
Complexity results and heuristics

for pipelined multicast operations
on heterogeneous platforms

O. Beaumont
LaBRI, UMR CNRS 5800

Bordeaux, France
Olivier.Beaumont@labri.fr

A. Legrand and L. Marchal and Y. Robert
LIP, UMR CNRS-INRIA 5668

ENS Lyon, France
{Arnaud.Legrand,Loris.Marchal,Yves.Robert}@ens-lyon.fr

Abstract

In this paper, we consider the communications in-
volved by the execution of a complex application de-
ployed on a heterogeneous platform. Such applications
extensively use macro-communication schemes, such as
multicast operations, where messages are broadcast to
a set of predefined targets. We assume that there is
a large number of messages to be multicast in pipeline
fashion, and we seek to maximize the throughput of the
steady-state operation. We target heterogeneous plat-
forms, modeled by a graph where links have different
communication speeds. We show that the problem of
computing the best throughput for a multicast operation
is NP-hard, whereas the best throughput to broadcast a
message to every node in a graph can be computed in
polynomial time. Thus, we introduce several heuristics
to deal with this problem and prove that some of them
are approximation algorithms. We perform simulations
to test these heuristics and show that their results are
close to a theoretical upper bound on the throughput
that we obtain with a linear programming approach.

1. Introduction

Multicasting is a key communication primitive in
computer networks. Lin and Ni [7] have published a
survey paper where they consider different multicast al-
gorithms operating under several network models; they
explain the close relationships between multicast al-
gorithms and Steiner trees. Several authors have dis-
cussed optimized broadcast algorithms for a variety of
parallel architectures, such as wormhole routed net-
works, cut-through routed networks, and networks of
workstations. Recently, the design of multicast algo-
rithms has been the focus of many papers, due to the

advent of new technologies such as mobile, wireless,
ad-hoc, and optical networks.

In this paper, we consider multicast algorithms for
heterogeneous networks of workstations. We assume
a realistic model of communications, namely the one-
port model, where a given processor can simultane-
ously receive data from one of its neighbor, and send
(independent) data to one of its neighbor at a given
time-step. This is to be contrasted with the traditional
multi-port model, where the number of simultaneous
messages sent or received by a given processor is not
bounded.

The traditional objective of multicast algorithms is
to minimize the makespan, i.e. the time elapsed be-
tween the emission of the first message by the source
and the last reception. In this paper, rather than con-
centrating on the implementation of a single multicast
operation, we deal with the optimization of a series
of successive multicast operations or equivalently of a
single multicast operation of a very large message split
into small chunks. Such series of multicasts typically
occur in the execution of a complex application, de-
ployed on a heterogeneous “grid” platform, and using
macro-communication schemes intensively. In many
cases, the application would perform a large number
of instances of multicasts (for example if data paral-
lelism is used), and the makespan is not a significant
measure for such problems. Rather, we focus on the
optimization of the steady-state mode, and we aim at
optimizing the averaged throughput, i.e. the averaged
number of multicasts which are initiated every time-
step.

In previous papers, we have dealt with other com-
munication primitives than the multicast operation.
We have shown how to compute the optimal steady-
state throughput for a series of scatter or reduce op-
erations [6], and a series of broadcast operations [2].

1Proceedings of the 2004 International Conference on Parallel Processing (ICPP’04)

0190-3918/04 $20.00 © 2004 IEEE

The idea is to characterize the steady-state operation
of each resource through a linear program in rational
numbers (that can thus be solved with a complexity
polynomial in the platform size), and then to derive a
feasible periodic schedule from the output of the pro-
gram (and to describe this schedule in polynomial size
too). In this paper, we prove that surprisingly, mul-
ticast operations turns out to be more difficult than
scatters or broadcasts: even characterizing the optimal
throughput of a series of multicasts is shown to be NP-
hard.

Following this negative result, we introduce several
polynomial time heuristics to deal with the series of
multicasts problem. These heuristics can be divided
into two categories: the first category is based upon
the linear programming approach, and some heuris-
tics are in fact shown to be approximation algorithms
(they have a guaranteed worst-case performance). The
second category re-visits the traditional heuristics that
aim at building “good” multicast trees, namely trees
that minimize either the sum of the edge weights
(Steiner trees) or the weight of the longest path in
the tree (which is the makespan under the multiport
model); we extend these heuristics to cope with the
new objective, i.e. maximizing the throughput of the
multicast tree. Due to lack of space, we do not survey
related work: instead, we refer to the extended version
of the paper [1].

2. Framework

The target architectural platform is represented by
an edge-weighted directed graph G = (V, E, c), as il-
lustrated in Figure 1(a). Note that this graph may
well include cycles and multiple paths. Let p = |V |
be the total number of nodes. There is a source node
Psource, which plays a particular role: it is the source
of all the messages to be sent; initially, it holds all the
data to be multicast. There is a set of N destination
nodes, which we denote as Ptarget = {Pt1 , . . . , PtN }.
If Ptarget = V \ {Psource}, all nodes are receiving the
messages, we have a succession of broadcast operations.
Otherwise, there are some nodes that are neither source
nor destination, but which may participate by forward-
ing the information.

There are several scenarios for the operation mode
of the processors. In this paper, we concentrate on
the one-port model, where a processor node can simul-
taneously receive data from one of its neighbor, and
send (independent) data to one of its neighbor. At any
given time-step, there are at most two communications
involving a given processor, one in emission and the
other in reception.

Each edge ej,k : Pj → Pk is labeled by a value cj,k

which represents the time needed to communicate one
unit-size message from Pj to Pk. The graph is directed:
the time to communicate in the reverse direction, from
Pk to Pj , is ck,j (provided that this link exists). Note
that if there is no communication link between Pj and
Pk we let cj,k = +∞, so that cj,k < +∞ means that
Pj and Pk are neighbors in the communication graph.
We state the communication model more precisely: if
Pj sends a unit-size message to Pk at time-step t, then
(i) Pk cannot initiate another receive operation before
time-step t+cj,k (but it can perform a send operation);
and (ii) Pj cannot initiate another send operation be-
fore time-step t + cj,k (but it can perform a receive
operation).

Series of multicasts We define the Series of Mul-
ticasts problem as follows: the source processor emits
a (potentially infinite) sequence of unit-size messages.
Start-up costs are included in the values of the link
capacities cj,k. The optimization problem, which we
denote as Series(V, E, c, Psource,Ptarget), is to maxi-
mize the throughput, i.e. the average number of mul-
ticasts initiated per time-unit. We work out a little
example in Section 3, using the platform represented
in Figure 1(a).

3. Example

In this section, we work out a simple example. The
platform graph is represented on Figure 1(a). The
processor Psource aims at multicasting a series of mes-
sages to the target processors P7, P8, . . . , P13 (which
are shaded on the figure). Edges are labeled with the
communication time needed to transfer one unit-size
message. All edges between processors P7, P8, P9, and
P10 have weight 1/5, and edges between processors P11,
P12, and P13 have weight 1/10.

Because the edge from P6 to P7 has weight 1, P7

cannot receive more than one message per time-unit.
This is an upper bound for the throughput that can be
achieved with this platform for the Series of multi-
casts problem. In the following, we prove that this
bound can be obtained, but only when using several
multicast trees simultaneously.

Assume (by contradiction) that a single multicast
tree T could deliver one message every time-unit. As
P11 belongs to the set of target processors, P1 has to
receive the messages and to transfer them to P11, so at
least one of the edges (Psource, P1) and (P2, P1) belongs
to T . Since T is a tree, only one of these edges belongs
to T . We examine both cases:

2Proceedings of the 2004 International Conference on Parallel Processing (ICPP’04)

0190-3918/04 $20.00 © 2004 IEEE

• (Psource, P1) ∈ T : then Psource sends a message
to P1 every time-unit, so it cannot perform any
other sending operation. P3 receives no message,
and neither does P7, hence a contradiction.

• (P2, P1) ∈ T : then P2 spends all its time sending
messages to P1. Therefore, P2 has to receive its
messages from P3 at the same rate and P6 has to
receive its messages from P5. As P3 has to spend
all its time sending data to P2, P4 (hence P5 and
P6) cannot receive any message. Hence a contra-
diction.

1

(1
10

)

(1
5)

1

1 1

1

1

1

2

1

1
2

P7

P1

P2

P3

P4

P5

P8 P9

P10

P11

P12

P13

P6

Psource

(a) Platform graph

P7

P1

P2

P3

P4

P5

P8 P9

P10

P11

P12

P13

P6

Psource

(b) Multicast tree 1,
throughput 1/2

P7

P1

P2

P3

P4

P5

P8 P9

P10

P11

P12

P13

P6

Psource

(c) Multicast tree 2,
throughput 1/2

1
2

1
2

1

1 1

1

1

1

1
2

1

1
2 1

2

1
2

1
2

1

P7

P1

P2

P3

P4

P5

P8 P9

P10

P11

P12

P13

P6

Psource

(d) Number of messages trans-
ferred along each edge within
one time-unit

1
2

1
2

1
2

1
11

2

1
5

1
5

1
10

1
10

1

1
5

1
2

1
2

1
2

P7

P1

P2

P3

P4

P5

P8 P9

P10

P11

P12

P13

P6

Psource

(e) Occupation time of
each edge within one
time-unit

Figure 1. Example for the Series problem.

Hence a throughput of one message every time-unit
is not achievable with a single multicast tree. How-
ever, we outline an optimal schedule which reaches
such a throughput, using two multicast trees. These

trees, whose throughputs are both 1/2, are shown on
Figures 1(b) and 1(c). The number of messages sent
along each edge during on time-unit with this opti-
mal solution is presented on Figure 1(d). Figure 1(e)
shows the corresponding communication times on each
edge. We point out that the two multicast trees are
not edge-disjoint, but all the communications induced
by each of them can be orchestrated so as to take place
within one time-unit, as outlined in Figure 1(e). We
see that some processors reach their maximum send-
ing capacity, such as Psource, P1, P2, P3, P4, P6; also,
some processors reach their maximum receiving capac-
ity: P1, P6, P7, P11.

4. Complexity results

In this section, we derive complexity results for
the Series of Multicasts problem. We first show
that even the simple problem to determine the optimal
throughput that can be achieved for a succession of
multicast operations is NP-hard. Worst, we prove that
this optimal throughput cannot be polynomially ap-
proximated up to a logarithmic factor (unless P=NP).
The interested reader will find all the proofs of these
results in the extended version of the paper [1].

4.1 Complexity of the Series of Multicasts
problem

We formally state the decision problem associated
to the determination of the optimal throughput for the
Series problem. In the following, log denotes the log-
arithm in base 2:

Definition 1 (COMPACT-MULTICAST). Given
a weighted platform graph G = (V, E, c), a source pro-
cessor Psource, a set of destination processors Ptarget,
a rational bound for the throughput ρ, and a rational
bound for the size S, is there a K-periodic schedule of
period T , i.e. a schedule which performs K multicast
operations every T units of time in steady-state, such
that K � log S and K

T � ρ?

Theorem 1. COMPACT-MULTICAST(G, Psource,
Ptarget, ρ, S) is NP-complete.

We point out that the bound S is introduced so
that the description of a periodic schedule can be poly-
nomial in the problem size. Informally, a K-periodic
schedule is the superposition of K multicast trees, and
the condition K � log S ensures that all these trees
can be encoded with a size polynomial in the input:
each tree is at most the size of the platform graph, and
there are no more than log S of them. We point out

3Proceedings of the 2004 International Conference on Parallel Processing (ICPP’04)

0190-3918/04 $20.00 © 2004 IEEE

that similar difficulties hold for specifying cyclic sched-
ules in general: see the survey paper of Hanen and
Munier [4].

The proof of this result (available in [1]) can be
used to derive an inapproximability result. The class
APX is defined as the problems in NP which admit a
polynomial-time λ-approximation algorithm, for some
constant λ. Therefore, if we show that COMPACT-
MULTICAST does not belong to this class, this will
prove that, unless P=NP, no polynomial-time heuristic
can approximate the best throughput, up to an arbi-
trary constant factor.

Theorem 2. COMPACT-MULTICAST does not be-
long to the class APX.

We can refine Theorem 1 by suppressing the restric-
tion on the compactness of the solution. We first come
to a formulation of the problem using weighted multi-
cast trees:

Definition 2 (COMPACT-WEIGHTED-MUL-
TICAST). Given a weighted platform graph G =
(V, E, c), a source processor Psource, a set of destination
processors Ptarget, a rational bound for the throughput
ρ, is there a periodic schedule consisting of k � 2|E|
multicast trees {T1, . . . , Tk}, where αi is the average
number of messages sent through tree Ti within one
time-unit, αi = ai/bi, where ai and bi are integers such
that ∀i = 1, . . . , k, log ai + log bi � 4|E|(log |E| + A =
log max ci,j), and

∑
αi � ρ?

Theorem 3. COMPACT-WEIGHTED-MULTI-
CAST(G, Psource, Ptarget, ρ, S) is NP-complete.

The following result states that restricting to com-
pact weighted trees does not affect the optimality of
the solution:

Theorem 4. Given a weighted platform graph G =
(V, E, c), a source processor Psource, a set of destination
processors Ptarget, if there exists a periodic schedule
that achieves a throughput ρ, then there also exists a so-
lution of COMPACT-WEIGHTED-MULTICAST(G,
Psource, Ptarget, ρ).

The main two complexity results stated in this sec-
tion should be compared to their equivalent for the
broadcast problems.

Broadcast Multicast
The best tree NP-hard [2] NP-hard (Th. 1)

Combination of
weighted trees

P [2] NP-hard
(Th. 3 and 4)

In many situation (e.g. the broadcast problem), us-
ing a relaxation such as the steady-state mode renders
the problem much more simple. This relaxation is not
sufficient for the multicast problem since the resulting
optimization problem is NP-hard and does not even
belong to the class APX. In [1], we show that these
complexity results can be extended to a similar prob-
lem, namely Parallel Prefix computations.

5. LP-based heuristics

5.1. Lower and upper bound for multicast comple-
tion time

We consider a unit size message that can be arbitrar-
ily split in smaller parts to be multicast on the plat-
form. We denote by xj,k

i , ∀Pi ∈ Ptarget, ∀(Pj , Pk) ∈ E
the fraction of the message (of total size 1) from Psource

to Pi that transits on the edge between Pj and Pk. For
any node Pj , we denote by N out(Pj) (resp. N in(Pj))
the set of nodes Pk such that (Pj , Pk) ∈ E (resp.
(Pk, Pj) ∈ E).

5.1.1 Set of general constraints

In what follows, we give a set of linear constraints that
must be fulfilled by any solution.

• The first set of constraints states that the entire
message has been sent from Psource and has been
received at Pi:

(1) ∀i ∈ Ptarget,
∑

Pj∈N out(Psource)

xsource,j
i = 1

(2) ∀i ∈ Ptarget,
∑

Pj∈N in(Pi)

xj,i
i = 1

• The second set of constraints states a conservation
law at Pj , where Pj �= Psource and Pj �= Pi for the
messages sent to Pi:

(3)
∀j, Pj �= Psource and Pj �= Pi,∑

Pk∈N out(Pj)

xj,k
i =

∑
Pk∈N in(Pj)

xk,j
i

• The following set of constraints is related to the
architectural framework of the platform. Let nj,k

be the total fraction of packets that transit on the
communication link between Pj and Pk. Let us
suppose (until next section) that we know how to
compute nj,k. Therefore, the occupation time tj,k
of the link (Pj , Pk) is given by

(4) ∀(Pj , Pk) ∈ E, tj,k = nj,k × cj,k

4Proceedings of the 2004 International Conference on Parallel Processing (ICPP’04)

0190-3918/04 $20.00 © 2004 IEEE

We also need to write down the constraints stating
that communication ports for both incoming and
outgoing communications are not violated. The
occupation time of the ports for incoming (resp.
outgoing) communications will be denoted by t

(in)
j

(resp. t
(out)
j):

(5) ∀j, t
(in)
j =

∑
Pk∈N in(Pj)

tk,j

(6) ∀j, t
(out)
j =

∑
Pk∈N out(Pj)

tj,k

• The last set of constraint is related to the total
multicast time T ∗ for a unit size message. The
constraints simply state that T ∗ is larger than the
occupation time of any incoming or outgoing com-
munication port:

(7) ∀j, T ∗ � t
(in)
j

(8) ∀j, T ∗ � t
(out)
j

5.1.2 Total fraction of packets that transit on
a communication link

We have denoted by nj,k the total fraction of packets
that transit on the communication link between Pj and
Pk. We know that a fraction xj,k

i of the message sent
to Pi transit on this link. The main difficulty is that
the messages transiting on this link and sent to different
Pi’s may well be partly the same, since the same overall
message is sent to all the nodes in Ptarget. Therefore,
the constraint

(9) nj,k =
∑

Pi∈Ptarget

xj,k
i

that would hold true for a scatter operation, may be
too pessimistic, but provides an upper bound for the
completion time of the multicast. On the other hand, if
our aim is to find a lower bound for the completion time
of the multicast, we can make the optimistic assump-
tion, stating that all the messages transiting between
Pj and Pk are all sub-messages of the largest one, i.e.

(9’) nj,k = max
i∈Ptarget

xj,k
i

Therefore, the following linear program provides a
lower bound for the multicast time of an infinitely di-
visible message of unit size:

Multicast-LB(P ,Ptarget) : Minimize T ∗,
subject to Equations (1, 2, 3, 4, 5, 6, 7, 8, 9’)

and the following linear program provides an upper
bound for the multicast time of an infinitely divisible
message of unit size:

Multicast-UB(P ,Ptarget) : Minimize T ∗,
subject to Equations (1, 2, 3, 4, 5, 6, 7, 8, 9)

In the extended version of the paper [1], we show
that neither the upper bound nor the lower one are
tight, but we use the solution of the Multicast-
LB(P ,Ptarget) linear program in order to find an
heuristic that differs at most by a factor |Ptarget| from
the optimal solution, where |Ptarget| is the number of
targets in the platform.

5.1.3 Broadcast on the whole platform

Another simple heuristic consists in performing a
broadcast on the whole platform. Broadcast is a special
case of multicast where the set of target nodes is the
whole platform. Surprisingly, it has been proved that
the optimal throughput given by the linear program
Multicast-LB(P ,P) (denoted by Broadcast(P)) can
be achieved in this case. The construction of a schedule
achieving this throughput relies on non-trivial graph
theorems (weighted versions of Edmond’s and König’s
theorems), and will not be detailed here. The inter-
ested reader may refer to [2] to find the description of
such a schedule. The following set of inequalities holds
true:

Multicast-LB(P ,Ptarget) � Multicast-UB(P ,Ptarget)

Multicast-LB(P ,Ptarget) � Broadcast(P)

Multicast-LB(P ,Ptarget) � Multicast-UB(P ,Ptarget)
|Ptarget|

5.2. Refined Heuristics

In this section, we briefly present three different
heuristics based on the solutions given by Broad-
cast(P), Multicast-LB(P ,Ptarget) and Multicast-
UB(P ,Ptarget). The interested reader can find the for-
mal description of all heuristics in [1]. Since we know
how to build schedule from the solutions of Broad-
cast(P) and Multicast-UB(P ,Ptarget), the heuristics
that we propose are all based on those solutions, on re-
stricted or extended platforms.

5.2.1 Reduce-Broadcast

We start from Broadcast(P) and try to reduce the
broadcast platform. At each step of the algorithm, we

5Proceedings of the 2004 International Conference on Parallel Processing (ICPP’04)

0190-3918/04 $20.00 © 2004 IEEE

select the node whose contribution to the propagation
of the message in the lowest, that is the node with
the minimum

∑
i∈Ptarget

∑
Pj∈N in(Pm) xj,m

i in the solu-
tion of Broadcast(P). This node is discarded and we
compute the broadcast time on the remaining platform
graph P \ Pm. Note that in this new platform, there
may well be no path from Psource to a node in Ptarget.
In this case, we set Broadcast(P\Pm)= +∞. We stop
pruning the platform graph when no improvement in
the broadcast time can be found.

5.2.2 Augmented-Multicast

We start from Multicast-LB(P ,Ptarget) and aim at
extending the set of target nodes Ptarget until broad-
cast is possible on the platform consisting of the nodes
in Ptarget. At each step of the algorithm, we select
the node (not yet in Ptarget) whose contribution to the
propagation of the message is the largest. We stop
adding nodes to Ptarget as soon as no improvement can
be found.

5.2.3 Multisource-Multicast

The idea is to start from Multicast-UB(P ,Ptarget)
and to augment the number of sources without
changing the target nodes Ptarget. The linear pro-
gram MulticastMultiSource-UB(P ,Ptarget,Psource)
describes a multicast on the platform P , with the set of
target nodes Ptarget and the set of (ordered) interme-
diate sources Psource = {Ps0(= Psource), Ps1 , . . . , Psl

}.
In the linear program, xk,l

si,j
denotes the fraction of the

message sent to Pj , that was initially sent by source
Psi and transiting on the communication link between
Pk and Pl. We measure the occupation of commu-
nication links by summing up the different messages
transiting on this link (Equation (9), corresponding to
a scatter operation). Thus, it is possible to reconstruct
a schedule from the solution of the linear program that
achieves exactly the throughput given by the linear pro-
gram.

MulticastMultiSource-UB(P ,Ptarget,Psource) :
Minimize T ∗,
subject to


1, 2, 3, 9, 4, 5, 6, 7, 8, and
(1b) ∀i ∈ Ptarget \ Psource,∑

j<l

∑
Pk∈N out(Psj

) x
sj ,k
sj ,i = 1

(2b) ∀i ∈ Ptarget \ Psource,∑
j<l

∑
Pk∈N in(Pi)

xk,i
sj ,i = 1

(3b) ∀i, k, j � l Pk �= Psj and Pi,∑
Pl∈N in(Pk) xl,k

sj ,i =
∑

Pl∈N out(Pk) xk,l
sj ,i

.

We start with Psource = {Psource}. At each
step of the algorithm, we select the node Pm from
P \ Psource such that

∑
i∈Ptarget

∑
Pj∈N in(Pm) xj,m

i is
maximal in the solution of MulticastMultiSource-
UB(P ,Ptarget,Psource). Since the contribution of Pm to
the propagation of the message to the nodes of Ptarget is
large, we can expect that adding it to the set of sources
will decrease the multicast time. We stop adding new
sources when no improvement in the multicast time can
be found.

6. Tree-based heuristic

When targeting the problem of finding a good tree
to multicast a message in a network, the most common
goal is to optimize the resources consumed by the tree.
Usually, a cost is associated to each communication
link, and we aim at minimizing the cost of the multi-
cast tree, that is the sum of the cost of its edges. This
problem, called the Minimum Steiner Tree, is known
to be NP-complete [5]. Several heuristics have been
designed to approximate the solution of this problem,
but none for the Series of Multicasts problem. In-
deed, in this case, the goal is to build up a spanning
tree of minimal cost, containing all target nodes, where
the cost of a tree is the maximum sum, over all nodes
in the tree, of the cost of the outgoing edges of that
node. Indeed, for each node, the sum of the weights
of outgoing edges is the time needed to forward the
message to all its children.

A classical heuristic to build a minimum Steiner tree
is the Minimum Cost Path Heuristic (first introduced
in [9] and adapted to directed networks in [8]). In this
algorithm, a tree (consisting initially of the source node
of the multicast) grows until it spans all the multicast
target nodes: at each step, we determine which target is
the closest to the current tree, and we add the minimum
path from the current tree to this target into the new
tree.

From this heuristic designed for the Minimum
Steiner Tree problem, we can derive a heuristic to our
problem, although the metric is not the same. Con-
sider a platform graph G = (V, E, c) and a set of target
nodes Ptarget = {Pt1 , Pt2 , . . . , Pt|T |}. We denote the
multicast tree by Tree. The sketch of the algorithm is
given in Figure 2.

We first choose the target node which is the closest,
in the sense of our metric, to the current tree. This
node, and the path to reach it, will be added to the
tree. The only difficult part of the algorithm concerns
the update of the cost of the edges (lines 13,14). On the
resulting graph, the cost of any edge on the path from
the source to any already added target node is equal to

6Proceedings of the 2004 International Conference on Parallel Processing (ICPP’04)

0190-3918/04 $20.00 © 2004 IEEE

MINIMUM-TREE(P ,Ptarget)
1: c(i, j) ← ci,j ;
2: Tree ← ({Psource}, ∅);
3: while Ptarget �= ∅; do
4: NodeToAdd← ∅; path← ∅; cost← ∞;
5: for each node Pt ∈ Ptarget do
6: Compute the path P (Pt) from Tree to Pt

such that c(Pt) = max(i,j)∈P (Pt) c(i, j) is
minimal

7: if c(Pt) < cost then
8: NodeToAdd← Pt

9: path← P (Pt); cost← c(Pt);
10: Add P (Pt) and Pt to the tree;
11: Ptarget ← Ptarget \ Pt

12: for each edge (i, j) ∈ P (Pt) and all k such that
(i, k) ∈ E do

13: c(i, k) ← c(i, k) + c(i, j);
14: c(i, j) ← 0;

Figure 2. Tree-Based Heuristic

zero: for the selection of the next target, choosing edges
which have already been chosen in the multicast tree
of the message will not incur any additional cost, since
these edges already carry the message. To explain line
13, consider a graph where the path Psource → · · · →
Pi → Pj → · · · → Pt1 already belongs to the multicast
tree. Assume we want to add the new target Pt2 to
the multicast tree, using path Psource → · · · → Pi →
Pk → · · · → Pt2 . Since Psource, . . . , Pi already belong to
the multicast tree, there is no additional cost for using
the corresponding edges. However Pi already spends
c(i, j) units of time sending data to Pj , so that Pi needs
c(i, j)+c(i, k) units of time to send the message to both
nodes Pj and Pk. Thus, the potential cost induced by
the edge (i, k) must be updated as shown at line 13.

7. Experimental results

In this section, we compare the heuristics given in
this paper using simulations on ”realistic” topologies
generated by Tiers, a random topology generator [3].
We perform the experiments for several numbers of
nodes and targets. We use two types of configura-
tions, one “small” platform type with 30 nodes and a
“big” platform type with 65 nodes. For each type, 10
different platforms are generated using the same set
of parameters. These platforms are used to test our
heuristics with several densities of targets: the targets
are randomly selected among the nodes belonging to
the local area networks in the platforms. The results
are presented on Figure 3. On these graphs, the name

of the heuristics have the following meaning:

scatter This corresponds to the upper bound for the
multicast completion time, as if the messages sent
to each node were different. Figures 3(a) and 3(c)
present the ratio of the results of the heuristics
over this value.

lower bound This corresponds to the lower bound for
the multicast completion time, which is not always
achievable. Figures 3(b) and 3(d) present the ratio
of the results of the heuristics over this value.

broadcast This consists in broadcasting to the whole
platform, as described in Section 5.1.3.

MCPH The tree-based heuristic, adapted from the
Minimum Cost Path Heuristic, and described in
Figure 2.

Augm. MC, Red. MC and Multisource MC are
the LP based heuristics developed in Section 5

On Figure 3, we can see that the heuristics described
in this paper are much closer to the lower bound than
to the upper bound (scatter operation), except for the
first experiment in a small platform, where the target
nodes is reduced to one element. This is a very good
result since the lower bound is not even guaranteed to
be achievable.

The best results are given by the refined heuristics
based on linear programming: Augm. MC, Red. BC
and Multisource MC. However, the result of the tree-
based heuristic MCPH is very close to their result, and
its execution is shorter since it does not require to solve
linear programs.

Surprisingly, we also notice that the result of the
simple broadcast heuristic, included in our experi-
ments for the sake of the comparison, performs well
as soon as the density of targets among the local nodes
is greater than 20%. To explain these good results,
we recall that this heuristic does compute the opti-
mal throughput of a broadcast on the whole platform.
Moreover, the overall small size of the platform and
the distribution of the target nodes leads to a plat-
form graph such that there is almost one target node
in each Local Area Network. That is a reason why the
Broadcast heuristic performs so well in this specific
case.

8. Conclusion

In this paper, we have studied the problem of mul-
ticasting a series of messages on heterogeneous plat-
forms. Our major objective was to maximize the

7Proceedings of the 2004 International Conference on Parallel Processing (ICPP’04)

0190-3918/04 $20.00 © 2004 IEEE

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 0.2 0.4 0.6 0.8 1

ra
tio

 b
et

w
ee

n
pe

rio
ds

density of targets

scatter
lower bound

broadcast
MCPH

Augm. MC
Red. BC

Multisource MC

(a) Comparison with scatter on a small
platform

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 0 0.2 0.4 0.6 0.8 1

ra
tio

 b
et

w
ee

n
pe

rio
ds

density of targets

scatter
lower bound

broadcast
MCPH

Augm. MC
Red. BC

Multisource MC

(b) Comparison with the lower bound on a
small platform

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

ra
tio

 b
et

w
ee

n
pe

rio
ds

density of targets

scatter
lower bound

broadcast
MCPH

Augm. MC
Red. BC

Multisource MC

(c) Comparison with scatter on a big plat-
form

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 0 0.2 0.4 0.6 0.8 1

ra
tio

 b
et

w
ee

n
pe

rio
ds

density of targets

lower bound
broadcast

MCPH
Augm. MC

Red. BC
Multisource MC

(d) Comparison with the lower bound on a
big platform

Figure 3. Comparison on the heuristics

throughput that can be achieved in steady-state mode,
when a large number of same-size multicasts are ex-
ecuted in a pipeline fashion. Achieving the best
throughput may well require that the target platform
is used in totality: we have shown that using a single
spanning tree is not powerful enough. But the general
problem is very difficult: we have proved that deter-
mining the optimal throughput is a NP-complete prob-
lem. This negative result demonstrates that pipelining
multicasts is more difficult than pipelining broadcasts,
scatters or reduce operations, for which optimal poly-
nomial algorithms have been introduced [2, 6].

We have introduced several heuristics to solve the
pipelined multicast problem, most based on linear pro-
gramming, and one adapted from a Steiner tree heuris-
tic. These heuristics perform very well: there are close
to the theoretical lower bound.

References

[1] O. Beaumont, A. Legrand, L. Marchal, and Y. Robert.
Complexity results and heuristics for pipelined multi-
cast operations on heterogeneous platforms. Technical
report, LIP, ENS Lyon, France, Feb. 2004.

[2] O. Beaumont, A. Legrand, L. Marchal, and Y. Robert.
Pipelining broadcasts on heterogeneous platforms. In
International Parallel and Distributed Processing Sym-
posium IPDPS’2004. IEEE Computer Society Press,
2004. Extended version available as Research Report
of LIP, ENS Lyon, France, at www.ens-lyon.fr/LIP.

[3] K. L. Calvert, M. B. Doar, and E. W. Zegura. Mod-
eling internet topology. IEEE Communications Maga-
zine, 35(6):160–163, June 1997.

[4] C. Hanen and A. Munier. Cyclic scheduling on paral-
lel processors: an overview. In P. Chrétienne, E. G.
Coffman, J. K. Lenstra, and Z. Liu, editors, Schedul-
ing Theory and its Applications, pages 193–226. John
Wiley & Sons, 1994.

[5] R. M. Karp. Reducibility among combinatorial prob-
lems. In R. E. Miller and J. W. Thatcher, editors, Com-
plexity of Computer Computations, pages 85–103, NY,
1972. Plenum Press.

[6] A. Legrand, L. Marchal, and Y. Robert. Optimizing
the steady-state throughput of scatter and reduce op-
erations on heterogeneous platforms. In APDCM’2004,
6th Workshop on Advances in Parallel and Distributed
Computational Models. IEEE Computer Society Press,
2004.

[7] X. Lin and L. Ni. Multicast communication in multi-
computer networks. IEEE Trans. Parallel Distributed
Systems, 4(10):1105–1117, 1993.

[8] S. Ramanathan. Multicast tree generation in networks
with asymmetric links. IEEE/ACM Transactions on
Networking, 4(4):558–568, 1996.

[9] H. Takashami and A. Matsuyama. An approximate so-
lution for the steiner tree problem in graphs. Intl. J.
Math Educ. in Sci. and Technol., 14(1):15–23, 1983.

8Proceedings of the 2004 International Conference on Parallel Processing (ICPP’04)

0190-3918/04 $20.00 © 2004 IEEE

	footer1:

