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365MULTIPLE DIVISIBLE LOAD SCHEDULING
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Abstract

Divisible load applications consist of an amount of data
and associated computation that can be divided arbitrarily
into any number of independent pieces. This model is a
good approximation of many real-world scientific applica-
tions, lends itself to a natural master-worker implementa-
tion, and has thus received a lot of attention. The critical
issue of divisible load scheduling has been studied exten-
sively in previous work. However, only a few authors have
explored the simultaneous scheduling of multiple such
applications on a distributed computing platform. We focus
on this increasingly relevant scenario and make the follow-
ing contributions. We use a novel and more realistic plat-
form model that captures some of the fundamental network
properties of grid platforms. We formulate the steady-state
multi-application scheduling problem as a linear program
that expresses a notion of fairness between applications.
This scheduling problem is NP-complete and we propose
several heuristics that we evaluate and compare via exten-
sive simulation experiments. Our main finding is that some
of our heuristics can achieve performance close to the
optimal and we quantify the trade-offs between achieved
performance and heuristic complexity.

Key words: parallel computing, scheduling, divisible load,
multiple applications, resource sharing

1 Introduction

A divisible load application (Bharadwaj et al. 1996) consists
of an amount of computation, or load, that can be divided
into any number of independent pieces. This corresponds
to a perfectly parallel job: any sub-task can itself be proc-
essed in parallel, and on any number of workers. The divis-
ible load model is a good approximation for applications
that consist of large numbers of identical, low-granularity
computations, and has thus been applied to a wide spectrum
of scientific problems in areas including image processing,
volume rendering, bioinformatics, and even data mining.
For further information on the model, we refer the reader to
Bharadwaj, Ghose, and Robertazzi (2003), Robertazzi (2003,
n.d.) and Ghose and Robertazzi (2003).

Divisible load applications are amenable to the simple
master-worker programming model and can therefore be
easily implemented and deployed on computing platforms
ranging from small commodity clusters to computational
grids. The main challenge, which has been studied exten-
sively, is to schedule such applications effectively. How-
ever, large-scale platforms are not likely to be exploited in
a mode dedicated to a single application. Furthermore, a sig-
nificant portion of the mix of applications running on grid
platforms are divisible load applications. At the extreme,
a grid such as the CDF Analysis Farms (CAF) supports
the concurrent executions of applications that are almost
all divisible load applications. Therefore, it is critical to
investigate the scheduling of multiple such applications
that are executed simultaneously and compete for CPU and
network resources.

A first analysis of the concurrent execution of multiple
divisible load applications is provided in Bharadwaj and
Barlas (2002). The authors target a simple platform com-
posed of a bus network connecting a single master proc-
essor to a collection of heterogeneous worker processors.
A more complex platform has been investigated in (Wong
et al. 2003). In that paper, the authors introduce a (virtual)
producer–consumer architecture where several masters
(the sources of the multiple divisible loads) are fully con-
nected to heterogeneous worker processors. The authors
describe a strategy for balancing the total amount of work
among the workers. Unfortunately, the results are mostly
of theoretical interest as it is assumed that masters and work-
ers can communicate with unlimited numbers of concur-
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366 COMPUTING APPLICATIONS

rent messages, which is not likely to hold in practice. Yu
and Robertazzi (2003), discuss how to apply divisible
load theory to grid computing. They discuss job scheduling
policies for a master–worker computation in which the
workers are assumed to be only limited by their own net-
work bandwidth and never by internet bandwidth. While
possible, this assumption does not hold in general.

Our contributions are as follows: (i) we propose a new
model for deploying and scheduling multiple divisible load
applications on large-scale computing platforms, which
is significantly more realistic than models used in previous
work; (ii) we formulate a relevant multi-application steady-
state divisible load scheduling problem, which is NP-com-
plete; (iii) we propose several polynomial heuristics that

we evaluate and compare via extensive simulations. In
our model, the target platform consists of a collection of
clusters in geographically distributed institutions, inter-
connected via wide-area networks, as seen in Figure 1. The
key benefit of this model is that it takes into account both
the inherent hierarchy of the platform and the bandwidth-
sharing properties of specific network links. In addition
to the new platform model, we adopt a new scheduling
objective. Rather than minimizing total application exe-
cution time (i.e. the “makespan”), our goal is to maximize
the (priority-weighted) throughput in steady-state mode, i.e.
the total load executed per time-period. There are three main
reasons for focusing on the steady-state operation. First is
simplicity, as steady-state scheduling is really a relaxation

Fig. 1 Sample large-scale platform model.
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367MULTIPLE DIVISIBLE LOAD SCHEDULING

of the makespan minimization problem in which the ini-
tialization and clean-up phases are ignored. One only needs
to determine, for each participating resource, which frac-
tion of time is spent computing for which application, and
which fraction of time is spent communicating with which
neighbor; the actual schedule then arises naturally from
these quantities. Second is efficiency, as steady-state sched-
uling provides, by definition, a periodic schedule, which is
described in compact form and can thus be implemented
efficiently in practice. Third is adaptability: because the
schedule is periodic, it is possible to dynamically record
the observed performance during the current period, and to
inject this information into the algorithm that will compute
the optimal schedule for the next period. This makes it pos-
sible to react on the fly to resource availability variations.

In addition to the platform model and the scheduling
objective described above, our approach enforces the con-
straint that the divisible load applications are processed
fairly and allows for different application priorities.

2 Platform Model

Our platform model (see Figure 1) consists of a collec-
tion of clusters that are geographically distributed over
the internet. Each cluster is equipped with a “front-end”
processor (Bharadwaj et al. 1996), which is connected to
a local router via a local-area link of limited capacity.
These routers are used to connect each cluster to the
internet. We model the interconnection of all the routers
in our platform as a graph of internet backbone links.

The inter-cluster graph, denoted as �ic = (�, �), is com-
posed of routers (the nodes in �) and backbone links (the
edges in �). There are b = |�| backbone links, l1, …, lb.
For each link we have two parameters: bw(li), the band-
width available for a new connection, and max-connect(li),
the maximum number of connections (in both directions)
that can be opened on this link by our applications. The
model for the backbones is as follows. Each connection

is granted at most a fixed amount of bandwidth equal to
bw(li), up to the point where a maximum number of con-
nections are simultaneously opened, at which point no
more connections can be added. This model is justified
by the bandwidth-sharing properties observed on wide-area
links: when such a link is a bottleneck for an end-to-end
TCP flow, several extra flows can generally be opened
on the same path and they each receive the same amount
of bandwidth as the original flow. This behavior can be
due to TCP itself (e.g. congestion windows), or to the fact
that the number of flows belonging to a single application
is typically insignificant when compared with the total
number of flows going through these links. This property
is often exploited by explicitly opening parallel TCP con-
nections (e.g. in the GridFTP project; Allcock et al. 2001)
and we have observed it in our own measurements (Casa-
nova 2004). The constraint imposed on the number of
allowed connections makes it possible to limit the network
usage of applications, which is a likely requirement for
future production grid platforms with many applications
and users competing for resources.

Compute resources consist of K clusters Ck, 1  k  K. In
full generality, we should represent each Ck as a node-
weighted, edge-weighted graph Gk = (Vk, Ek), but we sim-
plify the model. For each cluster Ck, we only retain C ,
the front-end processor, which is connected to C ,
one of the routers in �. The idea is that C  represents
the cumulated power of the computing resources in clus-
ter Ck (as shown in Figure 2). This amounts to assuming
that the architecture of the cluster is a star-shaped net-
work, whose center is the front-end processor C . It
is known that, for the purpose of running divisible load
applications, C  and the leaf processors are together
“equivalent” to a single processor whose speed sk can be
determined as in Robertazzi (1993), Bataineh, Hsiung,
and Robertazzi (1994), and Banino et al. (2004). In fact,
it has also been shown that a tree topology is equivalent
to a single processor (Bataineh, Hsiung, and Robertazzi

≤ ≤
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master
k

master
k

master
k

Fig. 2 Notations for the platform model.
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368 COMPUTING APPLICATIONS

1994; Barlas 1998; Beaumont et al. 2003), and thus our
model encompasses cases in which the local-area network
in each institution is structured as a tree. Consequently,
we need only two parameters to characterize each clus-
ter: sk, the cumulated speed of Ck including Cmaster and the
cluster’s processors, and gk, the bandwidth of the link
connecting C  to C . This link is modeled as fol-
lows: any number of connections may share the link, but
they each receive a portion of the total available bandwidth,
and the sum of these portions cannot exceed gk, which is
known to be a reasonable model for local-area links.
Note that this link may correspond to several local area
physical links.

Finally, we assume that the routing between clusters is
fixed. The routing table contains an ordered list Lk, l of back-
bone links for a connection from cluster Ck to cluster Cl,
i.e. from router C  to router C . As shown in Fig-
ure 2, some intermediate routers may not be associated to
any cluster. Also, no specific assumption is made on the
interconnection graph. Our model uses realistic band-
width assignments: we determine the bottleneck link for
each end-to-end connection and use the bandwidth-shar-
ing properties of this link (either local-area or backbone)
to determine the amount of bandwidth allocated to each
connection.

To the best of our knowledge, this model is the first
attempt at modeling relatively complex network topolo-
gies along with realistic bandwidth-sharing properties for
the purpose of large-scale application scheduling research.
We contend that this model provides a major first step in
the development of application-level scheduling strate-
gies that are truly relevant to the new class of platforms
brought about by grid infrastructures.

3 Steady-State Scheduling of Multiple 
Applications

The steady-state approach was pioneered by Bertsimas
and Gamarnik (1999). Steady-state scheduling allows the
relaxation of the scheduling problem in many ways. Indeed,
initialization and clean-up phases are ignored, and the
emphasis is on the design of a periodic schedule. Precise
ordering and allocation of tasks and messages are not
required. The key idea is to characterize the activity of
each resource during each time-unit: which (rational) frac-
tion of time is spent computing for which application,
which (rational) fraction of time is spent receiving or send-
ing to which neighbor. Such activity variables are used to
construct a linear program that characterizes the global
behavior of the system. Once each activity variable has been
computed, the periodic schedule is known: we simply
scale the rational values to obtain integer numbers, and the
length of the period of the schedule is determined by this
scaling. We outline below the construction step-by-step.

3.1 Steady-State Equations

We consider K divisible load applications, Ak, 1  k  K, with
cluster Ck initially holding all the input data necessary for
application Ak. For each application we define a “priority
factor”, πk, that quantifies its relative worth. For instance,
computing two units of load per time unit for an applica-
tion with priority factor 2 is as worthwhile/profitable as
computing one unit of load for an application with priority
factor 1. This concept makes it possible to implement notions
of application priorities for resource sharing. We can eas-
ily refine the priority model and define πk, l as the priority
factor to execute a fraction of application Ak onto cluster
Cl. Similarly, our method is easily extensible to the case in
which more than one application originates from the same
cluster. We start with the following three definitions:

wk and δk (load unit size for Ak) – The divisible applica-
tions may be of different types. For instance one appli-
cation may deal with files and another with matrices.
We divide each application into load units (a file, or
a matrix). We let wk be the amount of computation
required to process a load unit for application Ak.
Similarly, δk is the size (in bytes) of a load unit for
application Ak.

αk, l (fraction of Ak executed by Cl) – Each cluster Ck ini-
tially holds input data for application Ak. Within a
time-unit, Ck will devote a fraction of the time to proc-
ess load units for application Ak. But cluster Ck can also
be used to process loads that originate from another
cluster Cl, i.e. from application Al. Reciprocally, por-
tions of application Ak may be executed by other
clusters. We let αk, l be the portion of load for applica-
tion Ak that is sent by Ck and computed on cluster Cl

within a time-unit. αk, k denotes the portion of appli-
cation Ak that is executed on the local cluster.

βk, l (connections from Ck to Cl) – Cluster Ck opens βk, l
network connections to send the portion αk, l of appli-
cation Ak that is destined to cluster Cl.

We can reformulate the application model in terms of
multiple jobs. Each job is composed of (an infinite number
of) independent tasks (e.g. files to process or matrices to
invert). The parameters wk and δk represent the task gran-
ularity of application Ak. In reality, only integer numbers
of tasks should be considered. Here we relax the problem
and deal with rational number of tasks in the steady-state
equations that follow. Allowing rational values amounts
to freely varying the granularity, thereby processing each
application as it it was truly divisible. Later in Section 3.2
we briefly explain how to retrieve an effective schedule
with an integer number of tasks for each application.

master
k

master
k

router
k

router
l
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369MULTIPLE DIVISIBLE LOAD SCHEDULING

With the above definitions, it takes  time-units

to process αk, l load units of application Ak on cluster Cl.

Similarly, it takes  time-units to send αk, l load

units of application Ak along a single network connection

from router C  to router C , where gk, l is the min-
imum bandwidth available for one connection on a route
from cluster Ck to cluster Cl, i.e. gk, l = {bw(li)}.

The first steady-state equation states that a cluster Ck

cannot compute more load units per time unit than
allowed by its speed sk:

(1)

With steady-state scheduling we do not need to deter-
mine the precise ordering in which the different load
types are executed by Ck: instead we take a macroscopic
point of view and simply bound the total amount of load
processed every time-unit.

The second steady-state equation bounds the amount
of load that requires the use of the serial link between
cluster Ck and the external world, i.e. between C  and
C :

(2)

This equation states that the available bandwidth gk is
not exceeded by the requirements of all the traffic outgo-
ing from and incoming to cluster Ck. Again, there is no
need to specify the precise ordering of the communica-
tions along the link. Note that we assume that the time to
execute a portion of an application’s load, or to commu-
nicate it along a serial link, is proportional to its size in
number of load units: this amounts to fixing the granular-
ity and to manipulating load units. Start-up costs could be
included in the formulas, but at the price of technical dif-
ficulties: only asymptotic performance can be assessed in
that case (Beaumont, Legrand, and Robert 2003).

Next we must bound the utilization of the backbone
links. Our third equation states that on each backbone link
li, there should be no more than max-connect(li) opened
connections:

(3)

The fourth equation states that there is enough band-
width on each path from a cluster Ck to a cluster Cl:

. (4)

The last term gk, l in Equation 4 was defined earlier as
the bandwidth allotted to a connection from Ck to Cl. This
bandwidth is simply the minimum of the bw(li), taken
over all links li that constitute the routing path from Ck to
Cl. We multiply this bandwidth by the number of opened
connections to derive the constraint on αk, l.

Finally there remains the definition of an optimization
criterion. Let αk = αk, l be the load processed for
application Ak per time unit. To achieve a fair balance of
resource allocations one could execute the same number
of load units per application, and try to maximize this
number. However, some applications may have higher
priorities than others, hence the introduction of the prior-
ity factors πk in the objective function:

MAXIMIZE  . (5)

This maximization corresponds to the well-known
MAX-MIN fairness strategy (Bertsekas and Gallager
1987) between the different loads, with coefficients 1/πk,
1  k  K. The constraints and the objective function
form a linear program:

MAXIMIZE  

UNDER THE CONSTRAINTS

(6)

This program is mixed as the αk, l are rational numbers
but the βk, l are integers. Given a platform � and compu-
tational priorities (π1, …, πK), we define a valid alloca-
tion for the steady-state mode as a set of values (α, β)
such that Equations (6) are satisfied. Since this program
involves integer variables there is little hope that an opti-
mal solution could be computed in polynomial time. It
turns out that this is an NP-hard problem, as shown in
Section 4. However, the program captures all the con-

αk l, wk⋅
sl

------------------

αk l, δk⋅
gk l,

-----------------

router
k

router
l

min li Lk l,∈

Ck∀ , αl k, wl⋅
l

∑ sk≤

master
k

router
k

Ck∀ αk l, δk⋅
l k≠
∑
outgoing data( )

, αj k, δj⋅
j k≠
∑
incoming data( )

+ gk≤

         

βk l, max-connect li( )≤
k l,{ } li Lk l,∈,

∑

αk l, δk⋅ βk l, gk l,×≤

l 1=

K∑

min
k

αk

πk

-----
 
 
 

≤ ≤

min
k

αk

πk

-----
 
 
 

6a( ) Ck∀ , αk l,
l

∑ αk=

6b( ) Ck∀ , αl k, wl⋅ sk≤
l

∑

6c( ) Ck∀ , αk l, δk⋅ αj k, δj⋅
j k≠
∑ gk≤+

l k≠
∑

6d( ) i∀ , βk l,
Lk l, li∋
∑ max connect li( )–≤

6e( ) k∀ l, , αk l, δk⋅ βk l, gk l,⋅≤
6f( ) k∀ l, , αk l, 0≥
6g( ) k∀ l, , βk l, �∈
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370 COMPUTING APPLICATIONS

straints to be satisfied, and we can reconstruct a periodic
schedule for every valid allocation (see Section 3.2). We
derive several heuristics to compute valid allocations in
Section 5, and we assess their performances in Section 6.

3.2 Reconstructing a Periodic Schedule

Once one has obtained a solution to the linear program
defined in the previous section, say (α, β), one needs to
reconstruct a (periodic) schedule, that is a way to decide
in which specific activities each computation and com-
munication resource is involved during each period. This
is straightforward because the divisible load applications
are independent of each other. We express all the rational
numbers αk, l as αk, l = , where the uk, l and the vk, l are
relatively prime integers. The period of the schedule is
set to Tp = lcmk, l(vk, l). In steady-state, during each period
of duration Tp:

• Cluster Ck computes, for each non-zero value of αl, k,
αl, k · Tp load units of application Al. If l = k the data is
local, and if k  l, the data corresponding to this load
has been received during the previous period. These
computations are executed in any order. Equation 2

ensures that sk, hence Ck can process

all its load.
• Cluster Ck sends, for each non-zero value of αk, l, αk, l ·

δk · Tp load units of application Ak, to be processed

by cluster Cl during the next period. Similarly, it
receives, for each non-zero value of αj, k, αj, k · zcj ·
Tp load units for application Aj, to be processed
locally during the next period. All these communica-
tions share the serial link, but Equation 2 ensures that

 gk, hence the

link bandwidth is not exceeded.

Obviously, the first and last period are different: no
computation takes place during the first period, and no
communication during the last one. Altogether, we have
a periodic schedule, which is described in compact form:
we have a polynomial number of intervals during which
each processor is assigned a given load for a prescribed
application.

4 Complexity

In this section we establish a complexity result: optimiz-
ing the throughput is NP-hard. We start with the formula-
tion of the associated decision problem, and we proceed
to the proof. Note that we cannot use a straightforward

reduction from a multicommodity flow problem such as
problem ND47 in (Ausiello et al. 1999), because there is no
prescribed location where each work should be executed.

Definition 1. (STEADY-STATE-DIVISIBLE-LOAD(�,
π, ρ)). Given a platform � and a set � of divisible appli-
cation with priority factors (π1, …, πK) and a throughput
bound ρ, is there a valid allocation (α, β) such that
mink ρ ?

Theorem 1. STEADY-STATE-DIVISIBLE-LOAD(�, π,
ρ) is NP-complete.

Proof. The proof is detailed in the Appendix, at the end
of the paper.

5 Heuristics

We propose several heuristics to solve our scheduling
problem. We first propose a greedy heuristic, and then
heuristics that are based on the rational solution to the
mixed linear program derived in Section 3.

5.1 Greedy Heuristic

Our greedy heuristic, which we simply call G, allocates
resources to one of the K applications in a sequence of steps.
More specifically, at each step the heuristic (i) selects an
application Ak; (ii) determines on which cluster Cl the
work will be executed (locally if l = k, on some remote
cluster otherwise); and (iii) decides how much work to
execute for this application. The intuition for how these
choices can be made is as follows:

• One should select the application that has received the
smallest relative share of the resource so far, that is the
one for which αk/πk is minimum, where αk = αk, l.
Initially, αk = 0 for all k, so one can break ties by giv-
ing priority to the application with the highest priority
factor πk.

• Compare the pay-off of computing on the local cluster
with the pay-off of opening one connection to each
remote cluster. Choose the most profitable cluster, say
Cl.

• Allocate an amount of work that does not overload Cl

so that it will not be usable by other applications.

Again, let gk, l = min {bw(li)} be the minimum band-
width available for one connection on a route from clus-
ter Ck to cluster Cl. The greedy heuristic, which we
denote by G, is formalized as follows:

1. Let L = {C1, …, CK}. Initialize all αk, l and βk, l
to 0.

uk l,
vk l,
-------

≠

Σlαl k, w1 Tp⋅ ⋅
Tp

--------------------------------- ≤

Σl k≠ αk l, δk Tp⋅ ⋅ Σj k≠ αj k, δj Tp⋅ ⋅+
Tp

---------------------------------------------------------------------------------- ≤

αk
πk
-----

 
 
  ≥

Σl

li Lk l,∈
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2. If L is empty, exit.
3. Select application – Sort L by non-decreasing

values of . Break ties by choosing the applica-

tion with higher priority first. Let k be the index of
the first element of L. Select Ak.

4. Select cluster – For each cluster Cm where m k,
compute the work (i.e. number of load units for
Ak) that can be executed using a single connec-

tion: benefitm = min . Locally, one

can achieve benefitk = . Select Cl, 1 l K so

that benefitl is maximal. If benefitl = 0 (i.e. no

more work can be executed), then remove Ck from
list L and go to step 2.

5. Determine amount of work – If k l (remote com-
putation), allocate alloc = benefitl units of load to

cluster Cl. If k = l (local computation), allocate only

alloc =  units of

load. This last quantity is the largest amount that
could have been executed on Ck for another appli-
cation and is used to prevent over-utilization of
the local cluster early on in the scheduling proc-
ess.

6. Update variables –

• Decrement speed of target cluster Cl: sl  sl –
alloc.wk

• Allocate work: αk, l  αk, l + alloc
• In case of a remote computation (if k l) update

network characteristics:

7. Go to step 2.

5.2 LP-Based Heuristics

The linear program given in Section 3 is a mixed integer/
rational numbers linear program since the variables βk, l take
integer values and variables αk, l may be rational. This
mixed LP (MLP) formulation gives an exact optimal solu-
tion to the scheduling problem, while a rational LP for-
mulation allows rational βk, l and gives an upper bound
of the optimal solution. As solving a mixed linear pro-
gram is known to be hard, we propose several heuristics

based on the relaxation of the problem: we first solve the
linear program over the rational numbers with a standard
method (e.g. the Simplex algorithm). We then try to
derive a solution with integer βk, l from the rational solu-
tion.

5.2.1 LPR: round-off The most straightforward
approach is to simply round rational βk, l values to the

largest smaller integer. Formally, if ( k, l, k, l) is a rational
solution to the linear program, we build the following solu-
tion:

.

With these new values, we have k, l k, l and k, l

k, l for all indices k, l. Furthermore, ( , ) is a valid solu-

tion to the mixed linear program (6) in which all k, l take
integer values. We label this method LPR.

5.2.2 LPRG: round-off + greedy Rounding down all
the βk, l variables with LPR may lead to a very poor result
as the remaining network capacity is unutilized. The
LPRG heuristic reclaims this residual capacity by apply-
ing the technique described in Section 5.1. Intuitively,
LPR gives the basic framework of the solution, while the
greedy heuristic refines it.

5.2.3 LPRR: randomized round-off Relaxing an
integer linear program into rational numbers is a classi-
cal approach, and several solutions have been proposed.
Among them is the use of randomized approximation.
Motwani, Naor, and Raghavan (1996) propose this approach
to solve a related problem, the multicommodity flow
problem. Using Chernoff bounds, they prove that their
algorithm leads, with high probability, to a feasible solu-
tion that achieves the optimal throughput. Although this
theoretical result seems attractive, it has some drawbacks
for our purpose. First, our problem is not a multicom-
modity flow problem: instead of specifying a set of
flow capacities for between node pairs, we have global
demands for the sum of all flows leaving each node (rep-
resenting the total amount of work sent by this node).
Second, to obtain their optimality result, the authors in
Motwani et al. (1996) rely on the assumption that the
capacity of each edge is not smaller than a bound (5.2 ×
ln(4m) where m is the number of edges), and we do not
have a similar property here. Third, there are two cases of
failure in the randomized algorithm (even though the
probability of such failures is proved to be small): either
the algorithm provides a solution whose objective func-

αk

πk
----- 

 

≠

gk

δk

----
gk m,

δk

---------
gm

δk

-----
sm

wk

-----, , ,
 
 
 

sk

wk
----- 

  ≤ ≤

≠

maxm k≠ min
gk

δk

----
gk m,

δk

---------
gm

δk

-----
sm

wk

-----, , ,
 
 
 

 
 
 

←

←
≠

li∀ Lk l,∈ ,
max-connect li( ) max-connect li( ) 1–←
gk gk alloc.δk gl gl alloc.δk,–←,–←
βk l, βk l, 1+←

α̃ β̃

k l β̂k l,, ,∀ β̃k l,= α̂k l,, min α̃k l,
β̃k l, gk l,⋅

δk

--------------------------,
 
 
 

=

β̂ ≤ β̃ α̂ ≤
α̃ α̂ β̂

β̂

 © 2006 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at UNIV OF FLORIDA Smathers Libraries on February 9, 2007 http://hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com


372 COMPUTING APPLICATIONS

tion is suboptimal (which is acceptable), or it provides a
solution which does not satisfy all the constraints (which
is not acceptable).

Coudert and Rivano (2002) proposed a rounding heu-
ristic based on the method of Hochbaum (1997, Chapter 11)
in the context of optical networks. Their method seems
more practical as it always provides a feasible solution.
We use a similar approach and our heuristic, LPRR, works
as follows:

1. Solve the original linear program with rational num-

bers. Let ( k, l, k, l) be the solution.

2. Choose a route k, l at random, such that k, l  0.
3. Randomly choose Xk, l  {0, 1} with probability

P(Xk, l = 1) = k, l – .

4. Assign the value v =  + X to βk, l by adding
the constraint βk, l = v to the linear program.

5. If there is at least a route k, l for which no βk, l

value has been assigned, go to step 2.

Note that LPRR solves K2 linear programs, and is thus
much more computationally expensive than our other
LP-based heuristics.

6 Experimental Results

6.1 Methodology

In this section, we use simulation to evaluate the G, LPR,
LPRG, and LPRR heuristics described in Section 5. Ide-
ally the objective values achieved by these heuristics should
be compared with the optimal solution, i.e. the solution to
the mixed linear problem. However, solving the mixed
linear problem takes exponential time and we cannot
compute its solution in practice. Instead we use the solu-
tion to the rational linear problem as a comparator, as it
provides an upper bound on the optimal solution (i.e. it
may not be achievable in practice as βk, l values must be
integers).

One important question for creating relevant instances
of our problem is that of the network topology. Indeed,
the underlying topology impacts the relative performance
of different heuristics. We evaluated our heuristics on
two classes of network topologies. First, we generated
a comprehensive set of topologies with Tiers (Calvert,
Doar, and Zegura 1997), which has been widely accepted
as a generator of realistic wide-area network topologies.
Second, to try to get more insight into whether the nature
of the network topology has a large impact on the relative
performance of our heuristics, we generated simple ran-
dom graphs in which each pair of nodes was connected

with a certain probability. We describe both topologies in
detail below.

(1) Tiers-generated topologies. We randomly generated
100 two-level topologies with Tiers, each topology con-
taining 40 WAN nodes and 30 MAN networks each contain-
ing 20 MAN nodes. We did not generate LAN networks
as in our model we abstract them as a single cluster/site
that delivers computation to the applications. We set a
high connection redundancy value to reflect the rich con-
nectivity between backbone nodes. Each of these topologies
contains approximately 700 nodes. For each topology, we
randomly select K = 5, 7, …, 90 nodes as clusters partici-
pating in the computation of divisible load applications.
For these K nodes we determine all pair-wise shortest
paths (in hops), and we then delete the nodes not on any
shortest paths, so as to be left with the topology intercon-
necting the sites participating in the computation. Note
that in this “pruned” topology, there are nodes that we did
not originally select but happen to be on the shortest paths
between nodes that we had selected. We consider these
nodes purely as routers that do not perform any computa-
tion, which can be easily expressed in the linear program
defined in Section 3.1 by adding corresponding constraints
but not modifying the objective function. Figure 3(a) shows
a sample original Tiers topology, and Figure 3(b) shows
the corresponding pruned topology.

Once the topology is specified, we assign ranges of val-
ues to sk, gk, max-connect(lk), δk, wk, and πk as follows. The
local bandwidth at each site, gk, and the link bandwidth,
bw(li), is set according to a comprehensive measurement
of internet end-to-end bandwidths (Lee and Stepanek
2001). This study shows that the logarithm of observed
data transfer rates are approximately normally distributed
with mean log(2000 kbits/sec), and standard deviation
log(10), which we use to generate random values for gk and
bw(li). We generate all the other parameters according to
uniform distributions with ranges shown in Table 1. For
each of our pruned Tiers topologies we generate 10 plat-
form configurations with random instantiations of the

α̃ β̃
β̃ ≠

∈
β̃ β̃k l,

β̃k l,

Table 1
Platform parameters for Tiers-generated 
topologies

Parameter Distribution

K 5, 7, …, 90

log(bw(lk)), log(gk) normal (mean = log(2000),

  std = log(10))

sk uniform, 1000–10000

max-connect, δk, wk, πk uniform, 1–10
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Fig. 3 Sample full and pruned Tiers topology.
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above parameters. In total, we performed experiments
over 29298 generated platform configurations.

(2) Random graph topologies. We randomly generated
graphs with k = 5, 15,..., 95 nodes. Any two nodes are con-
nected with probability connectivity, which we vary. As
for the Tiers-generated topologies, we assume shortest
path routing. We also define a heterogenity parameter that
specifies the maximum spread of values for a single param-
eter across nodes/links in the platform, used as follows.
Table 2 shows the mean parameter values used for instan-
tiating the platform configuration. For each combination
of these mean values we generate 10 random platform con-
figurations by sampling each platform parameter uniformly
between mean * (1 – heterogeneity) and mean * (1 + heter-
ogeneity), where mean denotes the corresponding mean
value. Note that since only relative values are meaningful
in this setting, we fixed the computing speed at sk = 100.
In total we performed experiments over 269835 random
platform configurations.

6.2 Results

6.2.1 LPR Our first (expected) observation from our
simulation results is that LPR always performs poorly,
for both Tiers-generated and random graph topologies. In
most cases, LPR leaves a significant portion of the network
capacity unutilized, and in some cases all βk, l values are
actually rounded down to 0, leading to an objective value
of 0.

6.2.2 G vs. LPRG More interesting is the comparison
between G and LPRG. Their relative performance is clearly
dependent on topologies.

(1) Tiers-generated topologies. In these cases, G per-
formed consistently better than LPRG. Over all platform

configurations, the average ratio of the objective function
achieved by G to that by LPRG was 1.18, with a standard
deviation of 31.5, and G was better than LPRG in 81% of
the cases. For a closer look, Figure 4(a) plots the average
ratio of the objective values achieved by G and LPRG to
the upper bound on the optimal obtained by solving the
rational linear program, versus the number of clusters K.
We see that G achieved objective values about 5% ~ 10%
higher than LPRG in most cases. But as K increases, both
heuristics failed to achieve objective values close to the
upper bound on the optimal.

To explain the poor performance of LPRG relative to
G, we examined the simulation logs closely. It turns out
that, after solving the rational linear program, there are often
some clusters that send a portion of their load to other
clusters using a rational number of network connections
that is strictly lower than 1. After rounding this value down
to 0, such clusters then have no opportunity to send off
this load portion and become oversubscribed: they take the
objective value of the rational linear program down. Con-
versely, the clusters that were supposed to receive this
load are now undersubscribed and have cycles to spare.
During the greedy step, the G heuristic sometimes picks an
undersubscribed cluster first, which causes this cluster to
use up its own spare cycles for its own load. This does not
help the MAX-MIN objective value as this cluster was
typically better off than the oversubscribed clusters. Fur-
thermore, one or more oversubscribed clusters have now
lost the opportunity to use these cycles, which harms the
MAX-MIN objective value. In contrast, when the G heu-
ristic starts from scratch, it balances the load better by
allowing such undersubscribed clusters to use a full net-
work connection early on in the resource allocation proc-
ess.

(2) Random graph topologies. Over these topologies,
the ratio of objective function achieved by LPRG to that
by G was 1.98 on average, which is quite different from the
results we obtained for Tiers-generated topologies. Fig-
ure 4(b) shows that, when there are few nodes in the net-
work, G was slightly better; but as K increased, LPRG
increasingly performed better than G. While these ran-
dom topologies are not representative of actual networks,
it would be interesting to understand which properties of
the interconnection topology affect the relative perform-
ance of G and LPRG. For now we conjecture that with a less
structured topology, such as high-connectivity random
graphs, the G heuristic has more opportunity to make bad
choices when compared with LPRG, while with a more
structured topology, such as tree-structured ones generated
by Tiers, the number of choices is more limited and a
greedy approach is effective. We did not find any signifi-
cant trend in the relative performance of G and LPRG
with respect to the heterogeneity parameter.

Table 2
Platform parameters for random graph 
topologies

Parameter name Value range

K 5, 15, …, 75

connectivity 0.1, 0.2, …, 0.8

gk 50, 250, 450, 650, 850

bw(lk) 10, 30, …, 90

max-connect 5, 15, …, 45

sk 100

heterogeneity 0.4, 0.6, 0.8
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Fig. 4 Performance of G, LPRG and LPRR, relative to the upper bound of the optimal.

 © 2006 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at UNIV OF FLORIDA Smathers Libraries on February 9, 2007 http://hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com


376 COMPUTING APPLICATIONS

6.2.3 LPRR Figure 4(a) and 4(b) show that LPRR
performed consistently better than both G and LPRG, for
both types of topologies. For Tiers-generated topologies,
LPRR achieved an objective value very close to the upper
bound of the optimal, even at K = 45. LPRR almost
always achieved the upper bound for the random graph
topologies. Explaining why LPRR performed better on
random graph topologies than on Tiers-generated topolo-
gies is left for future work. Note that since LPRR is much
more time consuming than the other heuristics, solving
K2 linear programs, we evaluated LPRR only on a small
subset of our topologies.

6.2.4 Running Time Figure 5 shows how time-
consuming each of our heuristics were and plots their
running time in seconds on a 1GHz Pentium processor
versus the number of clusters, on a logarithmic scale.
These running times were obtained when running our
heuristics on the Tiers-generated topologies. We see that
LPRR was very expensive: at K = 50, each run of LPRR
took approximately 1 hour, as opposed to 10 to 30 seconds
for G and LPRG. This implies that for a real platform
with many clusters G and LPRG may be more practical
than LPRR.

7 Perspectives on Implementation

In this section we discuss how our work and results could
be implemented as part of a framework for deploying
divisible load applications. Consider a Virtual Organization
(VO; Foster, Kesselman, and Tuecke 2001) in which par-
ticipating sites hold resources that they are willing to con-
tribute for the execution of divisible load applications, as
well as users who wish to execute such applications. The
G heuristic could be implemented as part of a centralized
broker that would manage divisible load applications and
the resources they can use, for the entire VO. VO partici-
pants would register their resources to the broker, and
application requests would be submitted to the broker
by users. Note that because our work aims at optimizing
steady-state throughput, it provides very good schedules
for situations in which applications run for a significant
amount of time so that the start-up and clean-up phases
of application executions are negligible when compared
with the entire application execution time. This is a likely
scenario in a VO that supports VO-wide application exe-
cutions.

The broker needs to gather all relevant information to
instantiate the LP formulation of the scheduling problem

Fig. 5 Running time of G, LPRG and LPRR.
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(which is needed to implement the G heuristic as well), as
given in Section 3.1. Most important are the πk coeffi-
cients that are used to define the objective function. These
coefficients define the policies that govern resource shar-
ing over the entire grid, and these policies should be con-
figured at the broker by a VO administrator (or by any
kind of contracting system that is in place in the VO). As
mentioned in Section 3.1, the objective function can be
extended so that different weights are associated for each
pair of sites, πk, l, thereby quantifying peering relationships
between VO participants. Furthermore, other constraints
can be added to the linear program to reflect other arbi-
trary resource sharing policies (e.g. no more than 10% of
resources at cluster k can be used for applications origi-
nating from clusters i and j). The main point here is that
our linear program can be refined to express a wide vari-
ety of resource sharing policies and peering relationships
among VO participants. It would be interesting to see how
the G heuristic compares with LPRG and LPRR for more
constrained scheduling problems. The broker also needs
to be configured so that the number of network connec-
tions used by divisible load applications in the VO does
not exceed the max-connect threshold. While in this
paper we have looked at a general model in which every
link has its own threshold, in practice the VO administrator
may not have sufficient knowledge of the network topol-
ogy. In this case VO administrators would just configure a
limit on the number of connections on each path between
each pair of participating sites, and the same limit could be
enforced for each path. The broker needs to have estimates
of the compute and transfer speeds that are achieved on
the resources. This can be done by querying grid infor-
mation services (Wolski, Spring, and Hayes 1999; Cza-
jkowski et al. 2001; Ganglia), or by directly observing the
performance being delivered by the resources. The latter
method may prove easier to implement if divisible load
applications are continuously running. The best solution
is probably to use both methods and combine them to obtain
estimates of achievable performance, as done for instance
in (Casanova and Berman 2003). The broker needs to adapt
its scheduling decisions as resource availability fluctuates
and as applications start and complete. One simple option
is to allow adaptation to occur after each scheduling period.
Additionally, the schedule could be recomputed on-the-
fly as soon as a new application is submitted to the broker
or a running application completes.

An intriguing question is that of a decentralized imple-
mentation of the broker. In most of today’s VOs a central-
ized broker could probably be engineered in a way that
provides appropriate scalability and performance. But in
larger VOs the broker could become a performance bot-
tleneck (not to mention it being a single point of failure).
In distributed brokering multiple independent brokers
would either cooperate, perhaps in a peer-to-peer fashion,

or make their own decisions autonomously. Distributed
scheduling is a notoriously difficult question. However, a
few simple and elegant solutions have been provided in
some specific cases (e.g. see Carter et al. 2003), and it
would be interesting to investigate whether a distributed
algorithm exists that generates a schedule approaching
the solution of our linear program.

Finally, it would be straightforward to provide client-
side software by which users could specify, instantiate, and
submit their applications to the broker. In fact, the APST
software has recently been extended to support divisible
load applications (Raadt, Yang, and Casanova 2004). APST
provides its own broker that schedules a single application
over resources and that handles all deployment logistics
for computation, data, resource, and security management.
As such, the APST software would provide a good basis
on which to build a more general broker that supports
multiple applications within a VO.

8 Conclusion

We have addressed the steady-state scheduling problem
for multiple concurrent divisible applications running on
platforms that span multiple clusters distributed over wide-
area networks. This is an important problem because divis-
ible load applications are common and make up a signifi-
cant portion of the mix of grid applications. Only a few
authors had previously explored the simultaneous sched-
uling of multiple such applications on a distributed com-
puting platform (Bharadwaj and Barlas 2002; Wong et al.
2003) and in this paper we have made the following con-
tributions. We defined a realistic platform model that cap-
tures some of the fundamental network properties of grid
platforms. We then formulated our scheduling problem as
a mixed integer-rational linear program that enforces a
notion of weighted priorities and fairness for resource
sharing between applications. We proposed a greedy heu-
ristic, G, and three heuristics based on the rational solution
to the linear program: LPR, LPRG, and LPRR. We evalu-
ated these heuristics with extensive simulation experiments
for many random platform configurations whose network
topologies were generated by Tiers (Calvert, Doar, and
Zegura 1997) or were based on purely random graphs. We
found that the G heuristic performs better than LPRG on
average for the Tiers-generated topologies, and that its
performance relative to an upper bound of the optimal
decreases with the number of clusters in the platform. We
found that for random graph topologies LPRG outper-
forms G as soon as the number of clusters becomes larger
than 15. Here also, the performance of LPRG decreases
as the number of clusters increases. We also found that
the LPRR heuristic leads to better schedules than G but at
the cost of a much higher complexity, which may make it
impractical for large numbers of clusters.
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We will extend this work in several directions. First,
we will simulate platforms and application parameters that
are measured from real-world testbeds and applications
suites (Beynon et al. 2002; Spencer et al. 2002). We have
gathered such information as part of other research projects.
While this paper provides convincing evidence of the rel-
ative merit of our different approaches, simulations instan-
tiated specifically with real-world data will provide a
quantitative measure of absolute performance levels that
can be expected with the best heuristics. Second, we will
strive to use an even more realistic network model, which
would include link latencies, TCP bandwidth sharing
behaviors according to round-trip times, and more pre-
cise backbone characteristics. Some of our recent work (see
Legrand, Marchal, and Casanova 2003; Casanova 2004)
provides the foundation for refining our network model,
based both on empirical measurements and on theoretical
modeling of network traffic. Finally, one could envision
extending our application model to address the situation
in which each divisible load application consists of a set
of tasks linked by dependencies. This would be an
attractive extension of the mixed task and data parallelism
approach (Chakrabarti, Demmel, and Yelick 1997; Subhlok
and Vondran 2000; Braun et al. 2001) to heterogeneous
clusters and grids.

Appendix

We give the proof of Theorem 1 in this section.

Theorem 1. STEADY-STATE-DIVISIBLE-LOAD(�, π,
ρ) is NP-complete.

Proof. We first prove that this problem belongs to NP.
Given an instance � of STEADY-STATE-DIVISIBLE-
LOAD, we verify that � = (α, β) is a valid allocation

by checking that Equations 6 are satisfied, and that

mink ρ, which can be done in polynomial time.

To prove the completeness of STEADY-STATE-
DIVISIBLE-LOAD, we proceed by a reduction from
MAXIMUM-INDEPENDENT-SET, which is known to
be NP-complete (Garey and Johnson 1979). Consider an
arbitrary instance �1 of MAXIMUM-INDEPENDENT-
SET: given a non-oriented graph G = (V, E) and an inte-
ger bound B, does there exist a subset V  of V of cardinal
at least B and such that no two vertices of V  are joined
by an edge of E? From �1, we construct the following
instance �2 of STEADY-STATE-DIVISIBLE-LOAD:

• Let V = {V1, …, Vn}. The platform of �2 consists of n + 1
clusters C0, C1, …, Cn. A set Route(i) is associated with
each cluster Ci and will be used to determine the rout-
ing in the platform as explained below.

• E = {e1, …, em}. For each edge ek = (Vi, Vj)  E, we
add in the platform graph:
• two routers  and ,
• a backbone link between them: l  = ( , ),

with max-connect(lk) = 1 and bw(lk) = 1,
• a new element k in Route(i) and Route(j).
Then, for each set Route(i) = {k1, …, k } associ-
ated to cluster Ci, we add the following backbone links,
all with max-connect(l) = 1 and bw(l) = 1:

• Finally, the routing between cluster C0 and cluster Ci is
given by the following routing path:

(7)

• Cluster C0 has specific characteristics: g0 = n and s0 = 0,
while all other clusters are such that gi = si = 1.

• We let δk = wk = 1 for each application Ak, and we set
the priority factors to π0 = 1 and πi = 0 for j = 1, …, n
(C0 is the only cluster which has work to do).

• The throughput bound ρ of �2 is set to B.

The platform graph that we have constructed has a strong
property which is expressed in the following lemma:

Lemma 1. Two routes (C0, Ci) and (C0, Cj) in the plat-
form graph of instance �2 share a common backbone link
if and only if the edge (Vi, Vj) belongs to the graph G of
instance �1.

Fig. 6 Example of instance �1 of MAXIMUM-INDE-
PENDENT-SET.
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Proof. Assume first that edge ek = (Vi, Vj) belongs to G.
Then, by construction, as k is added to the list Route(i)

and Route(j), the corresponding link l  belongs both

to L0, i and L0, j: the routes (C0, Ci) and (C0, Cj) share the

common link l .

Assume now that routes (C0, Ci) and (C0, Cj) share a
backbone link. According to Equation 7, this link is a

l  for some k. As l L0, i and l L0, j,

then k Route(i) and k Route(j). The construction of
these sets shows that there is an edge ek between Vi and Vj

in G.
We now prove that there exists a solution to �1 if and

only if there exists a solution �2:

• Assume that there exists an independent set V  solu-
tion of �1 (so |V | B). From V , we construct the fol-
lowing allocation �:

As V  is an independent set, there is no edge in G
between any two vertices of V , so there is no common
backbone link between the routes defined by non-zero

values of the β's. Each backbone is used by at most one
route, and since max-connect = 1 for all backbones,
Equation 3 is satisfied. There are |V | (which is less
than n) different routes outgoing from C0, and none
incoming to it, so Equation 2 is fulfilled since g0 = n.
For all other clusters Ci (i > 0), at most one route with
bandwidth 1 is incoming and none is outgoing, so
Equation 2 is satisfied since gi = 1. Each cluster Ci

such that Vi V  has to compute an amount of work of
1 unit, which is not more than its speed, so Equation 1
is satisfied.
Hence, (α, β) defines a valid allocation which reaches
the throughput of |V | B = ρ. This is a solution for
�2.

• Assume now that (α, β) is a solution of �2, which
means that it is a valid allocation whose throughput is
at least ρ. As C0 has no computing power, it has to del-
egate the work to other clusters. Each other cluster has
a computing speed of one task every time-unit, so there
exist at least ρ different routes from cluster C0 to ρ dis-
tinct clusters C , …, C . Since max-connect = 1 for
each backbone link, only one route can go through
each backbone link. Hence, for every couple of routes
to clusters C  and C , no link is shared, which means
that there is no edge (Vi, Vj) in the original graph. So
the set of the corresponding vertices V  = {V , …,
V } is an independent set in G. As the cardinal of this
set is ρ = B, V  is a solution of the instance �1.

Fig. 7 Instance �3 of STEADY-STATE-DIVISIBLE-LOAD built from the previous instance example �1.
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