
5HETEROGENEOUS PLATFORMS

COMPLEXITY RESULTS FOR
COLLECTIVE COMMUNICATIONS
ON HETEROGENEOUS PLATFORMS

O. Beaumont1

L. Marchal2

Y. Robert2

Abstract

In this paper, we consider the communications involved in
the execution of a complex application, deployed on a
heterogeneous platform. Such applications extensively
use macro-communication schemes, for example to broad-
cast data items, either to all resources (broadcast) or to a
restricted set of targets (multicast). Rather than aiming at
minimizing the execution time of a single collective com-
munication, we focus on the steady-state operation. We
assume that there is a large number of messages to be
broadcast or multicast in pipelined fashion, and we aim at
maximizing the throughput, i.e. the (rational) number of
messages which can be broadcast or multicast every time-
step. We target heterogeneous platforms, modeled by a
graph where resources have different communication and
computation speeds. Achieving the best throughput may
well require that the target platform is used in totality: dif-
ferent messages may need to be transferred along differ-
ent paths.

The main focus of the paper is on complexity results.
We aim at presenting a unified framework for analyzing the
complexity of collective communication schemes. We con-
centrate on the classification (whether maximizing the
throughput is a polynomial or NP-hard problem), rather
than actually providing efficient polynomial algorithms
(when such algorithms are known, we refer to bibliograph-
ical pointers).

Key words: scheduling, collective communications, NP-
completeness, broadcast, heuristics, heterogeneous clus-
ters, grids

1 Introduction

Collective communication schemes in computer net-
works are the focus of a vast literature. The one-to-all
broadcast, or single-node broadcast (Kumar et al. 1994),
is the most primary collective communication pattern.
Initially, only the source processor has the data that need
to be broadcast; at the end, there is a copy of the original
data residing at each processor. Parallel algorithms often
require the sending of identical data to all other proces-
sors, in order to disseminate global information (typically,
input data such as the problem size or application param-
eters). Numerous broadcast algorithms have been designed
for parallel machines such as meshes, hypercubes, and
variants (see, among others, Johnsson and Ho 1989; Watts
and Van De Geijn 1995; Tseng, Wang, and Ho 1999; Ko,
Latifi, and Srimani 2000; Wang and Tseng 2000). The one-
to-all message passing interface (MPI) routine (Snir et al.
1996) is widely used, and particular attention has been paid
to its efficient implementation on a large variety of plat-
forms (Hwang and Xu 1998).

Multicasting also is a key communication primitive in
computer networks (Kumar and Jaffe 1983). Lin and Ni
(1993) have published a survey paper where they consider
different multicast algorithms operating under several net-
work models. They explain the close relationships between
multicast algorithms and Steiner trees (see Winter 1987
for an overview of Steiner problems). Several authors have
discussed optimized broadcast algorithms for a variety of
parallel architectures, such as wormhole routed networks
(Robinson, McKinley, and Cheng 1995), cut-through routed
networks (Cohen et al. 1998), and networks of worksta-
tions (Sivaram et al. 2001). Recently, the design of multi-
cast algorithms has been the focus of many papers, due to the
advent of new technologies such as mobile (Anastasi, Bar-
toli, and Spadoni 2001), wireless (Wieselthier, Nguyen, and
Ephremides 2002), ad hoc (Gopalsamy et al. 2002), and
optical (Yang, Wang, and Qiao 2000) networks.

There are three main variants considered in the litera-
ture.

Atomic: the source message is atomic, i.e. cannot be split
into packets. A single message is sent by the source
processor, and forwarded across the platform to tar-
get nodes.

Pipelined: the source message can be split into an arbi-
trary number of packets, which may be routed in a
pipelined fashion, possibly using different paths.

The International Journal of High Performance Computing Applications,
Volume 20, No. 1, Spring 2006, pp. 5–17
DOI: 10.1177/1094342006061877
© 2006 SAGE Publications

1LABRI, UMR CNRS 5800 BORDEAUX, FRANCE

2LIP, UMR CNRS-INRIA 5668 ENS LYON, FRANCE
YVES.ROBERT@ENS-LYON.FR

6 COMPUTING APPLICATIONS

Series: the same source processor sends a series of atomic
messages, involving messages of the same size. The
processing of these communication schemes can be
pipelined.

For the first two problems, the goal is to minimize the
total execution time (or makespan) of the schedule. For the
third problem, the objective function is rather to optimize
the throughput of the steady-state operation, i.e. the aver-
age amount of data broadcast or multicast per time-unit.
In this paper we concentrate on the series problems, in
particular the series of broadcasts and series of multicasts
problems. Note that solving the series problem provides a
solution to the corresponding pipelined problem. If we
choose a suitable size for the packets, split the original
message into packets, and schedule the series of packets,
we can derive an asymptotically optimal algorithm. See
Beaumont et al. (2004a) for an illustration of the pipe-
lined broadcast problem. We focus on two different real-
istic models of communications:

• the bidirectional one-port model, where at any given
time-step a given processor can simultaneously receive
data from one of its neighbors, and send (independent)
data to one of its neighbors;

• the unidirectional one-port model, where at any given
time-step a given processor can either receive data from
one of its neighbors or send (independent) data to one
of its neighbors.

These models are to be contrasted with the traditional
multiport model, where the number of simultaneous send
or receive operations executed by a given processor is
not bounded.

The series of broadcasts problems has been considered
by Moore and Quinn (1997) and Desprez et al. (1993), but
with a different perspective. They consider that distinct
processor sources successively broadcast one message, and
their goal is to load-balance this series of communications.
Here, we assume that the same source processor initiates
all the broadcasts. This is closer to a master–slave para-
digm where the master disseminates the information to
the slaves in a pipelined fashion; for instance, the data
needed to solve a collection of (independent) problem
instances.

The rest of the paper is organized as follows. Section 2
is devoted to the description of the architectural framework
for the operation of the nodes, i.e. the unidirectional one-
port and bidirectional one-port models. Section 3 is devoted
to the formal specification of the series of broadcasts and
series of multicasts problems. In Section 3.2.2 we prove
the NP-completeness of the series of multicasts problem.
Section 4 is devoted to a brief description of the ellipsoid
method for solving linear programs, which will be used to

derive polynomial algorithms for the series of broadcasts
problems under both models. We give some extensions of
the complexity results in Section 5. Finally, we state some
concluding remarks in Section 6.

2 Framework

2.1 Network Model

The target architectural platform is represented by an
edge-weighted directed graph G = (P, E, c), as illustrated
in Figure 1. Note that this graph may well include cycles
and multiple paths. Let p = |P| be the number of nodes.
There is a source node Psource, which plays a particular
role; it initially holds all the data to be broadcast or multi-
cast. For the broadcast operation, all the other nodes Pi, 1 ≤
i ≤ p, i ≠ s, are destination (or target) nodes which must
receive all the data sent by Psource. For the multicast oper-
ation, we denote by D the set of destination nodes which
must receive all the data sent by Psource. Note that non-
destination nodes may be used to transfer some messages
to the set of target nodes.

Each edge ej, k : Pj Pk is labeled by a value cj, k which
represents the time needed to communicate a unit-size
message from Pj to Pk. The graph is directed, and the
time to communicate in the reverse direction, from Pk to
Pj, provided that this link exists, is ck, j. Note that if there
is no communication link between Pj and Pk we let cj, k =
+ , so that cj, k < + means that Pj and Pk are neighbors
in the communication graph.

There are several scenarios for the operation mode of
the processors. In this paper, we concentrate on the unidi-
rectional one-port model and the bidirectional one-port
model.

Fig. 1 Simple platform topology. The value of cj,k is
indicated along each edge. The node Psource is the source
of the broadcasts.

→

∞ ∞

7HETEROGENEOUS PLATFORMS

2.2 Unidirectional One-Port Model

Under the assumption of the unidirectional one-port model,
a processor can, at a given time-step, perform a single
communication operation: it can either send data to one of
its neighbor nodes or receive data from it. In this section,
we state this communication model more precisely. If Pj
sends a message of size L to Pk at time-step t, then:

• Pk cannot initiate another receive or send operation
before time-step t + cj, k × L;

• Pj cannot initiate another send or receive operation
before time-step t + cj, k × L.

Proposition 1. A set of communications that can be han-
dled in parallel in G under the one-port unidirectional
model is associated with a matching in G.

Proof. Consider a matching in G. Each node Pi has at
most one neighbor node in this matching so that it can
communicate without conflicts with this neighbor node.
Conversely, consider a set of simultaneous communica-
tions in G under the one-port model. Each node Pi can
communicate at the same time with at most one neighbor,
so that the set of communicating nodes (Pi, Pj) defines a
matching in G. �

In what follows, we denote by M , …, M the
(finite) set of matchings of G.

2.3 Bidirectional One-Port Model

In the bidirectional one-port model, we assume that a proc-
essor is able to perform at the same time a send operation
to one of its neighbors, and an independent receive oper-
ation from another neighbor. To state this more pre-
cisely, if Pj sends a message of size L to Pk at time-step t,
then:

• Pk cannot initiate another receive operation before
time-step t + cj, k × L but it can perform a send opera-
tion to a third node;

• Pj cannot initiate another send operation before time-
step t + cj, k × L but it can perform a receive operation
from a third node.

Proposition 2. A set of communications that can be han-
dled in parallel in G under the one-port bidirectional
model is associated with a matching in G(B), where G(B) is
the graph depicted in Figure 2.

Proof. There is an edge between P and P in G(B) if and
only if cj, k < + . Consider a matching in G(B). We associate
node P (P) with outgoing (incoming) communications

of Pi. Each node P has at most one neighbor node in
this matching so that Pi can perform an outgoing commu-
nication with this neighbor without conflict. Similarly,
each node P has at most one neighbor node in this match-
ing so that Pi can perform an incoming communication
with this neighbor without conflict.

Conversely, consider a set of simultaneous communi-
cations in G under the bidirectional one-port model. At a
given time-step, each node Pi sends a message to at most
one neighbor (so that P has at most one neighbor in
G(B)) and it receives at most one message from at most one
of its neighbor nodes (so that P has at most one neighbor
in G(B)). Therefore, a set of simultaneous communications
in G under the one-port bidirectional model defines a
matching in G(B). �

In what follows, we denote by M , …, M the
(finite) set of matchings of G(B).

3 Broadcast and Multicast

In this section, we first concentrate on two particular
problems: the series of broadcasts and series of multicasts
problems. In both problems, the same source processor
sends a series of N atomic, same-size messages. The pro-
cessing of these communication schemes can be pipe-
lined. More precisely, we concentrate on throughput maxi-
mization. Our aim is to find a set of broadcast trees (to
transfer the different parts of the message) and a set of
matchings (to orchestrate the communications), so as to
maximize the throughput, i.e. the fractional number of com-
munications that can be initiated, at steady state, during
one time-unit.

In order to find the actual schedule for series of broad-
casts or multicasts, transient states (initialization and clean-

1
G()

NM G()
G()

j
out

k
in

∞
i
out

i
in

Fig. 2 Bipartite graph G(B) built from the platform
graph G of Figure 1.

i
out

i
in

i
out

i
in

1
B()

NM B()
B()

8 COMPUTING APPLICATIONS

up phases) must be taken into account. The actual recon-
struction of a valid schedule (including transient states) is
based on potential graphs, and has been considered in
Beaumont et al. (2004b) in a more general framework
(schedule of a large number of independent task graphs).
The proof of the correctness of a valid schedule consists
in proving that the length of both transient phases can be
bounded by B, where B does not depend on the overall
number of tasks but on the platform graph only. Due to
lack of space, the proof cannot be included in the paper,
but we refer the interested reader to Beaumont et al.
(2004b).

3.1 Series of Broadcasts

3.1.1 Formal definition In the case of the series of
broadcasts problem, messages are sent to all the nodes of
the platform. We are interested in maximizing the through-
put, i.e. the number of messages that can be sent during
each time-unit.

Consider a given atomic message among the series of
messages to be broadcast. Clearly, there is no reason why
a given node would receive the message twice. Thus, we
can easily transform any solution where a message is
received several times by a node into a solution where
each node receives the message only once: we remove all
the communications of the same atomic message received
by each node but one. The resulting communication scheme
involves a strict subset of the communications induced by
the initial broadcast scheme, and therefore achieves a
throughput equal to, or better than, the original through-
put. Therefore, the broadcast of each atomic message can
be implemented using a single spanning tree of the whole
platform.

In the series of broadcasts problem, each atomic message
in the series is transmitted along a broadcast tree. Different
messages may be broadcast along different trees. However,
note that the same tree may well be used to broadcast sev-
eral atomic messages in the series. For example, only two
trees T1 and T2 may be used, the odd indexed messages
being broadcast along T1, while the even indexed mes-
sages are broadcast along T2.

We are looking for a description of the schedules
based upon broadcast trees. Our aim is to find the set of
weighted spanning trees of G that will be used to broad-
cast the set of atomic messages, where the weight of a
tree is the number of messages in the series that are
broadcast along the same tree.

Let us denote by T1, …, TT the set of all spanning
trees of G rooted at Psource. T, the number of spanning
trees, may be quite large but is nevertheless finite. We
denote by N the number of messages in the series to
be broadcast. Therefore, we are looking for a set of
weighted spanning trees {(αt(N),), t = 1…T},

where αt(N) denotes the number of atomic messages
(among the N atomic messages) that are broadcast along
the spanning tree . Of course, we need to ensure
that αt(N) = N.

The set of broadcast trees describes all the communi-
cations that have to take place in the schedule. However,
these communications have to be orchestrated so that
they comply with the underlying communication model.
For example, if two broadcast trees share an edge, commu-
nications along this edge must be sequentialized. Also, one-
port constraints, either unidirectional or bidirectional,
have to be enforced in the schedule.

3.1.2 Bidirectional one-port model Using the bidi-
rectional one-port model, we have seen that the set of
communications that can be handled simultaneously cor-
responds to a matching in the bipartite graph G(B). To
orchestrate all the communications, we are looking for a
weighted set of matchings in this graph, denoted by
{(βm(N), M), m = 1…M}. Each matching in this set
represents a time interval of length βm(N) during which
the edges of the matching will be used to communicate
data.

Consider an edge (Pj, Pk) in G and the corresponding
edge in the bipartite graph (P , P). This edge may well
belong to several matchings. The total occupation time
of this edge according to the weighted set of matchings
described above is

This edge may also be used by several broadcast trees
in the weighted set {(αt(N),), t = 1…T} described
before, where αt(N) denotes the number of atomic messages
broadcast along . Since the transfer of a unit size mes-
sage along this edge lasts cj, k time-units, the total occupa-
tion time of this edge by this set of broadcast trees is

To ensure that all the communications can be orches-
trated, we have to build a weighted set of matchings and
a weighted set of broadcast trees that satisfy the follow-
ing property: for each edge of the platform graph, the
two previous methods for computing its occupation time
must give the same result. Therefore, any valid solution
of the series of broadcasts problem under the bidirec-
tional one-port model, such that N atomic messages are
broadcast in time Time(N), satisfies the following set of
equations:Tt

broad

Tt
broad

t 1=
T∑

m
B()

j
out

k
in

βm .

m Mm
B() Pj

out Pk
in,()∋,

∑

Ti
broad

Tt
broad

αt cj k, .×
t Tt

broad Pj Pk,()∋,

∑

9HETEROGENEOUS PLATFORMS

We normalize all quantities and we rewrite these con-
straints for Time(N) = 1. We build a linear program
whose objective function is to maximize the throughput
ρ , i.e. the (fractional) maximal number of mes-
sages that can be broadcast during one time-unit.

Linear program: series of broadcasts

Bidirectional one-port

Maximize ρ = xt

subject to:

ym ≤ 1

∀(Pj, Pk) E,

Consider any valid schedule for the series of broad-
casts problem, capable of broadcasting N messages
within Time(N) time-units. In this schedule, we denote by
αt the number of messages broadcast using tree ,
and by βm the overall time when matching Mm is used to
orchestrate communications in this schedule. We set

and

.

Clearly, xt and ym satisfy the constraints of the above lin-
ear program. Hence,

.

Therefore, any valid communication schedule achieving
the broadcast of N atomic messages in time Time(N) sat-
isfies

.

We conclude that ρ is an upper bound of the
achievable throughput.

Conversely, given a solution of the linear program, i.e.
a set of weighted matchings and a set of weighted trees
such that ρ = Σxt, it is possible to reconstruct a
periodic schedule that achieves the optimal throughput
ρ . This is done using a greedy algorithm which is
detailed in Beaumont et al. (2005).

To summarize, if we are able to find the solution of the
above linear program, then we can build a schedule with
optimal throughput. Section 4 is devoted to the resolution
of this linear program in polynomial time. Note that the
mere possibility of computing the solution of the linear
program (even in rational numbers) in polynomial time is
not obvious, since both the number of variables and of
constraints may be exponential in the size of the platform
graph G: both the number of spanning trees of G and the
number of matchings of G(B) may be exponential.

3.1.3 Unidirectional one-port model We adapt the
technique developed in the previous section to the unidi-
rectional one-port model. The only change is that simul-
taneous communications now correspond to a matching
in G (denoted by M) instead of a matching in the
bipartite graph G(B). The linear program obtained is the
following:

Linear program: series of broadcasts

Unidirectional one-port

Maximize ρ = xt

subject to:

ym ≤ 1

∀(Pj, Pk) E,

Just as before, we can prove that: (i) the optimal value
ρ is an upper bound of the achievable throughput
under the unidirectional one-port model; and (ii) a valid
schedule achieving the throughput ρ can be recon-
structed from the solution of the linear program.

αt

t
∑ N=

βm

m
∑ Time N()=

Pj Pk,()∀ E,∈

αt cj k,×
t Tt

broad Pj Pk,()∋,

∑ βm .

m Mm
B() Pj

out Pk
in,()∋,

∑=

max
broad bi–

max
broad bi– ∑

m
∑

∈

xt cj k,×
t Tt

broad Pj Pk,()∋,

∑ ym.

m Mm
B() Pj

out Pk
in,()∋,

∑=

Tt
broad

xt

αt

Time N()
----------------------=

ym

βm

Time N()
----------------------=

xt∑
αt∑

Time N()
---------------------- N

Time N()
---------------------- ρmax

broad bi–≤= =

N
Time N()
---------------------- ρmax

broad bi–≤

max
broad bi–

max
broad bi–

max
broad bi–

m
G()

max
broad uni– ∑

m
∑

∈

xt cj k,×
t Tt

broad Pj Pk,()∋,

∑ ym .

m Mm
G() Pj

out Pk
in,()∋,

∑=

max
broad uni–

max
broad uni–

10 COMPUTING APPLICATIONS

3.1.4 Toy example In order to illustrate the differences
between the unidirectional and bidirectional one-port
models, as well as the definitions given in the previous
sections, we work out a little example on the platform
depicted in Figure 3(a), where P1 broadcasts a message to
P2 and P3. The set of possible spanning trees is depicted
in Figure 3. Consider first that all nodes in the platform
operate under the bidirectional one-port model. The bipar-
tite graph G(B) is depicted in Figure 3(d), and the set of
matchings in G(B) is depicted in Figure 4.

Therefore, the solution of the following linear system
provides both the optimal throughput that can be
achieved using the bidirectional one-port model, and the
set of trees and matchings used to reach this throughput:

Linear Program–Series of Broadcasts

Bidirectional one-port

Maximize ρ = xt

subject to:

y1, y2, y3, y4, x1, x2 ≥ 0

y1 + y2 + y3 + y4 ≤ 1

y1 + y4 = (x1 + x2) × c1, 2 = x1 + x2

y2 = x1 × c1,3 = x1

y3 + y4 = x2 × c2, 3 = x2.

The solution of this linear program is given by y4 =
x2 = 1 and all other variables equal to 0.

Consider now that all the nodes in the platform operate
under the unidirectional one-port model. The set of match-
ings in G is depicted in Figure 5. Therefore, the solution
of the following linear system provides both the optimal

Fig. 3 Example for the broadcast problem: platform
topology and two possible broadcast trees.

max
broad uni– ∑

Fig. 4 Possible matchings for the platform depicted
in Figure 3(a) under the bidirectional one-port model.

Fig. 5 Possible matchings for the platform depicted
in Figure 3(a) under the unidirectional model.

1
2

11HETEROGENEOUS PLATFORMS

throughput that can be achieved using the unidirectional
one-port model, and the set of trees and matchings used
to reach this throughput:

Linear program: series of broadcasts

Bidirectional one-port

Maximize ρ = xt

subject to:

y1, y2, y3, x1, x2 ≥ 0

y1 + y2 + y3 ≤ 1

y1 = (x1 + x2) × c1,2 = x1 + x2

y2 = x1, 3 × c1,3 = x1

y3 = x2 × c2, 3 = x2.

The solution of this linear program is given by y2 = x1 =
(2/3), x3 = (1/3) and all other variables equal to 0 (i.e. T2
only is used to broadcast the message).

We can check that the best achievable throughput is
smaller (2/3) under the unidirectional one-port model
than under the bidirectional one-port model (1).

3.2 Series of Multicasts

3.2.1 Formal Definition The formal definition of the
series of multicasts problem is very similar to the formal
definition of the series of broadcasts problem, even though
we will see in Section 3.2.2 that complexity results strongly
differ for both problems. As far as the definition is con-
cerned, the main difference is the following. Since the
message is sent from Psource to the set of destination nodes
D, each atomic message must be sent along a tree span-
ning all the set of nodes in D, but not necessarily all the
nodes of the platform.

Let us denote by , …, the set of spanning
trees of D (which is finite, even if it may be large) that
may be used to broadcast a series of N messages to the set
of target processors. We are now looking for a set of
weighted spanning trees (α1(N),), …, (αT(N),),
where αt(N) denotes the number of atomic messages (among
the N atomic messages) that have been broadcast along
the spanning tree . The use of the matchings to
orchestrate communications is the same as in the case of
the series of broadcasts. Consider the following linear
programs:

Linear program: series of multicasts

Bidirectional one-port

Maximize ρ = xt

subject to:

ym ≤ 1

∀(Pj, Pk) E,

xt × cj, k

= ym.

Linear Program–Series of Multicasts

Unidirectional one-port

Maximize ρ = xt

subject to:

ym ≤ 1

∀(Pj, Pk) E,

xt × cj, k

= ym.

Then we obtain the same results as in the case of the
broadcast operation. Solving these linear programs gives
upper bounds on the achievable throughput for the series of
multicasts problem, under both the bidirectional or the uni-
directional one-port models. Formally, ρ (ρ)
is an upper bound of the achievable throughput under
the bidirectional one-port model (unidirectional one-port
model).

Reciprocally, it is possible to build, from the solution
of the linear programs, a valid schedule achieving the opti-
mal throughput ρ (ρ).

3.2.2 Complexity Results In this section, we derive
complexity results for the series of multicasts problem.
We first prove that even the simple problem of determin-
ing the optimal throughput that can be achieved is NP-
hard. Worst, we prove that this optimal throughput can-
not be polynomially approximated up to a logarithmic
factor (unless P=NP). The interested reader will find all
the proofs of these results in the extended version of this
paper (Beaumont et al. 2004a).

max
broad uni– ∑

1
2

T1
mult

TT
mult

T1
mult

TT
mult

Tt
mult

max
multi uni– ∑

∑
∈

t Tt
mult Pj Pk,()∋,∑

m Mm
B() Pj Pk,()∋,

∑

max
multi uni– ∑

∑
∈

t Tt
mult Pj Pk,()∋,∑

m Mm
G() Pj

out Pk
in,()∋,

∑

max
multi bi–

max
multi uni–

max
multi bi–

max
multi uni–

12 COMPUTING APPLICATIONS

We formally state the decision problem associated to the
determination of the optimal throughput for the series prob-
lem. In the following, log denotes the logarithm in base 2.

Definition 1. (COMPACT-MULTICAST). Given a
weighted platform graph G = (P, E, c), a source processor
Psource, a set of destination processors D, a rational bound
for the throughput ρ, and a rational bound for the size S,
is there a K-periodic schedule of period T, i.e. a schedule
which performs K multicast operations every T units of
time in steady-state, such that K ≤ logS and ≥ ρ?

Theorem 1. COMPACT-MULTICAST(G, Psource, D, ρ, S)
is NP-complete.

We point out that the bound S is introduced so that the
description of a periodic schedule can be polynomial in
the problem size. Informally, a K-periodic schedule is the
superposition of K multicast trees, and the condition K ≤
logS ensures that all these trees can be encoded with a
size polynomial in the input. Each tree is at most the size
of the platform graph, and there are no more than logS of
them. We point out that similar difficulties hold for spec-
ifying cyclic schedules in general: see the survey paper
of Hanen and Munier (1995).

The proof of this result (available in Beaumont et al.
2004a) can be used to derive an inapproximability result.
The class APX is defined as the problems in NP which
admit a polynomial-time λ-approximation algorithm, for
some constant λ. Therefore, if we show that COMPACT-
MULTICAST does not belong to this class, this will
prove that, unless P=NP, no polynomial-time heuristic can
approximate the best throughput, up to an arbitrary con-
stant factor.

Theorem 2. COMPACT-MULTICAST does not belong
to the class APX.

We can refine Theorem 1 by suppressing the restriction
on the compactness of the solution. We first come to a for-
mulation of the problem using weighted multicast trees.

Definition 2. (COMPACT-WEIGHTED-MULTICAST).
Given a weighted platform graph G = (P, E, c), a source
processor Psource, a set of destination processors D, a
rational bound for the throughput ρ, is there a periodic
schedule consisting of k ≤ 2|E| multicast trees {T1, …, Tk},
where αi is the average number of messages sent through
tree Ti within one time-unit, αi = ai/bi, where ai and bi are
integers such that ∀i = 1, …, k, logai + logbi ≤ 4|E|(log|E| +
A), where A = log maxci, j), and Σαi ≥ ρ?

Theorem 3. COMPACT-WEIGHTED-MULTICAST(G,
Psource, D, ρ, S) is NP-complete.

The following result states that restricting to compact
weighted trees does not affect the optimality of the solution.

Theorem 4. Given a weighted platform graph G = (P, E,
c), a source processor Psource, a set of destination proces-
sors D, if there exists a periodic schedule that achieves a
throughput ρ, then there also exists a solution of COM-
PACT-WEIGHTED-MULTICAST(G, Psource, D, ρ).

Although the series of multicasts leads to NP-complete
problems, the series of broadcasts is more tractable. To
solve it, we need to introduce powerful mathematical
tools that will enable us to solve the corresponding linear
programs.

4 Ellipsoid Method and the Series of
Broadcasts Problem

4.1 Basics on the Ellipsoid Method

In order to prove that series of broadcasts problems can be
solved in polynomial time under both the unidirectional
and bidirectional models, we first need to introduce a
few concepts related to the ellipsoid method for solving
linear programs (Khachiyan 1979). We rely on sophisti-
cated techniques to solve the linear programs introduced in
Section 3 because, as already pointed out, both the number
of constraints and the number of variables may be expo-
nential in the size of the problem (i.e. the size of the graph
G). The interested reader may refer to Grötschel, Lovász,
and Schrijver (1994) to find more details on the ellipsoid
method and the proof of the results used in this section.
See also Beaumont and Marchal (2004) to find a more
detailed presentation of the resolution of the series of broad-
casts problem under the unidirectional one-port model.

Consider a convex polyhedron P defined by a finite set
of inequalities. We can define the following two optimi-
zation problems on this convex.

Definition 3. (The strong optimization problem
(SOPT(P, C))). Given a convex P and a vector C �n,
find a vector x P that maximizes CT · x or assert that P
is empty.

Definition 4. (The strong separation problem (SSEP
(P, x))). Given a vector x �n, decide whether x P,
and if not, find a vector hyperplane that separates x from
P; more exactly, find a vector C �n such that CT · x >
max{CT · y | y P}.

We proved in Section 3 that the series of broadcasts prob-
lem (under both communication models) can be expressed
as a strong optimization problem. The ellipsoid theory
basically says that if we are able to solve the strong sepa-

K
T

∈
∈

∈ ∈

∈
∈

13HETEROGENEOUS PLATFORMS

ration problem (which is usually much easier) in polynomial
time, then we are also able to solve the strong optimiza-
tion problem in polynomial time. Formally, this property
is proved by the following theorem (Grötschel, Lovász,
and Schrijver 1994, chapter 6).

Theorem 5. (Theorem 6.4.9 in Grötschel, Lovász, and
Schrijver (1994)). Any one of the following two prob-
lems

• strong separation
• strong optimization

can be solved in oracle-polynomial time for any well-
described polyhedron given by an oracle for the other
problem.

The proof that polyhedrons presented in Section 3 are
well described can be found in Beaumont and Marchal
(2004). Then, the following theorem proves that it is pos-
sible to build a valid solution of the initial optimization
problem from the execution of the ellipsoid method on
the dual optimization problem.

Theorem 6. (Theorem 6.5.15 in Grötschel, Lovász,
and Schrijver (1994)). There exists an oracle-polyno-
mial time algorithm that, for any c �n and for any well-
described polyhedron (P; n, φ) given by a strong separa-
tion oracle where every output has an encoding length at
most φ, either

(i) finds a basic optimum dual solution with oracle
inequalities, or

(ii) asserts that the dual problem is unbounded or has
no solution.

4.2 Applications to the Series of Broadcast
Problems

In order to apply the ellipsoid method, we need to con-
sider the dual problems of the optimization problems
that have been introduced in Section 3. Let us denote
by e1, …, e|E| the set of edges in G = (P, E).

The dual formulation of the series of broadcasts prob-
lems under the unidirectional and bidirectional models
are, respectively:

Dual Formulation

Unidirectional one-port model

MINIMIZE z1,

SUBJECT TO

and

Dual Formulation

Bidirectional one-port model

MINIMIZE z1,

SUBJECT TO

(�bi)

The strong separation problems associated with the
dual formulation under the bidirectional and unidirec-
tional one-port models are the following.

Definition 5. (Broadcast-SSEP-Bidirectional (Unidi-
rectional)(G, Psource, x)). Let G denote the platform
graph, let Psource be the source node and z �|E| + 1 is a
vector C �|E| + 1 such that CT · z > max{CT · y, y Dbi
(Duni)}.

Lemma 1. Broadcast-SSEP-Bidirectional (G, Psource, z)
and Broadcast-SSEP-Unidirectional (G, Psource, z) can be
solved in polynomial time.

Proof. Consider an instance z of the strong separation
problem Dbi (or Duni). In this case, solving the strong sep-
aration problem consists in checking (in polynomial
time) if all the constraints are satisfied, and, if this is not
the case, to exhibit a violated constraint. In both models,
we can classify the constraints into three classes, and
exhibit a polynomial method to check if all constraints of
a given class are satisfied:

∈

Duni()

z1 0≥

Mm
G()∀ zk 1+ z1≤

ek Mm
G()∈

∑

Tt
broad∀ ci j, zk 1+ 1≥⋅

ek Pi Pj,() Tt
broad∈=

∑

z1 0≥

Mm
B()∀ zk 1+ z1≤

ek Mm
B()∈

∑

Tt
broad∀ ci j, zk 1+ 1≥⋅

ek Pi Pj,() Tt
broad∈=

∑

∈
∈ ∈

14 COMPUTING APPLICATIONS

• Constraint I: z being given, constraint I can clearly be
checked in polynomial time.

• Constraints IIa:

Consider the weighted graph GM = (P, E, cM), where
cM(ek) = zk + 1. A matching M of maximal weight
w can be computed in GM in polynomial time (Cor-
men, Leiserson, and Rivest 1990). If w ≤ z1, then all
constraints IIa are satisfied, and if w > z1 then the
constraint IIa corresponding to matching M is vio-
lated. We are therefore able to solve the strong separa-
tion problem for constraints IIa in polynomial time.

• Constraints IIb

Consider the weighted bipartite graph G = (G(B), cM),
where cM(ek) = xk + 1. A matching M of maximal
weight w can be computed in GM in polynomial
time (Cormen, Leiserson, and Rivest 1990). If w ≤
z1, then all constraints IIb are satisfied; if w > z1,
then the constraint IIb corresponding to matching M
is violated. We are therefore able to solve the strong
separation problem for constraints IIb in polynomial
time.

• Constraints III:

In this equation denotes a spanning tree of G.
Consider the following graph GT = (P, E, cT), where
the weight of an edge ek = (Pi, Pj) is cT(ek) = ci, j · zk + 1.
A tree T of minimal weight w can be computed in
GT in polynomial time (Cormen, Leiserson, and Rivest
1990). If w ≥ 1, then all constraints III are satisfied,
and if w < 1, then the constraint III corresponding to
tree T is violated. We are therefore able to solve the
strong separation problem for constraints III in poly-
nomial time.

Therefore, we are able, for any z, to assert in polynomial
time (for both the bidirectional and unidirectional one-
port models) if z satisfies the constraints and if it does
not, to give at least a violated constraint. Thus, we are
able to solve the strong separation problem either in Dbi
(or Duni).

Then, using Lemma 1 and Theorem 6, we can prove
the following theorem.

Theorem 7. Let G represent a platform graph and a
given source node Psource G. The series of broad-
casts problem can be solved in polynomial time either
under the bidirectional or the unidirectional one-port
models.

5 Extensions

5.1 Using the Ellipsoid Method

The technique presented in Section 4 is very efficient in
order to prove that several series versions of well-known
collective communication problems can be solved in pol-
ynomial time, either under the unidirectional or bidirec-
tional one-port models.

We do not detail any proof in this section (instead we
point to bibliographical references), but rather indicate
how the general framework of Section 4 applies to sev-
eral other collective communication schemes.

• Series of Scatters. In the series of scatters problem, a
source node Psource initially holds a large set of atomic
messages to send to some target (destination) nodes.
The main difference between scatter and multicast
is that the messages to be sent are different for each
destination node. If we apply the framework described
in Section 4, the strong separation problem consists
of:

– finding a matching of maximal weight in G (uni-
directional one-port model) or G(B) (bidirectional
one-port model) (problems already solved for the
broadcast problem);

– finding a path of minimal weight in G.

Constraint I:

z1 0≥
Constraints IIa unidirectional model():

Mm
G()∀ zk 1+ z1≤

ek Mm
G()∈

∑
Constraints IIb bidirectional model():

Mm
B()∀ zk 1+ z1≤

ek Mm
B()∈

∑
Constraints III:

Tt
broad∀ ci j, zk 1+ 1≥⋅

ek Pi Pj,() Tt
broad∈=

∑

Mm
G()∀ zk 1+ z1≤

ek Mm
G()∈

∑ bidirectional model()

max
M

max
M

max
M

max
M

max
M

Mm
B()∀ zk 1+ z1 unidirectional model()≤

ek Mm
B()∈

∑

M
B()

max
M

max
M

max
M

max
M

max
M

Tt
broad∀ ci j, zk 1+ 1≥⋅

ek Pi Pj,() Tt
broad∈=

∑

Tt
broad

min
T

min
T

min
T

min
T

min
T

∈

15HETEROGENEOUS PLATFORMS

The determination of a path of minimal weight can be
solved in polynomial time (Cormen, Leiserson, and
Rivest 1990), and therefore the series of scatters prob-
lem can be solved in polynomial time.

• Series of Gathers. In the series of gathers problem,
each node successively sends (different) messages to
a common destination node Pdest. In the framework
described in Section 4, the series of gathers and
series of scatters problems are equivalent, and both
require the determination of a matching of maximal
weight and a path of minimal weight. The series of
gathers problem can therefore be solved in polynomial
time.

• Series of Total Exchanges. Each processor initiates a
series of broadcasts, and the series of all-to-alls, where
each processor initiates a series of scatters, can also be
solved in polynomial time using the same framework
(see Beaumont and Marchal 2004).

• Series of Multicasts. This problem can also be tackled
using the framework described in Section 4, but this
approach does not lead to a polynomial algorithm
(which is not surprising since we have proved in Sec-
tion 3.2.2 that the series of multicasts problem is NP-
complete). In fact, the strong separation problem for
the series of multicasts problem consists of:

– finding a matching of maximal weight in G (uni-
directional one-port model) or G(B) (bidirectional
one-port model), which can be solved in polyno-
mial time;

– finding a Steiner tree (a tree that spans the node in
D only) of minimal weight in G. This problem is
known to be NP-complete (Garey and Johnson
1979).

The property that the strong separation problem is NP-
complete is not enough to prove the NP-completeness
of the series of multicasts problem, but we have pro-
vided a proof of this result in Section 3.2.2.

5.2 Extending NP-Completeness Results

In Beaumont et al. (2004a), it is proved that the series of
parallel prefix computations problem is NP-complete.
The proof uses the framework described in Section 3.2.2.
In the series of parallel prefix computations problem,
each node Pi holds a series of contributions. At the end,
each node Pi must hold the sum of all the contributions of
processors whose index is smaller than or equal to i. It is
worth pointing out that the series of reduce operations
problem, where only node P0 must hold the sum of the
contributions of other nodes, can be solved in polynomial
time (Legrand, Marchal, and Robert 2003).

5.3 Efficient Polynomial Algorithms

The framework described in Section 4 is very convenient
in order to determine whether a series of collective com-
munications problem can be solved in polynomial time.
Nevertheless, the algorithm that we propose relies on the
ellipsoid method (Khachiyan 1979) to solve linear pro-
grams. Therefore, it does not lead to efficient polynomial
algorithms, since in practice the execution time of the
ellipsoid method is huge (though polynomial) (Grötschel,
Lovász, and Schrijver 1994).

Under the bidirectional one-port model, efficient poly-
nomial algorithms are known for the following problems:
series of broadcasts (Beaumont et al. 2005), series of reduce
operations and series of scatters (Legrand, Marchal, and
Robert 2003). The latter algorithm can be easily adapted
for the series of gathers, series of total exchanges and
series of all-to-alls problems. However, to the best of our
knowledge, no efficient polynomial algorithm is known
for any of these problems under the unidirectional one-
port model.

6 Conclusion

In this paper, we have provided a unified framework for
assessing the complexity of determining the optimal
throughput of series of collective communications prob-
lems: either we provided a solution in polynomial time,
or we provided NP-completeness results (e.g. for the mul-
ticast scheme, as in Section 3.2.2). We have used the
realistic communication models presented in Section 2.

However, the general method presented in this paper
relies on the ellipsoid method for solving linear programs
(explained in Section 4) and therefore does not lead to effi-
cient polynomial algorithms. Efficient algorithms have been
developed for most collective communication schemes
under the bidirectional one-port model. The design of effi-
cient algorithms under the unidirectional one-port model is
still an open problem.

When designing and implementing realistic collective
communications on heterogeneous distributed platforms,
another key issue is the robustness, i.e. the ability to han-
dle small variations in link performances. This issue has
not been dealt with yet, but further work should try to
consider it, and to extend current approaches so as to
derive robust communication primitives.

Author Biographies

Olivier Beaumont obtained his Ph.D. from the Univer-
sity of Rennes 1 in 1999. Since then, he has been appointed
as Assistant Professor at ENS Lyon (2000–2002) and at
the University of Bordeaux (2002–2005). He obtained
his “Habilitation a Diriger les Recherches” from the Uni-

16 COMPUTING APPLICATIONS

versity of Bordeaux 1 in 2004. He is the author of 15
papers published in international journals and more than
40 conference papers. His main interests are distributed
computing, parallel algorithms, grid and peer-to-peer
systems.

Loris Marchal received his Master’s degree from
Ecole Normale Superieure de Lyon in 2003. He is cur-
rently a Ph.D. student in the LIP laboratory at ENS
Lyon. He is mainly interested in parallel algorithm
design for heterogeneous platforms and in scheduling
techniques.

Yves Robert received his Ph.D. degree from Institut
National Polytechnique de Grenoble in 1986. He is cur-
rently a full professor in the Computer Science Labora-
tory LIP at ENS Lyon. He is the author of four books, 95
papers published in international journals, and 115 papers
published in international conferences. His main research
interests are scheduling techniques and parallel algo-
rithms for clusters and grids. He is a senior member of
IEEE and the IEEE Computer Society, and serves as an
associate editor of IEEE Transactions on Parallel and
Distributed Systems.

References

Anastasi, G., Bartoli, A., and Spadoni, F. 2001. A reliable mul-
ticast protocol for distributed mobile systems: design and
evaluation. IEEE Transactions on Parallel Distributed
Systems 12(10):1009–1022.

Beaumont, O. and Marchal, L. 2004. Pipelining broadcasts on
heterogeneous platforms under the one-port model.
Research Report 2004-32, LIP, ENS Lyon, France, July.

Beaumont, O., Legrand, A., Marchal, L., and Robert, Y. 2004a.
Complexity results and heuristics for pipelined multicast
operations on heterogeneous platforms. Research Report
RR-2004-07, LIP, ENS Lyon, France, January.

Beaumont, O., Legrand, A., Marchal, L., and Robert, Y. 2004b.
Assessing the impact and limits of steady-state scheduling
for mixed task and data parallelism on heterogeneous plat-
forms. Research Report RR-2004-20, LIP, ENS Lyon,
France, April.

Beaumont, O., Legrand, A., Marchal, L., and Robert, Y. 2005.
Pipelining broadcasts on heterogeneous platforms. IEEE
Transactions on Parallel Distributed Systems 16(4):300–
313. Also available as LIP Research Report 2003-34.

Cohen, J., Fraigniaud, P., König, J., and Raspaud, A. 1998.
Optimized broadcasting and multicasting protocols in cut-
through routed networks. IEEE Transactions on Parallel
Distributed Systems 9(8):788–802.

Cormen, T. H., Leiserson, C. E., and Rivest, R. L. 1990. Intro-
duction to Algorithms, MIT Press, Cambridge, MA.

Desprez, F., Fraigniaud, P., and Tourancheau, B. 1993. Succes-
sive broadcasts on Hypercube. Technical Report CS-93-
210, University of Tennessee, Knoxville.

Garey, M. R. and Johnson, D. S. 1979. Computers and Intracta-
bility: A Guide to the Theory of NP-Completeness, W. H.
Freeman, San Francisco.

Gopalsamy, T., Singhal, M., Panda, D., and Sadayappan, P.
2002. A reliable multicast algorithm for mobile ad hoc
networks. Proceedings of the 22nd International Confer-
ence on Distributed Computing Systems (ICDCS’02),
Vienna, Austria, July 2–5, pp. 563–570.

Grötschel, M., Lovász, L., and Schrijver, A. 1994. Geometric
Algorithm and Combinatorial Optimization. Algorithms
and Combinatorics 2, 2nd corrected edition, Springer-
Verlag, Berlin.

Hanen, C. and Munier, A. 1995. Cyclic scheduling on parallel
processors: an overview. Scheduling Theory and its Appli-
cations, P. Chrétienne, E. G. Coffman, J. K. Lenstra, and
Z. Liu, editors, Wiley, New York, pp. 193–226.

Hwang, K. and Xu, Z. 1998. Scalable Parallel Computing,
McGraw-Hill, New York.

Johnsson, S. L. and Ho, C.-T. 1989. Optimum broadcasting and
personalized communication in hypercubes. IEEE Trans-
actions on Computers 38(9):1249–1268.

Khachiyan, L. G. 1979. A polynomial algorithm in linear pro-
gramming (in Russian). Soviet Mathematikcs Doklady
20:191–194.

Ko, H., Latifi, S., and Srimani, P. 2000. Near-optimal broadcast
in all-port wormhole-routed hypercubes using error-cor-
recting codes. IEEE Transactions on Parallel and Distrib-
uted Systems 11(3):247–260.

Kumar, K. and Jaffe, J. 1983. Routing to multiple destinations
in computer networks. IEEE Transactions on Communi-
cations 31(3):343–351.

Kumar, V., Grama, A., Gupta, A., and Karypis, G. 1994. Intro-
duction to Parallel Computing, Benjamin-Cummings,
New York.

Legrand, A., Marchal, L., and Robert, Y. 2003. Optimizing the
steady-state throughput of scatter and reduce operations
on heterogeneous platforms. Technical Report RR-2003-
33, LIP, ENS Lyon, France, June.

Lin, X. and Ni, L. 1993. Multicast communication in multicom-
puter networks. IEEE Transactions on Parallel Distrib-
uted Systems 4(10):1105–1117.

Moore, J. and Quinn, M. 1997. Generating an efficient broad-
cast sequence using reflected gray codes. IEEE Transac-
tions on Parallel and Distributed Systems 8(11):1117–1122.

Robinson, D., McKinley, P., and Cheng, B. 1995. Optimal mul-
ticast communication in wormhole-routed torus networks.
IEEE Transactions on Parallel Distributed Systems
6(10):1029–1042.

Sivaram, R., Kesavan, R., Panda, D., and Stunkel, C. 2001.
Architectural support for efficient multicasting in irregu-
lar networks. IEEE Transactions on Parallel Distributed
Systems 12(5):489–513.

Snir, M., Otto, S. W., Huss-Lederman, S., Walker, D. W., and
Dongarra, J. 1996. MPI: The Complete Reference, MIT
Press, Cambridge, MA.

Tseng, Y-C., Wang, S-Y., and Ho, C-W. 1999. Efficient broad-
casting in wormhole-routed multicomputers: a network-
partitioning approach. IEEE Transactions on Parallel and
Distributed Systems 10(1):44–61.

17HETEROGENEOUS PLATFORMS

Wang, S-Y. and Tseng, Y-C. 2000. Algebraic foundations and
broadcasting algorithms for wormhole-routed all-port tori.
IEEE Transactions on Computers 49(3):246–258.

Watts, J. and Van De Geijn, R. 1995. A pipelined broadcast for
multidimensional meshes. Parallel Processing Letters
5(2):281–292.

Wieselthier, J., Nguyen, G., and Ephremides, A. 2002. Energy-
aware wireless networking with directional antennas: the

case of session-based broadcasting and multicasting.
IEEE Transactions on Mobile Computing 1(3):176–191.

Winter, P. 1987. Steiner problem in networks: a survey. Net-
works 17(2):129–167.

Yang, Y., Wang, J., and Qiao, C. 2000. Non-blocking WDM
multicast switching networks. IEEE Transactions on Par-
allel Distributed Systems 11(12):1274–1287.

