 50% and 80% of
the upper bound, and their performance increases with the
CCR: when this ratio is over 10, our strategies achieve more
than 80% of the upper bound, and often over 90%. MLP-
fixed-routing almost always achieves the best latency: using
other routes than the shortest-path, or concurrent routes, can
slightly increase the latency (up to a factor 2).

5.3.2 Running time of the algorithm

Our strategies relies on mixed linear programs, which can
take much time to solve. Even if the use of linear programs
in our heuristics can significantly slow down the compu-
tation of the schedule, it allows to reach better throughputs,
and thus better running times. When dealing with very large
series of workflows, this gain can be significant and justify
the choice of a scheduler. Moreover, specialized tools like
GPLK [11] or CPLEX [5] can solve mixed linear programs
efficiently. During our simulations, all linear programs and
mixed linear programs were solved using CPLEX 11.0 on a
2.4GHz Opteron processor. As we target reasonable num-
bers of tasks, the processing time of the schedule is kept
low: all problems were solved in less than 10 seconds.

6. Conclusion and perspectives

In this paper, we have studied the scheduling of a se-
ries of workflows on a heterogeneous platform. We have
taken advantage of the regularity due to the series to opti-
mize the system throughput by applying steady-state tech-
niques. We have derived single-allocation strategies, which
combine good performance with simple control. Indeed,
we have proven that our mixed linear program computes
an optimal allocation under a number of routing scenarios.

Simulations have proven that the benefit of our approach in
comparison to classical reference heuristics is significant as
soon as communication times are not negligible, and that
our allocations lead to much smaller latencies as a side ef-
fect. Future work include simplifying our mixed linear pro-
gram to cope with larger applications, and using task dupli-
cation to further improve the system throughput.
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