
Centralized versus distributed schedulers
for multiple bag-of-task applications

Olivier Beaumont1, Larry Carter2, Jeanne Ferrante2,
Arnaud Legrand3, Loris Marchal4 and Yves Robert4

1Laboratoire LaBRI, 2Dept. of Computer Science and Engineering,
CNRS-INRIA Bordeaux, France University of California, San Diego, USA

Olivier.Beaumont@labri.fr {carter,ferrante}@cs.ucsd.edu
3Laboratoire ID-IMAG 4Laboratoire LIP

CNRS-INRIA,Grenoble, France CNRS-INRIA,École Normale Supérieure de Lyon, France
Arnaud.Legrand@imag.fr {Loris.Marchal,Yves.Robert}@ens-lyon.fr

Abstract

Multiple applications that execute concurrently on
heterogeneous platforms compete for CPU and network
resources. In this paper we consider the problem of
scheduling applications to ensure fair and efficient exe-
cution on a distributed network of processors. We limit
our study to the case where communication is restricted
to a tree embedded in the network, and the applica-
tions consist of a large number of independent tasks
that originate at the tree’s root. The tasks of a given
application all have the same computation and commu-
nication requirements, but these requirements can vary
for different applications. Each application is given a
weight that quantifies its relative value. The goal of
scheduling is to maximize throughput while executing
tasks from each application in the same ratio as their
weights.

We can find the optimal asymptotic rates by solving
a linear program that expresses all necessary problem
constraints, and we show how to construct a periodic
schedule. For single-level trees, the solution is charac-
terized by processing tasks with larger communication-
to-computation ratios at children with larger band-
widths. For multi-level trees, this approach requires
global knowledge of all application and platform pa-
rameters. For large-scale platforms, such global coor-
dination by a centralized scheduler may be unrealis-
tic. Thus, we also investigate decentralized schedulers
that use only local information at each participating
resource. We assess their performance via simulation,
and compare to a centralized solution obtained via lin-
ear programming. The best of our decentralized heuris-
tics achieves the same performance on about two-thirds
of our test cases, but is far worse in a few cases. While

our results are based on simplistic assumptions and do
not explore all parameters (such as buffer size), they
provide insight into the important question of fairly and
optimally co-scheduling heterogeneous applications on
heterogeneous grids.

1. Introduction

In this paper, we consider the problem of scheduling
multiple applications that are executed concurrently,
hence that compete for CPU and network resources.
The target computing platform is a heterogeneous net-
work of computers structured either as a star network
(a one-level rooted tree) or a multi-level rooted tree.
In both cases we assume full heterogeneity of the re-
sources, both for CPU speeds and link bandwidths.

Each application consists of a large collection of in-
dependent equal-sized tasks, and all tasks originate
at the tree’s root. The applications can be very dif-
ferent in nature, e.g. files to be processed, images
to be analyzed or matrices to be manipulated. Con-
sequently, we assume each application has an asso-
ciated communication-to-computation ratio for all of
its tasks. This ratio proves to be an important pa-
rameter in the scheduling process. This scenario is
somewhat similar to that addressed by existing sys-
tems. For instance BOINC [10] is a centralized sched-
uler that distributes tasks for participating applica-
tions, such as SETI@home, ClimatePrediction.NET,
and Einstein@Home.

The scheduling problem is to maintain a balanced
execution of all applications while using the compu-
tational and communication resources of the system
effectively to maximize throughput. For each applica-



tion, the root node must decide which workers (i.e.
which subtree) the tasks are sent to. For multi-level
trees, each non-leaf worker must make similar deci-
sions: which tasks to compute locally, and which to for-
ward to workers further down in the tree. The sched-
uler must also ensure a fair management of the re-
sources. If all tasks are equally important, the sched-
uler should aim to process the same number of tasks
for each application. We generalize this by allowing
each application Ak to be assigned a priority weight
w(k) that quantifies its relative value. For instance, if
w(1) = 3 and w(2) = 1, the scheduler should try to en-
sure that three tasks of A1 are executed for each task
of A2.

For each application Ak, let ν(k)(t) be the number
of tasks of Ak completed by time t. At any given time
t, we can define the throughput α(k) of application k
to be ν(k)(t)/t. To balance the tasks according to the
specified priority weights, we use the objective func-
tion Maximize mink

{
α(k)

w(k)

}
. This function, called fair

throughput in the following, corresponds to the well-
known MAX-MIN fairness strategy [7, 17] among the
different applications, with coefficients 1/w(k).

We will consider both centralized and decentralized
schedulers. For smaller platforms it may be realistic
to assume a centralized scheduler, which makes its de-
cisions based upon complete and reliable knowledge
of all application and platform parameters. With such
knowledge at our disposal, we are able to determine
an optimal schedule, i.e. a schedule that maximizes
the fair throughput asymptotically. This is done by
formulating all constraints into a linear programming
problem, and using the solution to construct a periodic
schedule. Except during the (fixed length) start-up and
clean-up periods no schedule can have higher through-
put. For single-level rooted trees, we provide an in-
teresting characterization of the optimal solution: ap-
plications with larger communication-to-computation
ratio should be processed by the workers with larger
bandwidths, independent of the communication-to-
computation ratios of the workers.

For large-scale platforms, particularly ones in which
resource availability changes over time, a centralized
scheduler may be undesirable. Only local information,
such as the current capacity (CPU speed and link
bandwidth) of a processor’s neighbors, is likely to be
available. One major goal of this paper is to investi-
gate whether decentralized scheduling algorithms can
reach optimal throughput, or at least achieve a sig-
nificant fraction of it. We provide several decentral-
ized heuristics that rely exclusively on local informa-
tion to make scheduling decisions. The key underlying
principles of these heuristics come from our character-
ization of the optimal solution for star networks: give
priority to high-bandwidth children, and assign them

tasks of larger communication-to-computation ratios.
We evaluate the decentralized heuristics through ex-
tensive simulations using SimGrid [16], and use a cen-
tralized algorithm (guided by the linear program solu-
tion) as a reference basis.

The rest of the paper is organized as follows. In Sec-
tion 2, we state precisely the scheduling problem un-
der consideration, with all application and platform
parameters, and the objective function used. Section 3
explains how to analytically compute the best solu-
tion, using a linear programming approach, and char-
acterizes the solution for single-level trees. Then Sec-
tion 4 deals with the design of several decentralized
scheduling heuristics, while Section 5 provides an ex-
perimental comparison of these heuristics. Finally, we
state some concluding remarks in Section 6.1

2. Platform and Application Model

In this paper, we make a number of overly simplis-
tic assumptions; nevertheless, we believe that both by
the theory and the experiments provide insight into the
important question of how to optimally and fairly co-
schedule heterogeneous applications on heterogeneous
grids.

2.1. Platform Model

The target computing platform is either a single-
level tree (also called a star network) or an arbitrary
tree. The processor at the root of the tree is denoted P0.
There are p additional “worker nodes”, P1, P2, . . . , Pp;
each worker Pu has a single parent Pp(u), and the
link between Pu and its parent has bandwidth bu. We
assume a linear-cost communication model, hence it
takes X/bu time units to send a message of size X
from Pp(u) to Pu. We ignore processor-task affinities;
instead, we assume one can express the computational
requirements of tasks as a number of floating-point op-
erations, and that processor Pu can execute cu floating-
point operations per second (independent of which ap-
plication it is executing).

There are several scenarios for the operation of the
processors, which are discussed in Section A3 of the
Appendix. In this paper, we concentrate on the full
overlap, single-port model [8, 9]. In this model, a pro-
cessor node can simultaneously receive data from one
of its neighbors, perform some (independent) compu-
tation, and send data to one of its neighbors. At any
given time, there are at most two communications in-
volving a given processor, one sent and the other re-
ceived.

1 Due to lack of space, we do not provide related work in this
article but a thorough survey can be found in the extended
version of this article [?].



2.2. Application Model

We consider K applications, Ak, 1 6 k 6 K. The
root node P0 initially holds all the input data neces-
sary for each application Ak. Each application has a
priority weight w(k) as described earlier. Each appli-
cation is composed of a set of independent, same-size
tasks. We can think of each Ak as bag of tasks, and
the tasks are files that require some processing. A task
of application Ak is called a task of type k. We let c(k)

be the amount of computation (in floating point op-
erations) required to process a task of type k. Simi-
larly, b(k) is the size (in bytes) of (the file associated
to) a task of type k. We assume that the only commu-
nication required is outwards from the root, i.e. that
the amount of data returned by the worker is negligi-
ble. Our results are equally applicable to the scenario in
which the input to each task is negligible but the out-
put is large. The communication-to-computation ratio
of tasks of type k is defined as b(k)/c(k).

Note that our notations use indices for platform re-
sources (bandwidth bu, CPU speed cu) and exponents
for application parameters (bytes b(k), floating-point
operations c(k), weight w(k)).

.

2.3. Objective Function

If each application had an unlimited supply of tasks,
our objective function would be

Maximize lim
t→∞

min
k

{
ν(k)(t)
w(k) · t

}
(1)

where ν(k)(t) is the number of tasks of application
Ak completed by time t. However, we can do better
than studying asymptotic behavior. Following stan-
dard practice, we optimize the “steady-state through-
put”, i.e.

Maximize min
k

{
α(k)

w(k)

}
. (2)

where α(k) is the average number of tasks of Ak ex-
ecuted per time unit. There are two features of this
approach. First, if we can derive an upper bound on
the steady-state throughput for arbitrarily long peri-
ods, then this is an upper bound on the limit of for-
mula (1). Second, if we construct a periodic schedule
– one that begins and ends in exactly the same state
– then the periodic schedule’s throughput will be a
lower bound on the limit of formula (1). Thus, this ap-
proach allows us to derive optimal results. When the
number of tasks per application is large, we believe
the advantage of avoiding the NP-completeness of the

makespan optimization problem outweighs the disad-
vantage of not knowing the exact length of the start-up
and clean-up phases of a finite schedule.

3. Computing the Optimal Solution

In this section, we show how to compute the opti-
mal throughput, using a linear programming formula-
tion. For star networks we give a nice characterization
of the solution, which will guide the design of some
heuristics in Section 4.

3.1. Linear Programming Solution

A summary of our notation follows:

- P0 is the root processor and Pp(u) is the parent of
node Pu for u 6= 0.

- Γ(u) is the set of indices of the children of node Pu.

- Node Pu can compute cu floating-point operations
per time unit, and, if u 6= 0, can receive bu bytes
from its parent Pp(u).

- Application k has weight w(k), and each task of type
k involves b(k) bytes and c(k) floating-point opera-
tions.

We use linear programming to solve for the variables:

- α
(k)
u , the number of tasks of type k executed by Pu

each time unit.

- α(k), the total number of tasks of type k executed
per time unit.

- sent(k)
u→v, the number of tasks of type k received by

Pv from Pp(v) per time unit.

Any feasible schedule must be a solution to the linear
programming problem:

Maximize mink

{
α(k)

w(k)

}
under the constraints

∀k,
∑

u α
(k)
u = α(k) (definition of α(k))

∀k,∀u 6= 0, sent(k)
p(u)→u = α

(k)
u +

∑
v∈Γ(u) sent(k)

u→v

(data movement conservation)
∀u,

∑
k α

(k)
u · c(k) 6 cu

(computation limit at node Pu)

∀u,
∑

v∈Γ(u)

P
k sent(k)

u→v·b
(k)

bv
6 1

(communication limit out of Pu)
∀k, u α

(k)
u > 0 and sent(k)

u→v > 0
(non-negativity)

(3)
We assume that all the parameters to the linear pro-

gramming problem are rational numbers, and hence
the solution will be rational also.



3.2. Reconstructing a Periodic Schedule

Suppose we have solved linear program (3). The con-
ditions in the linear program deal with steady state be-
havior, but it may not be immediately obvious that
there exists a valid schedule, where precedence con-
straints are satisfied (i.e. a task is processed on a pro-
cessor only when the corresponding input file has been
routed to this processor), that achieves the desired
throughput. Nevertheless, suppose we have determined
all the values α

(k)
u , and sent(k)

u→v. Define the time pe-
riod Tperiod to be the least common multiple of the
denominators of these rational numbers. Thus, in one
time period, there will be an integral number of tasks
sent over each link and executed by each node. We give
each node sufficient buffer space to hold twice the num-
ber of tasks it receives per time period. Each task it
receives in period i will, in period i+1, either be com-
puted locally or sent to a child. Since each node receives
tasks from only one other node (its parent), there is
no concern with scheduling the receives to avoid con-
flicts. Further, each node is free to schedule its sends
arbitrarily within a time period. Thus, this schedule
is substantially easier than if the processors were con-
nected as an arbitrary graph (c.f. [3]).

A node at depth d doesn’t receive any tasks dur-
ing the first d − 1 time periods, so will only enter
“steady state mode” in time period d. Similarly, the
root will eventually run out of tasks to send, so the final
time periods will also be different. It is often possible
to improve the schedule in the start-up and clean-up
time periods, which is the concern of the NP-complete
makespan minimization problem. However, the peri-
odic schedule described above is asymptotically opti-
mal. More precisely, let z be the number of tasks exe-
cuted by the periodic schedule in steady state during
d time periods, where d is the maximum depth of any
node that executes a positive number of tasks. Then
our schedule will execute at most z fewer tasks than
any possible (not necessarily periodic) schedule.

One final comment is that the time period Tperiod,
and the amount of buffer space used, can be extraordi-
narily large, making this schedule impractical. We will
revisit this issue later.

3.3. The Optimal Solution for Star Net-
works

When the computer platform is a star net-
work, we can prove the optimal solution has a
very particular structure: Informally, each appli-
cation is executed by a slice of consecutive nodes.
The application with the highest communication-to-
computation ratio is executed by a first slice of pro-
cessors, those with largest bandwidths. Then the
next most communication-intensive application is ex-

ecuted by the next slice of processors, and so on.
There is a possible overlap between the slices. For in-
stance Pa1 , the processor at the boundary of the
first two slices, may execute tasks for both applica-
tions A1 and A2.

To simplify notations in the following proposition,
we consider the root P0 as a worker with infinite band-
width (b0 = +∞):

Proposition 1. Sort the nodes by bandwidth
so that b0 > b1 . . . > bp, and sort the applica-
tions by communication-to-computation ratio so
that b(1)

c(1) > b(2)

c(2) . . . > b(K)

c(K) . Then there exist in-
dices a0 6 a1 . . . 6 aK such that only processors Pu,
u ∈ [ak−1, ak], execute tasks of type k in the opti-
mal solution.

Proof. The essential idea is to show that if a node
Pi is assigned a task with a lower communication-to-
computation ratio than a task assigned to Pi+1, then
these two nodes could swap an equal amount of com-
putational work. This would reduce the communica-
tion time required by the schedule without changing
any throughputs. Thus, by a sequence of such swaps,
any schedule can be transformed to one of the desired
structure, without changing the fair throughput. See
the Appendix A1 for a detailed proof.

We did not succeed in deriving a counterpart of
Proposition 1 for tree-shaped platforms. Intuitively,
the problem is that a high-bandwidth child of node
Pi can itself have a low-bandwidth, high-compute-rate
child, so there is no a priori reason to give Pi only
communication-intensive tasks. Still, we use the intu-
ition provided by Proposition 1 and its proof to design
the heuristic of Section 4.5.

4. Demand-driven and Decentralized
Heuristics

As shown in Section 3.1, given a tree-shaped plat-
form and the set of all application parameters, we are
able to compute an optimal periodic schedule. This
approach suffers from several serious drawbacks. The
first is that the period of the schedule is the least com-
mon multiple of the denominators of the solution of
linear program (3). This period may be huge, requir-
ing the nodes to have unreasonably large buffers to en-
sure uninterrupted steady-state behavior. The problem
of buffer size has already been pointed out in [11, 6],
where it is shown that no finite amount of buffer space
is sufficient for every tree. It is also known that finding
the optimal throughput when buffer sizes are bounded
is a strongly NP-hard problem even in very simple sit-
uations [6].

Since unlimited buffer space is unrealistic, we
will only consider demand-driven algorithms. Each



node has a worker thread and a scheduler thread.
The worker thread is an infinite loop that re-
quests a task from the same node’s scheduler thread
and then, upon receiving a task, executes it. Fig-
ure 1 shows the pseudo-code for the scheduler thread.
Note that line 2 says when there’s room, the sched-
uler requests work from its parent. Because a request
for work doesn’t specify the type of the applica-
tion, there must be enough room for any type task
even after all previous outstanding requests are sat-
isfied with tasks of the largest type. The “select”
choices in line 5 depend on the particular heuris-
tic used, and can be based on, for instance, the his-
tory of requests and task types it has received and
the communication times it has observed for its chil-
dren.

1: Loop
2: If there will be room in your buffer, request work

from parent.
3: Get incoming requests from your local worker and

children, if any.
4: Move incoming tasks from your parent, if any, into

your buffer.
5: Select which thread (your worker or a child’s sched-

uler) to assign work to and the type of application
that will be assigned.

6: If you have a task and a request that match your
choice Then

7: Send the task to the chosen thread (when the
send port is free)

8: Else
9: Wait for a request or a task

Figure 1. Demand-driven scheduler thread, run
in each node

A second problem that some schedulers (including
the one of Section 3.2) encounter is that centralized co-
ordination may become an issue when the size of the
platform grows beyond a certain point. It may be hard
to collect up-to-date information and disseminate it to
all nodes in the system. Consequently, a decentralized
scheduling algorithm, where all choices are based ex-
clusively on locally available information, is desirable.

In the following we consider one demand-driven al-
gorithm that is based on global information (the so-
lution to the linear programming problem), and four
that are decentralized.

4.1. Centralized LP-based (LP)

If we know the computation power and communi-
cation speeds of all nodes in the distributed system,

we can solve the linear programming problem (3.1)
and tell each node the number of tasks of each type it
should assign to each of its children each time period.
Thereafter, no further global communication is re-
quired. Each scheduler thread uses a 1D load-balancing
mechanism [4] to select a requesting thread and an ap-
plication type.

The 1D load-balancing mechanism works as follows:
if choice i should be made with frequency f(i), and has
already been made g(i) times, then the next task to be
sent will be of type `, where g(`)+1

f(`) = mink
g(k)+1

f(k) .
We might hope the LP heuristic would always con-

verge to the optimal throughput, but we will see in
Section 5.2.1 that it may not, primarily because of in-
sufficient buffer space.

4.2. First Come First Served (FCFS)

The FCFS heuristic is a very simple and common
decentralized heuristic. Each scheduler thread simply
fulfills its requests on a First Come First Served ba-
sis, using the tasks it receives in order from its par-
ent. The root ensures fairness by selecting task types
using the 1D load-balancing mechanism with frequen-
cies given by the applications’ priority weights w(k).
This simple heuristic has the disadvantage, not shared
by the other methods we consider, that an extremely
slow communication link cannot be avoided. Thus, op-
timal performance should not be expected.

4.3. Coarse-Grain Bandwidth-Centric
(CGBC )

This heuristic (CGBC ) builds upon our previous
work for scheduling a single application on a tree
shaped platform [5, 3]. In bandwidth-centric schedul-
ing, each node only needs to know the bandwidth to
each of its children. The node’s own worker thread
is considered to be a child with infinite bandwidth.
The scheduler thread prioritizes its children in order
of bandwidth, so the greatest bandwidth has high-
est priority. The scheduler always assigns tasks to
the the highest-priority requester. Bandwidth-centric
scheduling has been shown to have optimal steady-
state throughput, both theoretically and, when the
buffers are sufficiently large, in extensive simulations.

The idea of the coarse-grain heuristic is to assem-
ble several tasks into a large one. More precisely, we
build a macro-task out of w(k) tasks of type k, for each
k. These are the units that are scheduled using the
bandwidth-centric method. Thus, fairness is assured.

Unfortunately, even though bandwidth-centric
scheduling can give optimal throughput of macro-
tasks, the CGBC heuristic does not reach the opti-
mal fair throughput. Indeed, Proposition 1 asserts that
nodes with faster incoming links should process only



tasks with larger communication-to-computation ra-
tios. But since a macro-task includes tasks of all types,
CGBC will send communication-intensive tasks to
some low-bandwidth nodes.

4.4. Parallel Bandwidth-Centric (PBC )

The parallel bandwidth-centric heuristic (PBC ) su-
perposes bandwidth-centric trees for each type of task,
running all of them in parallel. More precisely, each
node has K scheduler and K worker threads that
run concurrently, corresponding to the K application
types. Threads only communicate with other threads of
their own type. Fairness is ensured by the root, which
allocates tasks to its separate schedulers in the desired
ratios.

In all our simulations, we enforce the one-port con-
straint for each scheduler thread. But for this PBC
heuristic, we have not enforced the constraint globally
across the schedulers. Thus, it is possible that a node
will send as many as K tasks concurrently, one of each
type. In this case, we do model the contention on the
port, so the aggregate bandwidth doesn’t exceed the
port’s limit. (Similarly, the node’s processor can multi-
task between multiple tasks.) This gives the PBC strat-
egy an unfair advantage over the other heuristics. In
fact, it has been shown [11] that allowing interruptible
communication (which is similar to concurrent com-
munication) dramatically reduces the amount of buffer
space needed to achieve optimal throughput.

4.5. Data-Centric Scheduling (DATA-
CENTRIC )

This heuristic is our best attempt to design a de-
centralized demand-driven algorithm that converges to
the a solution of the linear program (3). The idea
is to start from the bandwidth-centric solution for
the most communication-intensive application and to
progressively replace some of these tasks for more
computation-intensive ones. Doing so, we come up with
better values for the expected α

(k)
u and the expected

sent(k)
u→v, which can in turn be used in the demand-

driven algorithm of the Figure 1. These frequencies are
continuously recomputed so as to cope with potential
availability variations. The rest of this subsection is de-
voted to details of the trading operations.

We sort the task types by non-increasing
communication-to-computation ratios. We start
the algorithm using the pure bandwidth-centric ap-
proach for tasks of type 1, but as the computation pro-
ceeds, a node will find itself receiving a mix of different
types of tasks. To reduce the imbalance, the root ap-
plies the four operations described below, in the listed
order of precedence. In the following, A (resp. B) de-
notes the application that currently has the highest

(resp. lowest) weighted throughput relative to the tar-
get. Those operations attempt to increase the number
of tasks of type B that are assigned, sometimes by re-
ducing the number of A’s.2

Communication Trading Suppose A has a higher
communication-to-computation ratio than B, which is
the common case since we start with only tasks of type
1. Then if a child reports that it is not fully utilized (ei-
ther because its CPU is idle or because it can’t keep
up with the requests it receives from the grandchil-
dren) then the parent can substitute some tasks of type
A for type B (i.e. send some tasks of type B instead of
tasks of type B to his under-utilized child). It should
make the substitution in a way that keeps the commu-
nication time the same (i.e. trading them in the ratio
of b(B)’s A’s for b(A) B’s), and limited by the num-
ber that would make the weighted throughputs equal.

Gap filling Suppose that some bandwidth is not used
and that a remote processor Pu could receive more
tasks of an unfavored application.

u

+εB

p(i)

i

Let εB denote the number of
tasks of type B that this pro-
cessor could handle. If we de-
note by CPU the CPU occupa-
tion of processor Pu, we have:
CPU =

∑
k

α(k)
u .c(k)

cu
, and the fol-

lowing condition on εB has to hold
true: CPU + εB

c(B)

cu
6 1. We also

need to verify that there is enough
free bandwidth along the path
from the root node to Pu. There-
fore for any node i along this path, we need the
following condition on εB to hold true:

∑
k

∑
j

sent(k)
p(i)→j .b

(k)

bj︸ ︷︷ ︸
bus occupation(p(i))

+εB
b(B)

bi
6 1

Lastly, to avoid over-reducing the imbalance between
α(A) and α(B), we add the following constraint: α(A) >
α(B) − εB . Therefore, we have:

εB = min

cu(1− CPU )
c(B)

, α(B) − α(A),

min
i ∈ path from
the root to Pu

(
1− bus occupation(p(i))

b(B)
.bi

)

2 In the following, we suppose without loss of generality that
application characteristics have been scaled so that they all
have the same priority weight.



Bus de-saturation The
bus may have been sat-
urated by tasks with a
high communication-to-
computation ratio. We
may then still be us-
ing only workers with
high communication capacity. In such a situa-
tion, the tree has to be widened (i.e. use additional
subtrees) and the only way to do that is to re-
duce the amount of tasks of type A that are pro-
cessed by the subtrees. The α

(A)
i and sent(A)

i→j

values of any node of the branch with the small-
est bandwidth that process some tasks of type A
are then scaled down by a factor of 0.9. This op-
eration allows us to decrease the communication
resource utilization and precedes “Gap filling” opera-
tions.

Task trading on the root At some point (when ap-
plication A is processed only on the root node) we
may have no choice but to trade εA tasks of type A
for εB tasks of type B. Then we will have the follow-
ing constraints: εA 6 α

(A)
0 , α(A)− εA > α(B) + εB and

εB . c(B)

c0
= εA. c(A)

c0
. Therefore, we have

εA = min

(
α

(A)
root,

α(A) − α(B)

1 + b(A)

b(B)

)
and εB =

c(A)

c(B)
εA

The above operations are continuously performed
(with the listed order of precedence) until we reach a
satisfying balance, such as

maxk

{
α(k)

w(k)

}
−mink

{
α(k)

w(k)

}
mink

{
α(k)

w(k)

} < 0.05.

The above operations may appear as needing a
global knowledge. For example, it may seem at first
sight that when performing a “Gap filling” operation,
the master needs to know all informations on the the
path connecting him to its remote descendant Pu. How-
ever, this operation in fact simply amount to compute
a minimum along this path which can easily (and ef-
ficiently) be done by using a distributed propagation
mechanism along this path, thus making the need of
the master to know Pu irrelevant. The same kind of
technique can be used for all other operations as they
only imply descendants in a single subtree.

5. Simulation Results

5.1. Evaluation methodology

5.1.1. Throughput evaluation It is not at all ob-
vious how to determine that a computation has entered

steady-state behavior, and measuring throughput be-
comes even trickier when the schedule is not periodic.
We took a pragmatic, heuristic approach for our exper-
iments. Let T denote the earliest time that all tasks of
some application were completed. Let Nk(t) denote the
number of tasks of type k that were finished in time pe-
riod [0, t]. We can then define the achieved throughput
ρk for application k by:

ρk =
Nk((1− ε)T )−Nk(εT )

(1− 2ε)T
, where 0 ≤ ε <, 0.5.

The ε is an artifact that lets us ignore the initial and
final instabilities (in practice, we set ε to be equal to
0.1). In the following, we will refer to ρk as the ex-
perimental throughput of application k as opposed to
the expected throughput that can be computed solv-
ing linear program (3). Likewise, the minimum of the
weighted experimental throughputs is called the exper-
imental fair throughput.

5.1.2. Platform generation The platforms used in
our experiments are random trees described by two pa-
rameters: the number of nodes n and the maximum de-
gree degreemax. To generate the interconnection net-
work topology, we use a breadth-first algorithm (see
Appendix A2 for more details) in order to have wide
trees rather than filiform (deep and narrow) ones. In
our experiments, we generated trees of 5, 10, 20, 50 and
100 nodes. The maximum degree was 2, 5, or 15, and
10 trees of each configuration were generated. Thus,
our test set comprised 150 trees in total.

Then we assign typical capacity, latency and CPU
power values on edges and nodes at random. Those
values come from real measurements performed, using
tools like pathchar, on machines spread across the In-
ternet. CPU power ranged from 22.151 Mflops (an old
Pentium Pro 200MHz) to 171.667 Mflops (an Athlon
1800). Bandwidth ranged from 110 kb/s to 7 Mb/s and
latency from 6 ms to 10 s. Note that in the simulator
that we are using (see Section 5.1.4), latency is a lim-
iting factor as well as the link capacity for determining
the effective bandwidth of a connection.

5.1.3. Application generation An application
is mainly characterized by its communication-to-
computation ratio (CCR). We decide that the smallest
reasonable CCR was CCRmin = 0.001, which cor-
responds to the computation-intensive task of
multiplying two 3500 × 3500 matrices. We also de-
cided on an upper bound for CCR of 4.6, corre-
sponding to the addition of two such matrices. In
choosing application types, we chose CCRmax be-
tween 0.002 and 4.6, and then chose the appli-
cations’ CCR’s to be evenly spaced in the range
[CCRmin,CCRmax]. For simplicity, we made all prior-
ity weights be 1.



5.1.4. Heuristic implementation The experi-
ments were performed using the SimGrid simula-
tor [16]. The simulator’s performance is much more
complex than the simplistic bandwidth and compu-
tational speed model used to design our heuristics.
Therefore, the values of ci and bi values were mea-
sured from within the simulator and used to make the
decisions in the algorithms of Section 4.

As explained in section 4.5, the demand-driven al-
gorithms send requests (involving a few bytes) from
children to parents. Our simulations included the re-
quest mechanism, and we ensured that no deadlock
occurred in our thousands of experiments, even when
some load-variations occurred. Except where other-
wise noted, throughput evaluations were performed us-
ing 200 tasks per application. Note, that we carefully
checked using a larger number of tasks that this was al-
ways sufficient to reach the steady-state.

0

0.02

0.04

0.06

0.08

0.1

0.12

0 0.2 0.4 0.6 0.8 1

F
re

q
u
en

cy

Deviation from theoretical throughput

Figure 2. Deviation of experimental fair
throughput from expected theoretical through-
put

5.2. Case study

5.2.1. Theoretical versus observed throughput
For the heuristics LP , DATA-CENTRIC and CGBC ,

we can easily compute an expected theoretical fair
throughput. This allowed us to explore how implemen-
tation issues result in the experimental fair throughput
differing from the expected theoretical fair throughput.

There are many reasons that the decentral-
ized scheduling might have a smaller fair through-
put than the corresponding theoretical one, such as the
overhead of the request mechanism or a startup peri-
ods longer than the 10% we allowed for. It turned out
that the major cause of inefficiency was the limit on
the buffer size.

In general, our experiments assumed enough buffer
space to hold 10 tasks of any type. In this case, Fig-
ure 2 depicts the experimental fair throughput de-
viation from the expected theoretical throughput for

heuristics CGBC , LP and DATA-CENTRIC . All three
heuristics exhibited a similar distribution, so they were
combined in this figure. The average deviation is equal
to 9.426%. However, when we increased the buffer size
by a factor ten (and increased the number of tasks
per application to 2000), the mean average deviation
dropped to 0.334%.

Even though the larger buffer size led to much bet-
ter throughput, we considered it unrealistic, and used
size 10 in all other experiments.

5.2.2. Performance of Heuristics Let us first
compare the relative performances of our five heuristics
(FCFS , PBC , CGBC , LP and DATA-CENTRIC ).
More precisely, for each experimental setting (i.e. a
given platform and a given CCR interval), we com-
pute the (neperian) logarithm of the ratio of the
experimental fair throughput of LP with the ex-
perimental fair throughput of a given heuristic
(applying a logarithm enables us to have a sym-
metrical value). Therefore, a positive value means
that LP performed better than the other heuris-
tic. Figure 3 depicts the histogram plots of these
values.

First of all, we can see that most values are positive,
which illustrates the superiority of LP . Next, we can
see on Figure 3(a) that DATA-CENTRIC is very close
to LP most of the time, despite the distributed com-
putation of the weights. However, the geometric aver-
age3 of these ratios is equal to 1.164, which is slightly
larger than the geometric average for CGBC (1.156).
The reason is that even though in most settings DATA-
CENTRIC ends up with a very good solution, in a few
instances its performance was very bad (up to 16 times
worse than LP). In contrast, CGBC (see Figure 3(d))
is much more stable since its worst performance is only
two times worse than LP . Note that those failures hap-
pen on any type of tree (small or large, filiform or wide)
and that the geometric average of these two heuris-
tics are always very close to each other. We also have
checked that these failures are not due to an artifact of
the decentralized control of the scheduling by ensuring
that the theoretical throughput has the same behavior
(i.e. the bad behavior actually comes from the compu-
tation of the expected α

(k)
u and sent(k)

u→v). We are still
investigating the reasons why DATA-CENTRIC fails
on some instances and suspect that it is due to the
use of the sometimes misleading intuition of Proposi-
tion 1. Indeed, in this heuristic, applications with a low
communication-to-computation ratio are mainly per-
formed on the rightmost part of the tree while applica-

3 It is a well-known fact [15] that arithmetic average of ratios
can lead to contradictory conclusions when changing the ref-
erence point. Therefore, we use a geometric average of ratios
which is known to be closer to the general idea of average ra-
tio.



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

-2 0 2 4 6 8

F
re

qu
en

cy

Log(deviation from LP heuristic)

DATA-CENTRIC

0

0.01

0.02

0.03

0.04

0.05

0 0.5 1 1.5 2 2.5 3

(a) Performances of DATA-CENTRIC

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

-2 0 2 4 6 8

F
re

qu
en

cy

Log(deviation from LP heuristic)

FCFS

0

0.01

0.02

0.03

0.04

0.05

0 0.5 1 1.5 2 2.5 3

(b) Performances of FCFS

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

-2 0 2 4 6 8

F
re

qu
en

cy

Log(deviation from LP heuristic)

PBC

0

0.01

0.02

0.03

0.04

0.05

0 0.5 1 1.5 2 2.5 3

(c) Performances of PBC

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

-2 0 2 4 6 8

F
re

qu
en

cy

Log(deviation from LP heuristic)

CGBC

0

0.01

0.02

0.03

0.04

0.05

0 0.5 1 1.5 2 2.5 3

(d) Performances of CGBC

Figure 3. Logarithm of the deviation from LP performances.

tions with a high communication-to-computation are
mainly performed on the leftmost part, which is defi-
nitely not optimal on particular instances.

Unsurprisingly, PBC leads to very bad results. In
many situations (more than 35%), an application has
been particularly unfavored and the fair experimental
throughput was close to 0. The logarithm of the de-
viation for these situations has been normalized to 8.
These poor results advocate the need for fairness guar-
antees in distributed computing environments like the
ones we consider.

Lastly, the geometrical average of FCFS is 1.564
and in the worst case, its performance is more than 8
times worse than LP . On the average, FCFS is there-
fore much worse than LP . On small platforms, the per-
formances for FCFS and CGBC have the same order
of magnitude. However, on larger ones (size 50 and
100), CGBC performs much better (geometrical aver-
age equal to 1.243) than FCFS (geometrical average
equal to 2.0399).

6. Conclusion

In this paper, we present several heuristics for
scheduling multiple applications on a tree-connected

platform made of heterogeneous processing and com-
munication resources.

Our contributions to this problem are the following:

• We first presented a centralized algorithm which,
given the performances of all resources, computes
an optimal schedule with respect to throughput
maximization. We also have characterized a sim-
ple way of computing the optimal solution on
single-level trees.

• However, on general platforms the centralized al-
gorithm requires gathering information about the
platform at a single location, which may be unre-
alistic for large-scale distributed systems, partic-
ularly when these parameters (bandwidths, pro-
cessing power) may be constantly changing. Fur-
thermore, the optimal schedule may require to
have an arbitrary large number of buffers and may
induce very large latencies. We have therefore
concentrated on distributed algorithms and de-
signed several decentralized heuristics using only
a limited number of buffers.

• We have evaluated the efficacy of these heuris-
tics using a wide range of realistic simulation sce-
narios. The results obtained by the most sophis-



ticated heuristics are quite reasonable compared
to the optimal centralized algorithm.

Thus far, the best solutions rely on an explicit-rate
calculation (using either a global centralized linear-
based approach or a fully-distributed approach like in
DATA-CENTRIC ). It is a well-known fact in the net-
work community [17] that max-min fairness is gen-
erally achieved by explicit-rate calculation (e.g. in
ATM networks) and rather hard to achieve in a fully-
decentralized fashion. Yet, fully distributed algorithms
are known to realize other kind of fairness (e.g. pro-
portional fairness for some variants of TCP). Adapt-
ing such algorithms to our framework is however really
challenging as both communications and computations
are involved. A promising approach would be to adapt
the decentralized multi-commodity flow of Awerbuch
and Leighton [1, 2] to our framework.

Last, as we have seen with the PBC heuristic, non-
cooperative approaches where each application opti-
mizes its own throughput lead to a particularly unfair
Nash equilibrium [18, 12]. An other approach could be
a cooperative approach where several decision makers
(each of them being responsible for a given applica-
tion) cooperate in making the decisions such that each
of them will operate at its optimum. This situation
can be modeled as a cooperative game like in [14, 13].
However in our situation, hierarchical resource shar-
ing is rather hard to model, which renders such an ap-
proach quite challenging.

References

[1] B. Awerbuch and T. Leighton. A simple local-control
approximation algorithm for multicommodity flow.
In FOCS ’93: Proceedings of the 24th Conference
on Foundations of Computer Science, pages 459–468.
IEEE Computer Society Press, 1993.

[2] B. Awerbuch and T. Leighton. Improved approxima-
tion algorithms for the multi-commodity flow problem
and local competitive routing in dynamic networks. In
STOC ’94: Proceedings of the 26h ACM symposium
on Theory of Computing, pages 487–496. ACM Press,
1994.

[3] C. Banino, O. Beaumont, L. Carter, J. Ferrante,
A. Legrand, and Y. Robert. Scheduling strategies
for master-slave tasking on heterogeneous processor
platforms. IEEE Trans. Parallel Distributed Systems,
15(4):319–330, 2004.

[4] O. Beaumont, V. Boudet, A. Petitet, F. Rastello,
and Y. Robert. A proposal for a heterogeneous clus-
ter ScaLAPACK (dense linear solvers). IEEE Trans.
Computers, 50(10):1052–1070, 2001.

[5] O. Beaumont, L. Carter, J. Ferrante, A. Legrand, and
Y. Robert. Bandwidth-centric allocation of indepen-
dent tasks on heterogeneous platforms. In Interna-
tional Parallel and Distributed Processing Symposium
(IPDPS’2002). IEEE Computer Society Press, 2002.

[6] O. Beaumont, A. Legrand, L. Marchal, and Y. Robert.
Independent and divisible tasks scheduling on hetero-
geneous star-schaped platforms with limited memory.
In PDP’2005, 13th Euromicro Workshop on Parallel,
Distributed and Network-based Processing, pages 179–
186. IEEE Computer Society Press, 2005.

[7] D. Bertsekas and R. Gallager. Data Networks. Pren-
tice Hall, 1987.

[8] P. Bhat, C. Raghavendra, and V. Prasanna. Efficient
collective communication in distributed heterogeneous
systems. In ICDCS’99 19th International Conference
on Distributed Computing Systems, pages 15–24. IEEE
Computer Society Press, 1999.

[9] P. Bhat, C. Raghavendra, and V. Prasanna. Efficient
collective communication in distributed heterogeneous
systems. Journal of Parallel and Distributed Comput-
ing, 63:251–263, 2003.

[10] Berkeley Open Infrastructure for Network Comput-
ing. http://boinc.berkeley.edu.

[11] L. Carter, H. Casanova, J. Ferrante, and B. Kreaseck.
Autonomous protocols for bandwidth-centric schedul-
ing of independent-task applications. In Interna-
tional Parallel and Distributed Processing Symposium
IPDPS’2003. IEEE Computer Society Press, 2003.

[12] F. Forgó, Jenö, and F. Szdarovsky. Introduction to the
Theory of Games: Concepts, Methods, Applications.
Kluwer Academic Publishers, 2 edition, 1999.

[13] D. Grosu and T. E. Carroll. A strategyproof mecha-
nism for scheduling divisible loads in distributed sys-
tems. In I. C. S. Press, editor, Proc. of the 4th Inter-
national Symposium on Parallel and Distributed Com-
puting (ISPDC 2005), 2005.

[14] D. Grosu, A. T. Chronopoulos, and M. Y. Leung. Load
balancing in distributed systems: An approach using
cooperative games. In I. C. S. Press, editor, Proceed-
ings of the 16th IEEE International Parallel and Dis-
tributed Processing Symposium (IPDPS 2002), pages
501–510, 2002.

[15] R. Jay. The Art of Computer Systems Performance
Analysis : Techniques for Experimental Design, Mea-
surement, Simulation, and Modeling. John Wiley and
Sons, Inc., 1991.

[16] A. Legrand, L. Marchal, and H. Casanova. Schedul-
ing Distributed Applications: The SimGrid Simula-
tion Framework. In Proceedings of the Third IEEE
International Symposium on Cluster Computing and
the Grid (CCGrid’03), May 2003.

[17] L. Massoulié and J. Roberts. Bandwidth sharing: Ob-
jectives and algorithms. Transactions on Networking,
10(3):320–328, june 2002.

[18] J. F. Nash. Equilibrium points in n-person games.
Proceedings of the National Academy of Sciences USA,
36:48–49, 1950.


