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Abstract—Divisible Load Theory (DLT) has received a
lot of attention in the past decade. A divisible load is
a perfect parallel task, that can be split arbitrarily and
executed in parallel on a set of possibly heterogeneous
resources. The success of DLT is strongly related to
the existence of many optimal resource allocation and
scheduling algorithms, what strongly differs from general
scheduling theory. Moreover, recently, close relationships
have been underlined between DLT, that provides a
fruitful theoretical framework for scheduling jobs on
heterogeneous platforms, and MapReduce, that provides
a simple and efficient programming framework to deploy
applications on large scale distributed platforms.

The success of both have suggested to extend their
framework to non-linear complexity tasks. In this paper,
we show that both DLT and MapReduce are better suited
to workloads with linear complexity. In particular, we
prove that divisible load theory cannot directly be applied
to quadratic workloads, such as it has been proposed
recently. We precisely state the limits for classical DLT
studies and we review and propose solutions based on a
careful preparation of the dataset and clever data parti-
tioning algorithms. In particular, through simulations, we
show the possible impact of this approach on the volume of
communications generated by MapReduce, in the context
of Matrix Multiplication and Outer Product algorithms.

Keywords-Divisible Load Theory; MapReduce; Schedul-
ing; Resource Allocation; Matrix Multiplication; Sorting

I. INTRODUCTION

A. Divisible Load Theory and MapReduce

Scheduling the tasks of a parallel application on the
resources of a distributed computing platform is critical
for achieving high performance, and thus it is the target
of many research projects, both in theoretical studies
and in software developments.

As far as theory is concerned, the scheduling problem
has been studied for a variety of application models,
depending on the nature of the dependencies between
tasks. In the case of general dependencies, the well-
known directed acyclic task graph model is used, and
many scheduling heuristics have been developed [1]. A
slightly less general model corresponds to the parallel
execution of several (usually many, so that scheduling

concentrates on the steady state phase) pipelined ap-
plications that execute concurrently on a given plat-
form, in particular for applications whose structure is
a linear chain of tasks. Such applications are ubiquitous
in streaming environments, as for instance video and
audio encoding and decoding, DSP applications, image
processing, and so on [2], [3], [4], [5]. An extreme
(in terms of dependencies) application model is that
of independent tasks with no task synchronizations and
no inter-task communications. Applications conforming
to this admittedly simple model arise in most fields
of science and engineering. The number of tasks and
the task sizes (i.e. their computational costs) may or
may not be set in advance. In this case, the scheduling
problems are akin to off-line and on-line bin-packing
and a number of heuristics have been proposed in the
literature (see [6], [7], [8] for surveys in off-line and
on-line contexts).

Another flavor of the independent tasks model is
one in which the number of tasks and the task sizes
can be chosen arbitrarily. This corresponds to the case
when the application consists of an amount (a large
amount in general) of computations, or load, that can
be divided into any number of independent pieces.
This corresponds to a perfectly parallel job, whose
sub-tasks can themselves be processed in parallel on
any number of resources. This divisible load model
has been widely studied, once Divisible Load Theory
(DLT) has been popularized by the landmark book [9].
DLT provides a practical framework for the mapping
of independent tasks onto heterogeneous platforms, and
has been applied to a large spectrum of scientific
problems, including Kalman filtering [10], image pro-
cessing [11], video and multimedia broadcasting [12],
[13] database searching [14], [15], and the processing
of large distributed files [16]. These applications are
amenable to the simple master-worker programming
model and thus can be easily implemented and deployed
on computing platforms ranging from small commodity
clusters to computational grids [17] and Clouds [18],
[19], [20]. From a theoretical standpoint, the success



of the divisible load model is mostly due to its ana-
lytical tractability. Optimal algorithms and closed-form
formulas exist for the simplest instances of the divisible
load problem. This is in sharp contrast with the theory
of task graph scheduling and streaming applications
scheduling, which abounds in NP-completeness [21]
and in inapproximability results [22].

On the side of software development for scheduling
parallel applications, the MapReduce framework [23],
[24] has recently received at lot of attention. Indeed,
the MapReduce model, which has been popularized by
Google, is particularly well-suited to parallel processing
of arbitrary data. Just as in the case of divisible load, a
large computation is broken into small tasks that run in
parallel on multiple machines (the case of a sequence
of Map and Reduce operations has been studied in [25],
and scales easily to very large clusters of inexpensive
commodity computers. Hadoop [26] is the most popular
open-source implementation of the MapReduce frame-
work, originally developed by Yahoo to manage jobs
that produce hundreds of terabytes of data on thousands
of cores. Examples of applications implemented with
Hadoop can be found at http://wiki.apache.org/hadoop/
PoweredBy. A crucial feature of MapReduce is its
inherent capability of handling hardware failures and
processing capabilities heterogeneity, thus hiding this
complexity to the programmer, by relying on on-demand
allocations and a detection of nodes that perform poorly
(in order to re-assign tasks that slow down the process).

The MapReduce programming model has first been
introduced to deal with linear complexity tasks such
as standard text processing operations [23], but it has
been later extended to many other types of operations,
such as linear algebra operations [27]. In this case, the
Map function, that is applied in parallel to every pair in
the input, operates on a prepared dataset. For instance,
in the case of a matrix product, one could imagine to
have as input dataset all compatible pairs (ai,k, bk,j)
for all n3 possible values of i, j and k. In this case, the
output of the Map operation would be a pair consisting
of the value ai,k × bk,j and the key (i, j), so that all
ai,k × bk,j , for 0 ≤ k ≤ n − 1 would be associated to
the same key (i, j) and therefore to the same reducer,
that would in turn be responsible for computing their
sum. While allowing complex computations to run over
MapReduce, such solutions lead to a large redundancy
in data communication: if a given processor is respon-
sible for computing many ai,k × bk,j products, it will
receives as many values of a and b, even if some of
them overlap.

B. Model

In this paper, the target computing platform is a het-
erogeneous master/worker platform, with p computing
resources labeled P0, P1, P2, . . . , Pp. Throughout the
text, we consider that the number of processors p is
fixed in the sense that it does not depend on N , the size
of the problem. Therefore, all asymptotic notations are
used with respect to N , although we consider the case of
large values of p at several places. The master P0 sends
out chunks to workers over a network: we can think of
a star-shaped network, with the master in the center. In
order to concentrate on the difficulty introduced by the
non-linearity of the cost, we consider the simplest com-
munication model, where all communications between
the master and the computing resources can take place
in parallel, the speed of the communication between P0

and Pi being only limited by the incoming bandwidth
of node Pi. Unless stated otherwise, we assume that
the computing platform is fully heterogeneous. The
incoming bandwidth of processor is denoted 1/ci (so
that ci is the time needed to send one unit of data to
Pi) and its processing speed si = 1/wi (so that wi is
the time spent by Pi to process a unit of computation).

In the literature, several models have been considered.
The master processor can distribute the chunks to the
computing resources in a single round, (also called
single installment in [9]), or send the chunks to the
computing resources in multiple rounds: the communi-
cations will be shorter (less latency) and pipelined, and
the workers will be able to compute the current chunk
while receiving data for the next one. In both cases, a
slave processor can start processing tasks only once it
has received the whole data.

Similarly, in order to concentrate on the influence
of non-linearity, return communications [28], [29], [30]
will not be taken into account and we will consider the
case of a single round of communications.

C. Outline

Thereby, there exists on the one hand powerful theo-
retical models like DLT for scheduling jobs onto hetero-
geneous platforms, and on the other hand powerful tools
like MapReduce that allow to easily deploy applications
on large scale distributed platforms. However, both are
best suited to workloads with linear complexity: in
this paper, we prove that divisible load theory cannot
directly be applied to quadratic workloads in Section II,
such as proposed in [31], [32], [33], [34], [35]. We
precisely state the limits for classical DLT studies in
Section III. Then, we review and propose solutions
based on a careful preparation of the dataset, and study

2



how this approach could be applied in the context of
MapReduce operations in Section IV.

II. NON-LINEAR WORKLOADS ARE NOT AMENABLE
TO DIVISIBLE LOAD THEORY

Recently, several papers [31], [32], [33], [34], [35]
have studied the case on non-linear divisible scheduling.
For instance, let us consider that a non-linear (say
Nα, α > 1) cost operation is to be performed on a
list of N elements. In order to analyze the impact of
non-linearity and to assess the limits of the approach
followed in these papers, we will concentrate in this
section on fully homogeneous platforms, where all
communication and computing resources have the same
capabilities.

Each computing resource Pi, 1 ≤ i ≤ p has a
(relative) computing power 1

w and it is associated to a
bandwidth 1

c . Thus, it will take c ·X time units to trans-
mit X data units to Pi and w ·Xα to execute these X
units of load on Pi. In this model, the direct translation
of classical linear DLT problem to the nonlinear case
DLT that is proposed in [31], [32] consists in finding
the amount of load that should be allocated to each
processor.

In general, complex platforms are considered, with
fully heterogeneous computing and communication
platforms, and some flavor of one-port model, what
makes the resolution of above problem difficult and
requires sophisticated techniques (see for instance the
solutions proposed in [33], [34], [35]) in order to
determine in which order processing resources should
be fed by the master node and how much data to process
they should be given. In our very simplistic homo-
geneous model, with parallel communications and no
return communication of the results, the above problem
becomes trivial: the ordering is not important since all
the processors are identical and therefore, in the optimal
strategy, each Pi receives N

p data elements in time N
p c

and starts processing them immediately until time

N

p
c+

(
N

p

)α
w.

In general [33], [34], [35], for more heterogeneous
platforms and more sophisticated communication mod-
els, obtaining the optimal allocation and a closed for-
mula is impossible. Nevertheless, the importance of
this issue is not crucial. In fact, the main problem
with this approach is that when p is large, the part of
the computations that is processed during this phase
is negligible with respect to the overall work to be
processed. Indeed, the overall work W is given by

W = Nα and the overall work Wpartial performed by
all p processors during this first phase is given by

Wpartial = p

(
N

p

)α
=

Nα

pα−1
,

so that
W −Wpartial

W
= 1− 1

pα−1

. Thus, when p = 10 and α = 2, Wpartial accounts for
only 10% of the total workload !

Therefore, the difficult optimization problem solved
in [33], [34], [35] has in practice no influence on the
overall computation time, since asymptotically (when p
becomes large) all the work remains to be done after
this first phase. Above results shows the intrinsic linear
complexity of the problems that are divisible. Indeed,
a divisible load can be arbitrarily split between any
number of processors (say N ) in small pieces (of size
1 in this case) that can be performed independently
(in time c + w), so that no dependencies should exist
between data and the overall complexity is necessarily
linear in the size of the data ((c+w)N in this setting).

Nevertheless, this does not mean that only linear cost
complexity tasks only can be processed as divisible
load tasks or using MapReduce. Indeed, the possibility
remains (i) either to modify the initial data, such as
proposed in [36], [37], [27] for matrix multiplication
(in this case the initial N2 size data is transformed
into a N3 size data by replicating matrix blocks before
applying a MapReduce operation) (ii) or to decom-
pose the overall operation using a long sequence of
MapReduce operations, such as proposed in [25]. In
the remaining of this paper, we will concentrate on the
first approach, that consists in expressing a problem
that contains data dependencies into a (larger) problem,
where data dependencies have been removed.

III. DIVISIBLE LOAD THEORY FOR ALMOST LINEAR
WORKLOADS

A. Sorting with Homogeneous Computing Resources

As we have seen in the previous section, DLT cannot
in general be applied to workloads with super-linear
complexity Nα, α > 1 unless the size of the initial data
is increased or if several DLT operations are applied.
However, there are some intermediate cases where the
complexity is close to N and thus where the workload
can be seen as almost divisible.

In this section, we consider the problem of sorting N
numbers and we propose a parallel algorithm based on
DLT to distribute this computation onto a homogeneous
platform. Indeed, since the work required by sorting is
W = N logN and if the initial dataset is split into p
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lists of size N
p , the work produced when sorting the p

lists in parallel in the DLT phase is given by

Wpartial = p

(
N

p

)
log

(
N

p

)
= N logN −N log p,

so that
W −Wpartial

W
=

log p

logN
,

that is arbitrarily close to 0 for large values of N .
Therefore, contrarily to what happens is the case of
tasks whose complexity is Nα, in the case of sorting,
almost all the work can be expressed as a divisible load
task and sorting is likely to be amenable to DLT.

Nevertheless, applying directly partial sorts to the p
lists would not lead to a fully sorted result, and a pre-
processing of the initial list is needed. More precisely,
we rely on the sample sort introduced and analyzed
in [38], [39]. The sample sort is a randomized sort, that
relies on the use of a random number generator. The
parallel running time is almost independent of the input
distribution of keys and all complexity results will be
given with high probability. The algorithm proceeds in
three phases, depicted on Figure 1 (where red lists are
unsorted and blue lists are sorted).
• Step 1: A set of p − 1 splitter keys are picked

and then sorted to partition the linear order of key
values into p buckets.

• Step 2: Based on their values, the keys are sent
to the appropriate bucket, where the ith bucket is
stored in the ith processor.

• Step 3: The keys are sorted within each bucket
(using 1 processor per bucket).

Clearly, due to randomization, the buckets do not typi-
cally have exactly equal size and oversampling is used
to reduce the ratio between the size of the largest bucket
and its expected size N

p . Using an oversampling ratio
of s, a sample of sp keys are chosen at random, this
sample is sorted, and then the p−1 splitters are selected
by taking those keys in the sample that have ranks
s, 2s, 3s, ..., (p− 1)s.

Therefore, the time taken by Step 1 (using oversam-
pling) is sp log(sp), i.e. the necessary time to sort (on
the master processor) the sample of size sp. The cost of
Step 2 (on the master processor) is given by N log p,
since it involves, for each element to perform a binary
search in order to determine its bucket.

At last, let us determine the time taken by Step 3.
First, let us apply Theorem B.4 proved in [40], with
α = 1 + (1/ logN)

1
3 and s = log2N . In this case, if

MaxSize denotes the size of the largest bucket, then

PR

(
MaxSize ≥ N

p

(
1 + (1/ logN)

1
3

))
≤ N− 1

3 ,

pivots list

bucket construction

data communication

local sorts

pivots choice ((p = 4)× (s = 4)− 1)

new pivots choice (p-1=3)
pivots sort

Figure 1. Sample sort with p = 4 processors and s = 4 oversampling
ratio

i.e. the size of the largest bucket is of order N
p + o(N)

with high probability 1− o
(

1
N

)
.

The time taken by Step 3 is given by
(MaxSize logMaxSize) so that, with high probability,
it is bounded by

N

p
logN + o (N logN) .

Therefore, if we choose s = (logN)2 as oversam-
pling ratio, the time required by the preprocessing of
Step 1 and Step 2 is dominated by N log p and the
overall execution time is given by the time taken by Step
3, i.e. N

p logN + o(N logN) and is therefore optimal
on p processors with high probability.

Therefore, in the case of sorting, it is possible, by
introducing a preprocessing phase on the initial data
(but keeping the same data size), to reduce the high cost
operation to a fully Divisible Load Task and therefore,
in the case of sorting, optimizing the data distribution
phase to slave processors under more complicated com-
munication models that the one considered in this paper,
is meaningful.

B. Generalization to Heterogeneous Processing Re-
sources

Extending above result to heterogeneous computing
resources is not difficult. Indeed, let us denote as
previously by 1

wi
the processing power of computing

resource Pi, 1 ≤ i ≤ p, so that sorting Ni elements
sequentially on Pi takes wiNi logNi. Then, after over-
sampling with ratio s = (logN)2, we assign to the ith
bucket elements whose value is in the interval[⌊∑i−1

0 1/wk∑p
0 1/wk

(p− 1)

⌋
s,

⌊∑i
0 1/wk∑p
0 1/wk

(p− 1)

⌋
s− 1

]
.

Therefore, processor Pi receives (see Theorem B.4
in [40], taking again α = 1 + (1/ logN)

1
3 and s =
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log2N )) a list of at most 1/wi∑p
0 1/wk

elements (asymptot-
ically when N becomes large) with high probability, and
the load is well balanced with high probability between
the processors (asymptotically when N becomes large).

Therefore, sorting is amenable to a divisible task at
the price a preprocessing phase, even in presence of
heterogeneous processors.

IV. SCHEDULING NON-LINEAR WORKLOADS ON
HETEROGENEOUS PLATFORMS

As shown in Section II, Divisible Load Theory cannot
be used to schedule non-linear workloads, i.e. workloads
with a complexity of order O(Nα), with α > 1 for a
size N of the data. For these workloads, dividing the
computation into small chunks (whose size sums up to
N ) does not enable to perform enough work, and the
same chunk of data is needed for several chunks of
computations. For example, when multiplying two N ×
N matrices A and B, the same element ai,j needs to
be multiplied to N elements of B, thus contributing to
several chunks of computation.

One solution to overcome this problem is to introduce
data redundancy, i.e. to replicate the data for each
chunk of computation. For matrix multiplication, the
ai,j element will be replicated for each computational
chunk where ai,j is involved. Several distributions of
the data are possible and have been implemented using
MapReduce, such as row/column distribution or block
distribution [27], [36]. Whatever the distribution, in
MapReduce, the load-balancing is achieved by splitting
the workloads in many tasks, which are then scattered
across the platform. The fastest processor (or the one
with smallest external load) gets more chunks than the
others, so that all processors finish their share approxi-
mately at the same time (in Hadoop [26], some tasks are
themselves replicated at the end of the computations to
minimize execution discrepancy). Assuming large and
fast communication capacities, this method produces
an almost perfect load-balancing. However, because of
data replication, it may lead to a large communication
overhead. Thus, communication links may become bot-
tleneck resources if the replication ratio is large.

In this section, we study how to reduce the commu-
nication overhead for non-linear workloads on hetero-
geneous platforms. Our method relies on understanding
the underlying data structure and the structure of depen-
dencies between tasks, and then proposing a well-suited
distribution of the data. Our objective is to achieve a per-
fect load-balancing of the workload and simultaneously
to minimize the amount of communications.

We first present in Section IV-A a data distribution
scheme for a basic operation, the outer product of two

vectors (whose complexity is of order N2 and data size
is of order N ), before extending it in Section IV-B to
the matrix multiplication (whose complexity is of order
N3 and data size is of order N2). For each problem,
we compare our method to classical block distributions
used in MapReduce implementations, both theoretically
and through simulations.

A. Outer-product: 2D data distribution

We consider the problem of computing the outer-
product aT × b of two (large) vectors a and b (of size
N ), what requires the computation of all ai×bj , ∀ 1 ≤
i, j ≤ N (see Figure 2(a)). As stated above, we target
an heterogeneous computing platforms and we denote
by si = 1/wi the processing speed of Pi. Let us also
introduce the normalized processing speed of Pi xi =
si/
∑
k sk so that

∑
i xi = 1. At last, let us assume

without loss of generality that processors are sorted by
non-decreasing processing speed: s1 ≤ s2 ≤ · · · ≤ sp.

Our objective is to minimize the overall amount of
communications, i.e. the total amount of data send by
the master initially holding the data (or equivalently by
the set of devices holding it since we are interested
in the overall volume only), under the constraint that
a perfect load-balancing should be achieved among
resources allocated to the outer product computation. In-
deed, due to data dependencies, if we were to minimize
communications without this load-balancing constraint,
the optimal (and inefficient) solution would consist in
making use of a single computing resource.

In what follows, we compare two approaches, Ho-
mogeneous Blocks and Heterogeneous Blocks.

1) Homogeneous Blocks: the first approach is based
on a classical block distribution of the data, where
the computational domain is first split into a (large)
number of homogeneous chunks. Then, a demand
driven model is used, where processors ask for
new tasks as soon as they end processing one.
With this approach, load is well balanced and
faster processors get more blocks than slower one.
This typically corresponds to the data distribution
schemes used by MapReduce implementations.

2) Heterogeneous Blocks: The second approach con-
sists in taking into account the heterogeneity of
the processors when splitting the computational
domain. Among the partitions where processors
receive a fraction of the domain proportional to
their speed, we search for the one that minimizes
the amount of exchanged data.

1) Homogeneous Blocks approach: Let us first con-
sider the Homogeneous Blocks approach, where the

5



computation domain is split into squares of size D×D.
Each chunk of computation consists of the outer-product
of two chunks of data of size D from vectors a and
b: (ai, . . . , ai+D−1)

T × (bj , . . . , bj+D−1). We choose
to partition the computation domain into square blocks
in order to minimize the communication costs: for a
given computation size (D2), the square is the shape that
minimize the data size (2D). Heterogeneity is handled
using dynamic load balancing: faster processors will get
more blocks than slower ones. In order to minimize the
communication cost, we choose the size of blocks so as
to send a single chunk to the slowest processor. Since its
relative processing speed is x1, the size of the atomic
block will be D2 = x1N

2, so that D =
√
x1N (let

us assume that N is large so that we can assume that
this value is an integer). The total number of blocks
is thus

(
N/
√
x1N

)2
= 1/x1. Using this atomic block

size, if the demand driven scheme achieves perfect load
balancing, processor Pi receives a number of blocks ni
proportional to its computing speed

ni =
xi
x1

=
si
s1
.

Again, let us assume for now that all these quantities
are integer. The number of chunks distributed among
processors is therefore

∑
i xi/x1 = 1/x1, what ensures

that all blocks are processed.
The total amount of communications Commhom gen-

erated by the Homogeneous Blocks approach is the
number of blocks times the input data for a block (2D).

Commhom = 1/x1 × 2N
√
x1 = 2N

√∑
i si
s1

.

2) Heterogeneous Blocks approach: The main draw-
back of the Homogeneous Blocks approach is clear in
the context of strongly heterogeneous resources. When
the ratio between the smallest and the largest computing
speeds is large, the fastest processor will get a large
number of (small) square chunks. For such a processor,
the ratio between communications and computations is
far from being optimal. Indeed, if these small square
chunks could be grouped into a larger square chunk,
data reuse would be better and the required volume of
communications would be smaller.

With the Heterogeneous Blocks approach, a unique
chunk is sent to each processor in order to avoid un-
necessary data redundancy. We build upon a partitioning
algorithm presented in [41]. In this paper, the problem
of partitioning a 1× 1 square into p rectangles of pre-
scribed area a1, a2, . . . , ap is addressed. Two different
objectives related to the perimeter of the rectangles in
the partition are considered: minimizing the maximum

half-perimeter (PERI-MAX) or the sum of the half-
perimeters (PERI-SUM).

Our objective is to partition the square computational
domain of the ai× bj into p rectangles, whose area are
proportional to their relative computation speed (so as
to enforce an optimal load balancing), and to minimize
the overall volume of communications. A processor
will be given a chunk of k consecutive values of a
(ai, . . . , ai+k) and l values of b (bj , . . . , bj+l). The
amount of communication for this processor is given
by k+ l, i.e. the half-perimeter of its rectangular chunk.
Moreover, chunks must partition the whole domain
without overlap. Using scaled computational speeds
ai = xi, our problem is equivalent to minimizing the
sum of the half-perimeters when partitioning the unit
square into rectangles of prescribed area, i.e. the PERI-
SUM problem.

In [41], several column-based algorithms are pro-
posed: the square domain is first split into columns
that are then divided into rectangles. In particular, a
column-based partitioning algorithm for the PERI-SUM
problem is proven to have a guaranteed performance.
The sum of the half-perimeters Ĉ given by the algorithm
is such that

Ĉ ≤ 1+
5

4
LBComm where LBComm = 2

p∑
i=1

√
ai,

where LBComm is a straightforward lower bound on
the sum of the half-perimeters, which is larger than 2.
Thus,

Ĉ ≤ 7

4
LBComm.

Note that as soon as there are enough processors,
LBComm � 2 so that the approximation ratio gets
asymptotically close to 5/4.

Using this partitioning, scaled to the N × N com-
putational domain, the total amount of communications
Commhet can be bounded as

Commhet ≤
7N

2

p∑
i=1

√
xi =

7N

2

∑p
i=1

√
si√∑p

i=1 si
.

3) Comparison of Block Homogeneous and Block
Heterogeneous Approaches: Using previous analysis,
we can bound the ratio ρ between the amounts of
communication generated by both Block Homogeneous
and Block Heterogeneous approaches.

ρ =
Commhom

Commhet
≥

2N
√∑

i si
s1

7N
2

∑p
i=1

√
si√∑p

i=1 si

=
4

7
×

∑
i si√

s1
∑
i

√
si
.
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a

b

(a) Initial data.

b

a

(b) Using Homogeneous Block approach.

b

a

(c) Using Heterogeneous Block approach.

Figure 2. Data sent to a given processor for both implementation of outer-product.

When the platform is fully homogeneous, i.e. when
all processors have the same computation speed si =
s1, both approaches provide the same solution, and our
analysis simply states that ρ ≥ 4/7. However, the Block
Heterogeneous approach is interesting as the platform
goes heterogeneous.

A typical situation is depicted on Figure 2(b) and
Figure 2(c), where a basic task corresponds to a small
red matrix block. In the case of the Homogeneous
Block approach, tasks are requested on demand and
therefore, the memory footprint (data needed by a
processor of relative speed 12) on a and b vectors will be
high, whereas with the Heterogeneous Block approach,
the volume of necessary data is highly reduced.

Consider for example the case where the first half of
the platform is built from slow nodes (speed s1) while
the second one is built from nodes that are k times faster
(speed ks1). Then, our analysis shows that ρ ≥ 1+k

1+
√
k
≥√

k − 1.

B. 3D data distribution: matrix multiplication

Let us start by briefly recalling the classical parallel
matrix multiplication implementations. The whole set
of computations can be seen as a 3D cube where
element (i, k, j) corresponds to the basic operation
ai,kbk,j . At the notable exception of recently introduced
2.5D schemes [42], all implementations (see [43] for
a recent survey), including those implemented with
MapReduce [36], [27] or designed for GPUs [44] are
based on the ScaLAPACK algorithm [45], that uses the
outer product described in Section IV-A as building
block. For the sake of simplicity, we will concentrate
on the case of square matrices only. In that case, all 3
matrices (A,B and C = A×B) share the same layout,
i.e. for all i, j, the same processor is responsible for

storing Ai,j , Bi,j and Ci,j . Then, at each step k, any
processor that holds some part of the kth row of A
broadcasts it to all the processors of its column and
any processor that holds some part of the kth column
of B broadcasts it to all the processors of its row (see
Figure 3).

Figure 3. Matrix Multiplication algorithm based on the Outer Product

Of course, actual implementations of this algorithm
use a blocked version of this scheme, and a level of
virtualization is added. Indeed, since the number of
blocks is much larger than the number of processors,
blocks are scattered in a cyclic fashion along both grid
dimensions, so that each processor is responsible for
updating several blocks at each step of the algorithm.
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Thus, the volume of communication induced by the
matrix multiplication algorithm is exactly proportional
to the sum of the perimeters of the rectangles assigned
to the processors, and therefore, the ratio proved in
Section IV-A is valid between heterogeneity aware
implementations based on Heterogeneous Block dis-
tributions and MapReduce implementations [36], [27].
In Section IV-C, we experimentally analyze this ratio
through extensive simulations corresponding to several
heterogeneity profiles.

C. Experimental evaluation

To assess the quality of the two data distribution
policies presented above, we present here an experi-
mental evaluation based on simulations. Both policies
are compared to the lower bound on the communication
LBComm introduced above: this bound corresponds
to allocating to each processor a square whose area
corresponds exactly to its relative processing speed, i.e.
each processor Pi is given a N

√
xi × N

√
xi square.

Considering that all obtained quantities are integer, the
following lower bound holds for the total number of
necessary communications LBComm = 2N

∑
i

√
xi =

2N
∑

i

√
si√∑

i si
.

In the Block Homogeneous strategy, we make a
strong assumption: the number of chunks to give to
processor Pi is given by si/s1, that is supposed to be
an integer. In fact, these numbers have to be rounded
to integers, thus leading to a possibly prohibitive load
imbalance. Therefore, we propose a more realistic strat-
egy, that splits the chunks into smaller blocks in order
to avoid a large load imbalance. Let us first define the
load imbalance of a given load distribution as

e =
tmax − tmin

tmin
,

where tmax (respectively tmin) is the largest (resp.
smallest) computation time in the platform. In the
Commhom strategy, the chunk size is chosen as large
as possible to avoid unnecessary data redundancy, what
may lead to a large load imbalance. To avoid this, we
introduce the Commhom/k strategy, that divides the
block-size by k for increasing values of k until an
acceptable load-balance is reached. In our simulations,
the stopping criterion for this process is when e ≤ 1%.
This strategy is expected to lead to a larger amount com-
munications, at the benefit of a better load balancing.

We perform simulations for a number of processors
varying from 10 to 100. For each simulation, we gener-
ate the processing speeds using three different policies:
the processing speeds either (i) are homogeneous, (ii)
follow a uniform distribution in the range [1,100] or

(iii) follow a log-normal distribution with parameters
µ = 0 and σ = 1. Figures 4(a), 4(b) and 4(c) present
the results of these simulations. We compute the amount
of communication induced by each strategy for a large
matrix and we plot the ratio with the lower bound on
communication. Each point represent the average ratio
of a given strategy for 100 simulations with random pa-
rameters and error bars illustrate the standard deviation
of this ratio.

As expected, the Block Homogeneous Commhom

strategy performs very well in a homogeneous setting:
each processor gets a square corresponding to its share,
so that Commhom/k does not increase the number of
chunks. Commhet requires more communications, but
the increase is usually as small as 1% of the lower
bound. However, as soon as computing speeds get het-
erogeneous, Commhom and Commhom/k experience
a large increase in the volume of communications:
with 100 processors, the more realistic Commhom/k

strategy leads to a communication amount which is 15
to 30 times the lower bound (depending on the random
distribution of computing speeds). On the contrary, the
Commhet strategy never requires more than 2% more
than the lower bound.

Interestingly, we can notice that Commhet is much
better than its theoretical guarantee: in the previous
analysis, we proved that it is a 7/4-approximation com-
pared to the lower bound, but in all our experiments, it
is always within 2% of this bound.

V. CONCLUSION

Recently, several papers have considered the case on
non-linear divisible scheduling. We prove in this paper
that tasks whose complexity is of order Nα, for α > 1
cannot be considered as divisible tasks, except if data
is first replicated. The same applies to MapReduce jobs
for non linear complexity tasks, that require a specific
preparation of the data set. We have considered and
analyzed the case of matrix multiplication (or equiva-
lently outer product). On the one hand, we prove that if
all computing resources have the same capacities, then
classical implementations achieve very good results,
even for non linear complexity tasks.

On the other hand, these experiments prove that in
the context of heterogeneous computing resources, and
when the complexity of the underlying task is not
linear, taking explicitly heterogeneity into account when
partitioning data and building tasks is crucial in order to
minimize the overall communication volume, that can
be easily reduced by a factor of 15 to 30. Nevertheless,
at present time, by construction, MapReduce implemen-
tations are not aware of the execution platform and

8



Number of processors

R
at

io
of

co
m

m
un

ic
at

io
n

am
ou

nt
to

th
e

lo
w

er
bo

un
d

Commhet

Commhom

Commhom/k

10 20 40 60 80 100

1

1.005

1.01

(a) Homogeneous computation speed.

R
at

io
of

co
m

m
un

ic
at

io
n

am
ou

nt
to

th
e

lo
w

er
bo

un
d

Number of processors

Commhet

Commhom

Commhom/k

10 20 40 60 80 100

5

0

15

10

20

(b) Computation speeds following uniform random distribution.

10 20 40 60 80 100

Number of processors

0

10

20

30

R
at

io
of

co
m

m
un

ic
at

io
n

am
ou

nt
to

th
e

lo
w

er
bo

un
d

Commhet

Commhom

Commhom/k

(c) Computation speeds following log-normal random distribution.

9



cannot therefore use an adapted data layout. Without
changing the programming framework, whose simplic-
ity is essential, adding directives in order to declare
affinities between tasks and data could partially solve
this problem. For instance, in the context of the outer
product or the matrix multiplication, favoring among
all available tasks on the master those that share blocks
with data already stored on a slave processor in the
demand-driven process would improve the results.

Therefore, we believe that this paper provides a sound
theoretical background for studying data distribution
and partitioning algorithms in the context of the exe-
cution of non-linear complexity tasks on heterogeneous
platforms and opens many practical perspectives, by
proving the interest of proposing new mechanisms in
MapReduce to take into account affinities between tasks
and data.
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