Independent and Divisible Tasks Scheduling
on Heterogeneous Star-shaped Platforms
with Limited Memory *

O. Beaumortt, A. Legrand, L. MarchaF, and Y. Robert
1: LaBRI, UMR CNRS 5800, Bordeaux, France 2: ID, UMR CNRS-INRIA-IMAG 5132, Grenoble, France
Olivier.Beaumont@lIabri.fr {Arnaud.Legrand}@imag.fr
3: LIP, UMR CNRS-INRIA 5668, ENS Lyon, France
{Loris.Marchal,Yves.Robert}@ens-lyon.fr

Abstract programming f]. Moreover, when the overlay network of
computing nodes is tree-shaped, the optimal throughput
In this paper, we consider the problem of allocating can be characterized by a set of recursive equations, which
and scheduling a collection of independent, equal-sizedare solved via a bottom-up traversal of the trée From
tasks on heterogeneous star-shaped platforms. We alsdhese equations, it is possible to derivioaal allocation
address the same problem for divisible tasks. For both of tasks to resources. This best allocatiomandwidth-
cases, we take memory constraints into account. We provecentric if enough bandwidth is available at the node, then
strong NP-completeness results for different objective all children must be kept busy all the time; if bandwidth
functions, namely makespan minimization and through- is limited, then tasks should be allocated only to children
put maximization, on simple star-shaped platforms. We which have sufficiently fast communication links, in order
propose an approximation algorithm based on the un- of fastest communication time. Counter-intuitively, the
constrained version (with unlimited memory) of the prob- maximum throughput in the tree is achieved by delegating
lem. We introduce several heuristics, which are evaluatedtasks to children as quickly as possible, and not by seek-
and compared through extensive simulations. An unex-ing their fastest resolution. The bandwidth-centric strat-
pected conclusion drawn from these experiments is thategy is asymptotically optimal, and enjoys the key advan-
classical scheduling heuristics that try to greedily mini- tage that the optimal allocation can be computed locally.
mize the completion time of each task are outperformedThis enables each component to make autonomous, local
by the simple heuristic that consists in assigning the task scheduling decisions. The approach is thus more scalable
to the available processor that has the smallest commu-than a fully centralized approach.
nication time, regardless of computation power (hence a Nevertheless, the bandwidth-centric periodic solution
"bandwidth-centric” distribution). presented ing, 1] may well require a huge amount of
Keywords: Scheduling, makespan, steady-state, divis- memory. Indeed, the length of the period may be very
ible load, memory constraints, bounded buffers, memory|arge, while the number of buffers required on each re-
limitation. source is proportional to the length of this period. This
drawback may prevent the use of the bandwidth-centric
protocol in practical situations. In this paper, we take
1 Introduction memory constraints into account, and we aim at deriving
efficient scheduling strategies for scheduling independent
In this paper, we consider the problem of allocating tasks when computing resources have a limited number of
and scheduling a collection of independent, equal-sizedbuffers.
tasks on heterogeneous computing platforms. Master- As expected, the problem becomes more difficult with
slave tasking on such platforms has received a lot of at-memory constraints. We first target the makespan min-

tention recently 19, 16, 15, 2Q]. imization problem (which is polynomial5] on simple
The minimization of the total execution time is a NP- star-shaped platforms) in Secti@hand show that it is
hard problem, even if the platform is a simple trég][In a strongly NP-complete problem. We also derive an ap-

contrast, the optimal steady-state throughput, i.e. the max-proximation algorithm based on the unconstrained (with-
imal number of tasks that can be processed per time-unit,out memory limitations) version of this problem and in-
can be computed in polynomial time, using rational linear troduce several heuristics, which are evaluated and com-

pared through extensive simulations in Sect®nThen

we prove in Sectiort that finding the minimum num-
ber of buffers required to reach the optimal steady-state
throughput is a strongly NP-complete problem. We also

address the counterpart of the previous scheduling prob-

lem for divisible tasks (a perfect parallel job that can be
arbitrarily split into several independent parts) and prove
its strong NP-completeness. Last, in Sectiprwe sur-

vey related work on scheduling under memory constraints

and we state some final remarks and conclude the paper in

Sectionb.

2 Scheduling a finite number of indepen-
dant tasks under memory constraints

In this section, we introduce the first of our four differ-
ent problems. We seek to minimize the processing time
of a finite number of independant equal-sized tasks on an
heterogeneous platform.

2.1 Framework and complexity results

Consider the star-shaped platform depicted in Figure
The master processdt, initially holds all the identical
tasks {71, T5,...,Tn}. There arep slave processors,
numbered fromP; to P,. The time needed to send a task
from P, to P; is given byc;. The time necessary fdr; to
process atask is given hy;. We assume that the commu-
nication medium is exclusive: the master can only com-
municate with a single slave at each time-step. We also
assume the possibility of overlapping computations with
independent computations. More precisely, a sl8vean
simultaneously execute a task whose data was received i
one of its buffers, and receive the data for another task in
another buffer, provided that is has enough buffers to do

so. Throughout the paper, this star-shaped platform and its

operating model will be referred to as theferenceplat-
form.

Definition 1 (UNBOUNDED-MAKESPAN
((ci)lgigpa (wi)lgigpa {T17 Iz,..., TN})a K)

Let K > 0 be a time-bound, and consider the reference
platform. Is it possible to process all thg tasks within

K time units on this platform?

A O(N?2p?) algorithm that solves the NBOUNDED-
MAKESPAN problem is described irb]. The memory-
constrained version can be defined as follows:

Definition 2 (BOUNDED-MAKESPAN ((¢;)1<i<ps
(wi)1<i<ps (bi)1<i<ps {Th, T2, .., TN}, K)). Let

K > 0 be atime-bound. Consider the reference platform,
and assume that each slave procesBpis equipped with

a bounded buffer that can hold at madsttasks. Is it
possible to process all th¥ tasks withinK time units on
this platform?

Figure 1. Star Platform

This problem is NP-complete by reducti8Partition,
which is NP-Complete in the strong sens€][

Definition 3 (3-Partition). Given 3n inte-
gers ai,...,as,, such that>%"a; = nB and
Vi, % < a; < g. Is there a partition of theu;’s

into n groups of 3 integers, such that eaeh belongs
exactly to one group, and each group sum#to

Theorem 1. BOUNDED-MAKESPAN (b;, ¢;, w;, K, N)
is NP-Complete in the strong sense.

Proof. We have to polynomially transform the instance of
3-Partition into an instance dBOUNDED-MAKESPAN
which has a solution if and only if the original instance of
3-Partition has a solution.

Let us consider the following instance BOUNDED-
MAKESPAN, consisting of a master processBy, 3n
slave processor®, ..., P3, with the following charac-

r%eristics.

e b, = 1,i.e. processoP; cannot start receiving a new
task until it has processed the task it holds

e ¢, = a;,w; = 2nB, i.e. it takess; time units toP; to
receive a task fron?, and2n B time units to process
it,

and one processdrg with b = 1,¢g = B,wg = B.
Moreover let us selV = 5n and K = 4nB.

Let us first suppose that there is a solution to the
original instance of3-Partition and let us suppose,
without loss of generality, that

VO<j<n—1, asjr1+azjr2+aziiz=D0.

Then, the schedule depicted in Figu& pro-
vides a solution to BOUNDED-MAKESPAN
(biaciawiaK7N)'

Let us now suppose that there is a solu-
tion to the instance 0BOUNDED-MAKESPAN
(bi, ¢i, w;, K, N) we have built.

inB

strictive case in presence of limited buffer. Therefore, the

comm.
comp
PR

peomp

[]
Pbomp ‘ ‘

omp

omp
stomp

jcomp
PG [|

Figure 2. Solutionto BOUNDED-MAKESPAN

Lemma 1. In a solution of BOUNDED-
MAKESPAN (b;,¢;, w;, K, N), each processor
P, processes exactly 1 task, anblz processes
exactly2n tasks.

Proof. Let us first consider the case &f. It can-
not receive its first task before time step, and
thus, it cannot finish its processing before time step
a; +2nB. Therefore, it cannot receive its second task
before time steRa; + 2n B, and thus, it cannot pro-
cess a second task within the time boukid= 4nB.
Thus, eachP; processes at most one task.

Clearly, for the same reason®z cannot process
more than2n tasks withindn B time units. There-
fore, eachP; cannot process more than one task, and
Pp cannot process more tham tasks, such that,
sinceN = 5n, in any optimal solution, eacR; pro-
cesses exactly one task, aRg processes exactBn
tasks. [|

Using Lemmal and as communications and process-
ing cannot overlap, we can prove that communica-
tions to Pp are necessarily organized as depicted in
Figure 2. Moreover, since it take8n B time units

to P; to process one task, all communications to the
P;’'s must be finished before time stépB. There-
fore, those communications must take place inrthe
disjoint holes of sizeB left free by the communica-
tions to Pg, thus providing a solution to the original
instance of3-Partition.]

2.2 Approximation Algorithms

In this section, we give an approximation algorithm
in presence of limited memory for star graphs when we
aim at minimizing the makespan. The approximation al-

approximation ratio holds true a fortiori for larger buffers.
The approximation algorithm we propose is a list based
scheduling algorithm, whose makespan is not larger than
twice the optimal makespan on the platform where all
memory constraints have been removed.
The sketch of the list algorithm is depicted in Fig®e
At any time, IdleProc]i] is the next smallest date when
processorP; becomes idle (and thus the smallest date
when a task can be sent 1§ since the algorithm makes
use of only one bufferfNbTasksSent is the overall num-
ber of tasks already sent b¥,, and NbTasksProc|i]
is the overall number of tasks already sentR?g and
NbCommEvent denotes the date of the next communi-
cation event. The algorithm we propose requires some
pre-processing. We need to know the numhbgof tasks
that are sent t@>; in the optimal solution without mem-
ory limitation. Then;'s are given by the solution of
UNBOUNDED-MAKESPAN, which is described in9].
In the algorithm described in Figu® a task is sent t@;
as soon as

e the communication medium is free
e P isidle

e P; has not processed yet the number of tasks allo-
cated to it in the optimal solution without limited
memory.

STAR-BOUNDED-BUFFER(c;, w;, N)

1: (n1,...,np) =STAR-UNBOUNDED-BUFFER(c;, w;, N);
2: NbTasksSent=0;

3: NextCommEvent=0;

4: Vi, IdleProc[i]=0; NbTasksProc][i]=0;

5: while NbTasksSent < N do

6: Find P;, such that IdleProc[i] is minimal and
NbTasksProcli] < n;

7. if IdleProc[i] < NextCommEvent then

8: NbTasksProc[i] + +; NbTasksSent++;

o: IdleProc[i]=NextCommEvent+c; + w;;

10: NextCommEvent=NextCommEvent+c;;

11: else

12: NexCommEvent=IdleProc]i];

Figure 3. List scheduling approximation al-
gorithm

Surprisingly, this very simple heuristic builds a
schedule whose makespan cannot be larger than twice
the makespan of the optimal schedule without memory
limitations:

gorithm we propose is designed for processors that are

able to hold only one task (and thus where tasks have to

be distributed one by one and where communications andTheorem 2. Let us denote byTyy the makespan
processing cannot be overlapped), which is the most re-of the schedule built with limited buffers by

STAR-BOUNDED-BUFFER(c;, w;, N) (defined in
Figure 3), and by Ty, the makespan of the (op-
timal) schedule built with unlimited buffers by
STAR-UNBOUNDED-BUFFER(c;, w;, N) (defined in p]),
then

Talg < QTopt-

Proof. The proof of this theorem is adapted from Gra-
ham’s proof for list based scheduling(. Let us consider
the schedule built b TAR-BOUNDED-BUFFER(c;, w;, N)
and letus denote by1,t1+a1], ..., [tk te+ax), [t1, Tag]

the intervals when the communication medium is idle.
Clearlyt; = Z’f a; + Y 1 ¢n; since at each time step,
either the communication medium is idle or a task is be-
ing sent, and the overall number of tasks senPtas n;

by construction. Let us also denote By the processor
that finishes its processing at tirfigg in the schedule built
by STAR-BOUNDED-BUFFER(c;, w;, N). The situation is
depicted in Figuré.

Slem; + Zi le? Tag

[tlﬁ t1 + ()q] [TS, ts + (‘kg]

[ta, s +) [ta by + v

Figure 4. Schedule built by Star-Bounded-
Buffer

Let us consider the case 0P An idle
time in the communication medium is generated by
STAR-BOUNDED-BUFFER if and only if all the proces-

sors that have not processed all their tasks yet are work-

ing. Thus, sincePs processes the last task, it has been
working at least during all the time intervals,, ¢ +
ail, ..., [tk te + o], [ti, Tag), Of overall sizeTyg —
Zle c;n;. Therefore, the overall processing timefjfs;

is given bywjasinias, SO that

P
< Wiastlast and thug}alg < Z CiNi+Wiastast
=1

P
Talg— E Cinyg
i=1

Moreover, Togt = > 0, ¢;n; sinced r_ ¢;n; represents

the time necessary to send all the tasks to the different

slaves in the optimal solution (remember that the num-
bers of tasks sent tad?, by STAR-BOUNDED-BUFFER
and STAR-UNBOUNDED-BUFFER are the same),
and Topt = Wiastlast SINCE Wiastast repre-
sents the overall processing time on slav@,s
(again, either with STAR-BOUNDED-BUFFER oOr
STAR-UNBOUNDED-BUFFER). Therefore,

Talg < 2Topt-

3 Simulation
3.1 Heuristics

In this section, we present several heuristics for the
model with independent, equal-sized tasks. All the heuris-
tics are list-based heuristics, and schedule a task as soon
as possible. Only the selection function differs from one
heuristic to the other. Thus, this selection function plays a
key role in this scheme: it selects the next target processor
(the one that will execute the next task) among all the dif-
ferent processors that are available at a given time step, as
soon as the communication medium becomes free. In the
following, we present different selection functions.

A natural idea for choosing among available proces-
sors, is to select the one with the highest computing
speed, or the one with the smallest communication cost.
These selection functions lead to the heuristics denoted
by min_w andmin_c in the following. It is also possi-
ble to choose the processor which will finish to process
the task the earliest, given previous scheduling decisions.
The heuristic based on this selection function is denoted
by mct in the following.

R I AN R N | W | M| M IMIMI
I — I

Comm.
Pl

min_c selection

A A
ooy y

Comm.

min_loss selection

Figure 5. Simple instance with two proces-
SOfS(bl =by=1,¢1 =1, co = 10, w1 = 2,
we = 20). Light (resp. dark) grey repre-
sent communications from the master to P
(resp. P;) or computations by Py (resp. P).
min_c may perform a very bad choice. Leav-
ing the communication medium idle for a
while may lead to much better results.

Nevertheless, all these list-based heuristics may lead to
very bad choices like the one depicted on Figur&here-
fore, we also propose an heuristic based on the evaluation
of the gain and loss of a decision to schedule a task a pro-
cessor. This kind of approach is very close to the com-
monly usedsufferageheuristic P, 18] and may avoid such
misleading choices. Assume that we decide, at a given
time stept when the communication medium is free, to
schedule the next communication as a transfdp;toWe
earn one task, but it is possible that another proceBsor
becomes starving betweemnd the end of the communi-
cation toP; (Available[i] + ¢;). We can compute the num-
ber of tasks that could have been performedyuring

this interval in such a case and sum this number over the 1.1 ; ;

P; to get the average penalty incurred by the selection of nﬁ}L”_—WC V.
P;. This leads to the heuristimin_loss based selecting 105 met - x--- 7]

min_loss 8-~
the P; that minimize the average penalty and by sending it "

atask as soon as it gets ready This heuristic may not com-
municate a task as soon as possible and wait for a better
available slave instead, so itis not a “real” list heuristic.

0.95

05 W
0.85 | s g Ko et

relative performance ratio

3.2 Simulation platforms * * %

] % o > R
08] e x
The platform consists of a master and several slaves. 075 1 e

The different parameters to take into account are the fol- T

lowing: 0.7 ' '
10 100 1000

Number of slaves We performed the experiments with a number of tasks (logarithmic scale)

small number of processors (5) and with a larger
number (20). As the results are similar, we only
present them in the latter case, where heterogeneity
is more likely to play a part.

Figure 6. Performance for a single buffer

Sending and computing speedsThese parameters were bottleneck. Surprisingly, the simplest heuristioi_c)

chosen randomly with a Gaussian distribution in the OUtPerforms the more involved ones (likein_loss and
interval [50,150]. mct), and achieves very good results in all situations:

min_c always has the best performances when trying to

Number of tasks As we simulate the scheduling of a minimize the makespan in the single buffer case, it reaches
fixed number of tasks on a platform, we have to 90% of the optimal throughput in the single buffer case,
choose the number of tasks to be scheduled. We letand more than 99% of this bound when the size of the
this number vary from 10 to 2,048. Note that a small buffer is greater than 2.
number of tasks is more significant for makespan Another surprising conclusion is thatin_c reaches
minimization, while a large number of tasks is rel- the optimal unbounded throughput with only a few
evant for throughput optimization. buffers. The good performances ofin_c can be ex-

_ _ plained as follows: if we send a task to a proces3owith

Size of the buffers We perform experiments for buffer 5 smalle; and a bigw;, the communication medium will
sizes going from 1 (no overlap between communi- he pysy during a short time, arfegl spends a lot of time
cation and computation) to 32 (almost no limitation processing the task: we are able to perform many other

on memory). communications during this computation. Conversely, if
_) we send a task to a processor with a smalind a small
3.3 Simulation results w;, this processor is likely to process the task quickly and

to be chosen again soon as a future target: this leads to

To compare the performance of the different heuristics, a larger share of the communication medium frbut
we compute their performance ratio, defined as the ratio ofsince it has a smatb;, it contributes to a big fraction of
the number of tasks processed by the slaves over the totathe total throughput of the platform. In conclusion, send-
time spent to process these tasks. We cannot compute thang a task to a slave processor with a smalis never a
optimal performance ratio in the case of bounded buffers, bad choice, regardless of its computing power.
but we normalize results by plotting the performance ratio
of the heuristics over the optimal performance ratio in the
absence of memory limitatior3[1].

Figure 6 presents the results in the case of a single o
buffer, for a varying number of tasks. Figufeshows the 4.1 Throughput maximization under memory
results for a fixed number of tasks (2,048), for a varying constraints
size of buffer.

Most scheduling heuristics try to greedily minimize the When the platform model is more complicated than a
completion time of each task. Even if some variants exist star (e.g. a tree or a general graph), the makespan mini-
to cope with task affinity or misleading greedy decisions mization problem turns out to be very difficulty]. A nice
(like sufferagg, none of these heuristics is efficient in the idea to circumvent this difficulty is to relax the objective
situation where communications from the master are thefunction by maximizing the steady-state throughput. This

4 Relaxed optimization problems

1.1 size of K has no reason to be polynomial in the size of

minw —~— | the original instance. Therefore, we need to define the
105 minﬁ:st ~ %] following "compact" version of the problem:
‘% ! /“/ﬁ Sl e gy DEfiNition 6 (COMPACT-BOUNDED-THROUGHPUT
8 095 ((es)1<i<ps (Wi)1<icps (bi)1<i<ps Ss). LELK >0
g oo A be a time-bound. Consider the reference platform, and
g 09 s assume that each slave procesgoris equipped with a
R R bounded buffer that can hold at mdsttasks. Is there
ﬁ x a K-periodic schedule of period’, i.e. a schedule that
€ os executesk tasks everyl’ time-units in steady state, and
0.75 such thatk” < log S and & > p?
0.7 COMPACT-BOUNDED-THROUGHPUT belongs
0 5 10 15 20 25 30 to NP but is more constrained thaBOUNDED-
size of the buffer THROUGHPUT. We omit the proofs for brievety (it can

be found in f] since they are very similar to the proof
presented in Sectiod.1) but both problems are strongly
NP-complete. Hence the difficulty is intrinsically due to
the memory limitation, and not to the statement of the
problem.

Figure 7. Performance as a function of the
buffer size.

problem is polynomial and leads to asymptotically opti- 4.2 Divisible load scheduling under memory
mal solutions for the makespan minimization problem. On constraints

a star platform, finding the optimal steady-state through-

put, i.e. the optimal number of tasks that can be processed A divisible task corresponds to a perfect parallel job
per time-unit, can be formalized as follows: that can be arbitrarily split into several independent parts.
In the simplest variant, computation and communication
times for a given chunk are assumed to grow linearly with
the chunk size. However, this is not realistic for communi-
cations, and recent papers have added a start-up overhead
in the model, to take link latency into account. In this pa-
per we also focus on this affine cost model: it takes(
time-units to execut& units of load on worker;, and

Using a linear-programming formulation, this problem Gi + X.g; time-units to send¥ units of load from the
can be solved by @(plog(p)) algorithm B, 1]. The master processar, to P;. Note that in the case of inde-

Definition 4 (UNBOUNDED-THROUGHPUT
((Ci)lgigpa (’wi)lgigp,p)). Let K > 0 be a time-
bound, and consider the reference platform. Is there a
K-periodic schedule of period’, i.e. a schedule that
executeds tasks everyl’ time-units in steady state, and
such that¥ > p?

as follows: valuec; (since the sizeX of a task is fixed beforehand).

Two algorithmic techniques have been proposed to sched-
Definition 5 (BOUNDED-THROUGHPUT ule divisible loads, namely one-round and multi-round al-
((ei)1<i<ps (Wi)1<i<ps (bi)1<i<ps P))- LELK > 0 gorithms:

be a time-bound. Consider the reference platform, and o ,

assume that each slave processris equipped with a ¢ In a one-round distribution, each processor is used at
bounded buffer that can hold at mdsttasks. Is there most once. Therefore, the first problem is to select
a K-periodic schedule of perioff’, i.e. a schedule that a subset of workers and to determine in which or-

executesk tasks evenf” time-units in steady state, and der the chunks should be sent to the different work-

such that% > p? ers, give_n that the_ master can perform only one com-
munication at a time. Once the communication or-

The formulation of the UNBOUNDED- der has been determined, the second problem is to
THROUGHPUT and BOUNDED-THROUGHPUT decide how much work should be allocated to each
problems is questionable, because as stated these prob- worker P;: eachP; receivesy; units of load, where
lems may not belong to NP. Indeed, the sizeotndT Zle a; = Wieta- The final objective is to minimize
could be exponential in the size of the problem instance. the makespan, i.e. the total execution time. Selec-
For the UNBOUNDED-THROUGHPUT problem, it tion and ordering are the most difficult parts of the
turns out the polynomial-time algorithm given i, [1] problem since they;’s can then be found by solving
does provide a solution whef€ andT" have a polynomial a simple linear program (closed-form expressions are
size. For theBOUNDED-THROUGHPUT problem, the also availableT, 2]).

e One-round distributions lead to a poor utilization of communications allows communications to flow continu-
the workers. To alleviate this problemmulti-round ously at a fixed rate and therefore amounts to modify the
algorithms have been proposed. These algorithmsgranularity, hence minimizing buffering.
dispatch the load in multiple rounds of work alloca- Another theoretical result whose framework is close to
tion, and thus improve the overlapping of communi- ours is given by Drozdowski et all]. The authors con-
cations with computations. By comparison with one- sider scheduling divisible loads on a distributed comput-
round algorithms, work on multi-round algorithms ing system with limited available memory. They use the
has been scarce. The two main questions that mustsame model as in this paper and show that finding the opti-
be answered are: (i) what should the chunk sizes bemal one-round load distribution is NP-hard under memory
at each round? and (ii) how many rounds should be constraints (using a reduction2ePartition that is weakly
used? It is widely acknowledged that the latencies NP-hard [L4]). Using integer linear programming, they
introduced in the affine model make the model more propose a robust (albeit possibly non-polynomial) algo-
realistic and cannot be avoided when dealing with rithm to tackle the difficulty of this problem and demon-
multi-round algorithms. strate its efficiency using extensive simulations.

The complexity results for the distribution of indepen-
dent tasks on different platforms, with or without memory
limitations, are summarized in Table

Definition 7 (UNBOUNDED-DIVISIBLE ((g:)1<i<ps
(Gi)1<i<ps (Wi)1<i<ps W, T)). LetT > 0 be a time-
bound, and consider the divisible platform. Is it possible
to process all thé?” load units withinT" time-units on this
platform, using a multi-round distribution?

The complexity of this problem is still an open prob- 6 Conclusion

lem, even for one-round distributions.
In this paper, we have studied the allocation of a large

Definition 8 (BOUNDED-DIVISIBLE ((g:)1<i<ps number of independent, equal-sized tasks, on simple star

(Gi)i<isps (Wi)1<i<ps (bi)1<i<ps W, T)). LetT >

0 be a time-bound. Consider the divisible platform, where
each slaveP; cannot hold more tha®; units of load at
any moment. Is it possible to process all #fieload units

platforms, under different application models and differ-
ent objective functions. We have also studied the same
problem in the context of divisible tasks. In all these situa-
tions memory limitations lead to NP-completeness results.

within 7" time-units on this platform, using a multi-round
distribution?

We believe that the classification of these scheduling prob-
lems will prove useful to the community, and will foster
more work on the open problems listed in Table

For the objective of makespan minimization, we have
been able to derive an approximation algorithm. We have
introduced several heuristics which have been evaluated
and compared by performing extensive simulations. Un-
expectedly, classical list-based scheduling heuristics that
aim at greedily minimizing the completion time of each
task are outperformed by the simplest heuristic that con-
sists in delegating data to the available processor that has
To the best of our knowledge, the closest work on the smallest communication time, regardless of its com-

throughput maximization under memory constraints is putation power.
presented ing, 17] and [11].

In [8, 17], the authors study the number of buffers re- Raferences
quired to reach the optimal steady-state throughput. They
experimentally state that with non-interruptible commu-
nications, a bandwidth-centric protocol using a fixed
number of buffers will not reach optimal steady-state
throughput in all trees. Therefore they propose an au-
tonomous buffer growing protocol that automatically ad-
justs the number of required buffers. To solve the anarchic 2]
growth of buffers problem, they study the situation where
communications are interruptible. They experimentally
show that, when allowing interruptible communications,
three buffers are sufficient to reach optimal steady-state [3]
throughput in 99,6% of the cases. Allowing interruptible

However BOUNDED-DIVISIBLE is strongly NP-
complete, for both one-round and multi-round distribu-
tions. Once again, the proofs, even if more technical, are
very similar to the proof presented in Sectidil. There-
fore they are omited for brievety but can be found4h [

5 Related Work

[1] C. Banino, O. Beaumont, L. Carter, J. Ferrante,
A. Legrand, and Y. Robert. Scheduling strategies for
master-slave tasking on heterogeneous processor plat-
forms. IEEE Trans. Parallel Distributed Systems
15(4):319-330, 2004.

G. Barlas. Collection-aware optimum sequencing of op-
erations and closed-form solutions for the distribution of
a divisible load on arbitrary processor treéBEE Trans.
Parallel Distributed System®9(5):429-441, 1998.

O. Beaumont, L. Carter, J. Ferrante, A. Legrand, and
Y. Robert. Bandwidth-centric allocation of independent

(4]

(5]

(6]

(7]

(8]

&)

[10]

[11]

[12]

Objective Memory Star and Spider Trees and General
function limitation Graphs Graphs
Makespan Min No Polynomial p, 12] NP Complete 13]
Makespan Min Yes NP Completethis paper) | NP Completdthis paper)
Throughput Max No Polynomial B] Polynomial [L]
Throughput Max Yes NP Completdthis paper) | NP Completgthis paper)
Divisible . Polynomial for treesf]
Linear One-round No Polynomial p] Openfor general graphs
Divisible
Linear One-round Yes Open Open
Divisible
Affine One-round No Open Open
Divisible Yes Weakly NP Completel[1] | Weakly NP Completel[1]
Affine One-round NP Completethis paper) | NP Completdthis paper)
Divisible No Asymptotically optimal Asymptotically optimal
Linear Multi-round algorithm] algorithm]
Divisible
Linear Multi-round Yes Open Open
Divisible No Asymptotically optimal Asymptotically optimal
Affine Multi-round algorithm [5] algorithm [6]
Divisible .)
Affine Multi-round Yes NP Completethis paper) | NP Completdthis paper)

Table 1. Summary of complexity results.

tasks on heterogeneous platforms.irternational Paral-

lel and Distributed Processing Symposium (IPDPS’2002)
IEEE Computer Society Press, 2002.

O. Beaumont, A. Legrand, L. Marchal, and Y. Robert. In-
dependent and divisible tasks scheduling on heterogenous
star-shape platforms with limited memory. Technical Re-
port 2004-22, LIP, ENS Lyon, France, Apr. 2004.

O. Beaumont, A. Legrand, and Y. Robert. A polynomial-
time algorithm for allocating independent tasks on hetero-
geneous fork-graphs. I$CIS XVII, Seventeenth Interna-
tional Symposium On Computer and Information Sciences
pages 115-119. CRC Press, 2002.

O. Beaumont, A. Legrand, and Y. Robert. Scheduling di-
visible workloads on heterogeneous platfornBarallel
Computing29:1121-1152, 2003.

V. Bharadwaj, D. Ghose, and V. Mani. Optimal Sequenc-
ing and Arrangement in Single-Level Tree Networks with
Communication Delays.IEEE transactions on parallel
and distributed systemS§(9), 1994.

L. Carter, H. Casanova, J. Ferrante, and B. Kreaseck.
Autonomous protocols for bandwidth-centric scheduling
of independent-task applications. lmternational Paral-

lel and Distributed Processing Symposium IPDPS'2003
IEEE Computer Society Press, 2003.

H. Casanova, A. Legrand, D. Zagorodnov, and F. Berman.
Heuristics for Scheduling Parameter Sweep Applications
in Grid Environments. IlNinth Heterogeneous Computing
Workshoppages 349-363. IEEE Computer Society Press,
2000.

E. G. CoffmanComputer and job-shop scheduling theory
John Wiley & Sons, 1976.

M. Drozdowski and P. Wolniewicz. Divisible Load
Scheduling in Systems with Limited MemoryCluster
Computing 6(1):19-29, 2003.

P.-F. Dutot. Master-slave tasking on heterogeneous proces-
sors. Ininternational Parallel and Distributed Processing

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

Symposium IPDPS’2003EEE Computer Society Press,
2003.

P.-F. Dutot. Complexity of master-slave tasking on hetero-
geneous treeguropean Journal of Operational Research
2004. Special issue on the Dagstuhl meeting on Schedul-
ing for Computing and Manufacturing systems (to appear).
M. R. Garey and D. S. JohnsonComputers and In-
tractability, a Guide to the Theory of NP-Completeness
W. H. Freeman and Company, 1991.

J. P. Goux, S. Kulkarni, J. Linderoth, and M. Yoder.
An enabling framework for master-worker applications
on the computational grid. INinth IEEE International
Symposium on High Performance Distributed Computing
(HPDC’00). IEEE Computer Society Press, 2000.

E. Heymann, M. A. Senar, E. Luque, and M. Livny. Adap-
tive scheduling for master-worker applications on the com-
putational grid. In R. Buyya and M. Baker, editotid
Computing - GRID 200Qpages 214-227. Springer-Verlag
LNCS 1971, 2000.

B. KreaseckDynamic autonomous scheduling on Hetero-
geneous SystemBhD thesis, University of California, San
Diego, 2003.

M. Maheswaran, S. Ali, H. Siegel, D. Hensgen, and R. Fre-
und. Dynamic matching and scheduling of a class of inde-
pendent tasks onto heterogeneous computing systems. In
Eight Heterogeneous Computing Workshpages 30—44.
IEEE Computer Society Press, 1999.

G. Shao, F. Berman, and R. Wolski. Master/slave comput-
ing on the grid. InHeterogeneous Computing Workshop
HCW'00. IEEE Computer Society Press, 2000.

J. B. Weissman. Scheduling multi-component applications
in heterogeneous wide-area networks. Haterogeneous
Computing Workshop HCW’O0EEE Computer Society
Press, 2000.

	1 Introduction
	2 Scheduling a finite number of independant tasks under memory constraints
	2.1 Framework and complexity results
	2.2 Approximation Algorithms

	3 Simulation
	3.1 Heuristics
	3.2 Simulation platforms
	3.3 Simulation results

	4 Relaxed optimization problems
	4.1 Throughput maximization under memory constraints
	4.2 Divisible load scheduling under memory constraints

	5 Related Work
	6 Conclusion

