
Pipelining Broadcasts on
Heterogeneous Platforms

Olivier Beaumont, Arnaud Legrand, Loris Marchal, Student Member, IEEE, and

Yves Robert, Senior Member, IEEE

Abstract—In this paper, we consider the communications involved by the execution of a complex application, deployed on a

heterogeneous platform. Such applications extensively use macrocommunication schemes, for example, to broadcast data items.

Rather than aiming at minimizing the execution time of a single broadcast, we focus on the steady-state operation. We assume that

there is a large number of messages to be broadcast in pipeline fashion, and we aim at maximizing the throughput, i.e., the (rational)

number of messages which can be broadcast every time-step. We target heterogeneous platforms, modeled by a graph where

resources have different communication and computation speeds. Achieving the best throughput may well require that the target

platform is used in totality: We show that neither spanning trees nor DAGs are as powerful as general graphs. We show how to

compute the best throughput using linear programming, and how to exhibit a periodic schedule, first when restricting to a DAG, and

then when using a general graph. The polynomial compactness of the description comes from the decomposition of the schedule into

several broadcast trees that are used concurrently to reach the best throughput. It is important to point out that a concrete scheduling

algorithm based upon the steady-state operation is asymptotically optimal, in the class of all possible schedules (not only periodic

solutions).

Index Terms—Scheduling, collective communications, NP-completeness, broadcast, heuristics, heterogeneous clusters, grids.

�

1 INTRODUCTION

BROADCASTING in computer networks is the focus of a vast
literature. The one-to-all broadcast, or single-node

broadcast [1], is the most primary collective communication
pattern: Initially, only the source processor has the data that
needs to be broadcast; at the end, there is a copy of the
original data residing at each processor.

Parallel algorithms often require to send identical data to
all other processors, in order to disseminate global informa-
tion (typically, input data such as the problem size or
application parameters). Numerous broadcast algorithms
have been designed for parallel machines such as meshes,
hypercubes, and variants (see, among others, [2], [3], [4], [5],
[6]). The one-to-all MPI routine [7] is widely used, and a
particular case has been given to its efficient implementa-
tion on a large variety of platforms [8]. There are three main
variants considered in the literature:

Atomic broadcast: The source message is atomic, i.e.,
cannot be split into packets. A single message is sent
by the source processor, and forwarded across the
network.

Pipelined broadcast: The source message can be split into
an arbitrary number of packets, which may be routed in
a pipelined fashion, possibly using different paths.

Series of broadcasts: The same source processor sends a
series of atomic one-to-all broadcasts, involving messages

of the same size. The processing of these broadcasts can be
pipelined.

For the first two problems, the goal is to minimize the
total execution time (or makespan). For the third problem,
the objective function is rather to optimize the throughput
of the steady-state operation, i.e., the average amount of
data broadcast per time-unit.

In the case of the atomic broadcast, there is no reason why
a processor (distinct from the source) would receive the
message twice. Therefore, the atomic broadcast is fre-
quently implemented using a spanning tree. In the case of
the pipelined broadcast, things get more complex: The idea is
to use several edge-disjoint spanning trees to route
simultaneously several fractions of the total message. Along
each spanning tree, the message fraction is divided into
packets, which are sent in a pipelined fashion, so as to
minimize start-up idle times. See [3] for an illustration with
two-dimensional meshes.

The series of broadcasts problems has been considered by
Moore and Quinn [9], and by Desprez et al. [10], but with a
different perspective: they consider that distinct processor
sources successively broadcast one message, and their goal
is to load-balance this series of communications. Here, we
assume that the same source processor initiates all the
broadcasts: This is closer to a master-slave paradigm where
the master disseminates the information to the slaves in a
pipelined fashion, for instance, the data needed to solve a
collection of (independent) problem instances.

The series of broadcasts resembles the pipelined broadcast
problem in that we can solve the latter using an algorithm
for the former: This amounts to fix the granularity, i.e., the
size of the atomic messages (packets) that will be sent in
pipeline. However, an efficient solution to the pipelined

300 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 16, NO. 4, APRIL 2005

. O. Beaumont is with LaBRI, UMR CNRS 5800, Bordeaux, France.
E-mail: Olivier.Beaumont@labri.fr.

. A. Legrand, L. Marchal, and Y. Robert are with LIP, UMR CNRS-INRIA
5668, ENS Lyon, France.
E-mail: {Arnaud.Legrand, Loris.Marchal, Yves.Robert}@ens-lyon.fr.

Manuscript received 11 Sept. 2003; revised 17 May 2004; accepted 19 Aug.
2004; published online 23 Feb. 2005.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-0160-0903.

1045-9219/05/$20.00 � 2005 IEEE Published by the IEEE Computer Society

broadcast problem would require to determine the size of the
packets as a function of the total message length.

In this paper, we revisit the series of broadcasts problem
(and very briefly the pipelined broadcast problem) in the
context of heterogeneous computing platforms. Several
authors have recently studied broadcasting with processors
communicating with their neighbors along links with
different capacities, and/or different start-up costs (see
Section 8 on related work), but they mainly restricted to the
atomic broadcast problem. Our approach focuses on the
steady-state operation, and can be viewed as a fluid
relaxation of the makespan minimization problem, which
concentrates on the average quantities of messages sent
through each links and forget about initialization and clean-
up phases. Our algorithm, relying on tools such as linear
programming, network flows, and graph theory, provides a
periodic schedule, described in a compact form, which
reaches the optimal throughput. Thanks to the periodicity
of the schedule, it is possible to dynamically record the
observed performance, and to inject this information into
the algorithm to compute the optimal schedule for the next
period. This makes it possible to react on the fly to resource
availability variations, which is a key characteristic of
nondedicated Grid platforms.

The rest of the paper is organized as follows: The next
section (Section 2) is devoted to the formal specification of
our broadcast problems and of the target heterogeneous
network. Section 3 is devoted to comparing topologies for
the series of broadcasts problem. In Section 4, we move to the
design of the optimal steady-state algorithm, when the
target network is a directed acyclic graph (DAG). Our major
result, in Section 5, is the extension of this result to the latter
case of an arbitrary network graph. Next, in Section 6, we
informally state two asymptotic results, for the series of
broadcasts and the pipelined broadcast problems. We report
some experimental data in Section 7. We briefly survey
related work in Section 8, and we state some concluding
remarks in Section 9.

2 FRAMEWORK

The target architectural platform is represented by an edge-
weighted directed graph G ¼ ðV ;E; cÞ, as illustrated in
Fig. 1. Note that this graph may well include cycles and
multiple paths. Let p ¼ jV j be the number of nodes. There is

a source node Ps, which plays a particular role: It initially
holds all the data to be broadcast. All the other nodes Pi,
1 � i � p; i 6¼ s, are destination nodes which must receive
all the data sent by Ps.

There are several scenarios for the operation of the
processors, which will be discussed in Section 8. In this
paper, we concentrate on the one-port model, where a
processor node can simultaneously receive data from one
of its neighbor, and send (independent) data to one of its
neighbor. At any given time-step, there are at most two
communications involving a given processor, one in
emission and the other in reception.

Each edge ej;k : Pj ! Pk is labeled by a value cj;k which
represents the time needed to communicate one unit-size
message from Pj to Pk (start-up costs are dealt with below,
for the pipelined broadcast problem). The graph is directed,
and the time to communicate in the reverse direction, from
Pk to Pj, provided that this link exists, is ck;j. Note that if
there is no communication link between Pj and Pk, we let
cj;k ¼ þ1, so that cj;k < þ1 means that Pj and Pk are
neighbors in the communication graph. We state the
communication model more precisely: If Pj sends a unit-
size message to Pk at time-step t, then 1) Pk cannot initiate
another receive operation before time-step tþ cj;k (but, it
can perform a send operation), and 2) Pj cannot initiate
another send operation before time-step tþ cj;k (but, it can
perform a receive operation).

Series of broadcasts: In the series of broadcasts problem,
the source processor broadcasts a (potentially infinite)
sequence of unit-size messages. Start-up costs are included
in the values of the link capacities cj;k. The optimization
problem SERIESðV ;E; cÞ is to maximize the throughput. We
work out a little example in Section 3, using the platform
represented in Fig. 1.

Pipelinedbroadcast: In thepipelined broadcastproblem, the
source processor broadcasts a large message of total size L.
Themessage can be split into an arbitrary number of packets.
The time to send a packet of size nj;k from Pj to Pk is
�j;k þ nj;kcj;k.We include the start-up costs in the definition of
the platform graph, which becomes G ¼ ðV ;E; c; �Þ. The
optimization problem PIPEðV ; E; c; �; LÞ is to minimize the
makespan, i.e., to find the number and size of thepackets, and
a routing scheme for each broadcast packet, so that the total
execution time is as small as possible.

3 COMPARING TOPOLOGIES FOR SERIES OF

BROADCASTS

In this section, we work out a small example, whose
objective is to show the difficulty of the problem. We
compare the best throughput that can be achieved using a
tree, a directed acyclic graph (DAG), or the full topology
with cycles.

3.1 Optimal Solution

Consider the simple example of the network described in
Fig. 1. The best throughput that can be achieved on this
network is 1, i.e., one message is broadcast every time-step
after some initialization phase. On the one hand, since the
source cannot sendmore than onemessage at each time-unit,
the best throughput is less than or equal to 1. On the other

BEAUMONT ET AL.: PIPELINING BROADCASTS ON HETEROGENEOUS PLATFORMS 301

Fig. 1. Simple network topology. The value of cj;k is indicated along each

edge. The node Ps is the source of the broadcasts.

hand, a feasible schedule for a series of broadcasts realizing

this throughput is given in Fig. 2, wheremessages are tagged

by their number, and columns represent time-steps. The

schedule is periodic, with period length T ¼ 2, and steady-

state is reached at time-step t ¼ 5: A new broadcast is then

initiated by the source processor every time-step, so that the
throughput of the schedule is equal to 1.

Here are a few comments to read Fig. 2. At time-step

t ¼ 1, the source processor Ps sends the first message m1 to

P1. At time-step t ¼ 2, the source processor Ps sends the

second message m2 to P2. Every odd-numbered step, Ps,

sends a new message to P1, and every even-numbered step,

Ps, sends a new message to P2. P1 is idle at time-steps t ¼ 1

and t ¼ 3: Since it has not yet reached its steady-state, we

have indicated fictitious messages (represented as empty
boxes), which it would have received from Ps if the

computation had started earlier. At time-step t ¼ 2, P1

forwards the first message m1 to P2. Every even-numbered

time-step, P1, forwards to P2 the message that it has

received from Ps during the previous step. At step t ¼ 5, P1

forwards two-messages to P3: message m1 that it received

from Ps at t ¼ 1, and message m2 that it received from P2 at
t ¼ 3. Because the link is twice faster (c1;3 ¼ 1=2), one time-

step is enough for sending both messages. From then on,

every odd-numbered time-step, P1 sends two messages to

P3. P2 operates in a similar fashion, alternately sending one

message to P1 and two messages to P4.
We further use the example to illustrate the “superiority”

of general graphs over DAGs, and of DAGs over spanning

trees, for the SERIES problem.

3.2 Broadcast Trees

As already pointed out, the atomic broadcast is frequently

implemented using a spanning tree. This raises a natural

question: What is the best throughput that can be achieved

for the SERIES problem, using a single spanning tree to
broadcast all the messages? A broadcast tree T ¼ ðV ;ET Þ is
a subgraph of G, which is a spanning tree rooted at Ps,

source of the broadcast. The broadcast tree can be used to

broadcast r messages within a time-unit (in steady state) if

the one-port constraints are satisfied:

8i 2 V
X

j2V ;ðPi;PjÞ2ET

r� ci;j � 1: ð1Þ

These are the constraints for outgoingmessages: Equation (1)
simply states that each node i needs the time to send the
message to all of its children in the broadcast tree. As a node
receives its messages from only one node (its parent in the
tree), the constraint on incoming messages writes
r� cfðiÞ;i � 1, where fðiÞ is the parent of i inT . This constraint
is satisfied for i as soon as (1) is verified for fðiÞ, so we can
discard this constraint. In the following, we let TP(T) denote
the throughput of a broadcast tree T .

What is the maximal throughput TP(T) that can be
achieved using a subtree of the platform described on Fig. 1?
We can build two kinds of spanning trees: either both P1 and
P2 are children of the source, or only one of them is a child of
the source in the tree.

In the first case, where P1 and P2 are directly linked to
the source, we obtain the broadcast tree of Fig. 3a.
Obviously, because of the one-port constraint for the source
processor, this is the best throughput that can be achieved
using this tree. A schedule reaching this throughput is
represented in Fig. 3b.

In the second case, one of the vertices P1 and P2 is not
directly linked to the source. Without loss of generality, we
assume that the edge ðPs; P2Þ does not belong to the tree.
This leads to the spanning tree of Fig. 4a, whose optimal
throughput is TPðT Þ ¼ 2=3. Indeed, the one-port constraint
for processor P1 states that P1 needs 1:5 time-steps to
transfer a message to its children P2 and P3, so we cannot
achieve more than 2 broadcasts every 3 time-steps. We can
indeed achieve this throughput TPðT Þ ¼ 2=3, as illustrated
in Fig. 4b. Overall, this is the best throughput that can be
obtained with a broadcast tree in this network. The best
throughput has been determined by an exhaustive search
among all possible trees (what is easy on such a small
platform). Note that finding the best spanning tree in a
platform, with respect to throughput maximization, is a NP-
Complete problem [11].

3.3 Broadcast DAGs

We choose a less restrictive assumption and try to extract a
Directed Acyclic Graph (DAG), instead of a broadcast tree,
out of the network.Of course,we look for aDAGwith a single

302 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 16, NO. 4, APRIL 2005

Fig. 2. An optimal schedule for the network of Fig. 1, achieving a throughput of 1 message broadcast every time-step.

entry vertex, namely, the source processor. Can we get a
better throughput than with a tree? The answer is positive.
There are only two candidates DAGs which do not reduce to
spanning trees: the DAG shown in Fig. 5a, and its symmetric
counterpart where the edge ðP1; P2Þ is replaced by the edge
ðP2; P1Þ. Without loss of generality, we restrict to the DAG of
Fig. 5a. Because the first broadcast tree of Fig. 3a is a subgraph
of the DAG, we can achieve a throughput at least 1=2.
However, it is possible to achieve an even better throughput.
Fig. 5b illustrates how to initiate 4 broadcasts every 5 time-
steps, hence a throughput 4=5. It turns out that this is the
optimal solution with this DAG:We explain in Section 4 how
to compute the best throughput for a DAG.

As a conclusion, we point out that the best throughput
achieved for the SERIES problem strongly depends upon the
graph structure allowed for transferring the messages. As
the little example shows, restricting to trees is less powerful
than using DAGs (throughput of 4

5 instead of 2
3), and

restricting to DAGs is less powerful than using the full
network graph (throughput of 1 instead of 4

5).
It turns out that computing the optimal throughput for

the SERIES problem is much easier when restricting to

DAGs than when dealing with arbitrary graphs (includ-
ing cycles). Therefore, we give the solution for DAGs in
Section 4 to prepare for the difficult algorithm for general
graphs (Section 5).

4 SERIES OF BROADCASTS ON A DAG

In this section, we assume the network is organized as a
DAG rooted at the source Ps, and that all nodes are
reachable from the source. Under this hypothesis, we
provide an algorithm to compute the optimal solution to
the SERIESðV ;E; cÞ optimization problem. We let nj;k denote
the (fractional) number of unit-size messages sent from
processor Pj to processor Pk during one time-unit, and tj;k
denote the fraction of time spent by processor Pj to send
messages to Pk during one time-unit. As above, cj;k is the
time needed to perform the transfer of a unit-size message
on edge ðPj; PkÞ. A first equation links the two previous
quantities:

tj;k ¼ nj;k � cj;k: ð2Þ

BEAUMONT ET AL.: PIPELINING BROADCASTS ON HETEROGENEOUS PLATFORMS 303

Fig. 3. Broadcasting a message from Ps using the first spanning tree (throughput: 1/2). (a) First broadcast tree and (b) corresponding schedule.

Fig. 4. Broadcasting a message from Ps using the second spanning tree (throughput: 2/3). (a) Second broadcast tree and (b) corresponding

schedule.

The activity on edge ðPj; PkÞ in one time-unit is bounded:

8Pj; 8Pk 0 � tj;k � 1: ð3Þ

The one-port model constraints are expressed by the
following equations:

8Pj;
X

Pk;ðPj;PkÞ2E
tj;k � 1 ðoutgoing messagesÞ ð4Þ

8Pj;
X

Pk;ðPk;PjÞ2E
tk;j � 1 ðincoming messagesÞ: ð5Þ

Moreover, each node should receive the same (frac-
tional) number of messages in one time-unit (that is the
throughput TP):

8Pj with j 6¼ s;
X

Pk;ðPk;PjÞ2E
nk;j ¼ TP: ð6Þ

We summarize these equations in a linear program (with
rational coefficients and unknowns):

Steady-State Series of Broadcasts Problem on a

DAG SSBDAGðGÞ
Maximize TP;

subject to

8Pj;8Pk tj;k¼nj;k�cj;k 8Pj;
P

Pk;ðPj;PkÞ2E
tj;k�1

8Pj;8Pk 0�tj;k�1 8Pj;
P

Pk;ðPk;PjÞ2E
tk;j�1

8Pj with j6¼s;
P

Pk;ðPk;PjÞ2E
nk;j¼TP:

8>><
>>:

Theorem 1. The solution of the SSBDAG(G) linear program
provides the optimal solution to the SERIES problem on a
DAG: the value TP returned by the program is the maximum
number of broadcasts that can be initiated per time-unit.
Furthermore, it is possible to construct the corresponding
optimal periodic schedule in time polynomial in size of the
input DAG.

Proof. We only give the main ideas of the proof here: a
detailed proof can be found in [11]. Intuitively, the
previous linear program gives a bound on the achievable
throughput. To prove that this bound can indeed be
achieved, after solving the linear program in rational
numbers, we compute the least common multiple T of all

denominators that appear in the value of the variables,
then we multiply every quantity by T . We get integer
results for a steady-state operation with period T . There
remains to show that 1) the schedule can be actually
implemented, and 2) the schedule admits a compact
description, i.e., of size polynomial in the input data.

For 1), the question is the following: given a set of
processors operating under the one-port model, can we
actually execute any set of communications within a
prescribed time-bound T? Of course, a necessary
constraint is that (4) and (5) are satisfied by each
processor during the time interval:

8Pj;
X

Pk;ðPj;PkÞ2E
tj;k � T ðoutgoing messagesÞ and

X
Pk;ðPk;PjÞ2E

tk;j � T ðincoming messagesÞ:

However, it is not obvious that these necessary condi-
tions are sufficient to build a schedule, because only
independent communications (with disjoint sender and
receiver pairs) can be scheduled simultaneously.

For 2), because T is the least common multiple of
values of the linear program solution, logðT Þ has
polynomial size bit not T itself, so a time-step by time-
step description of the schedule would be too large.

We solve both problems as follows: We transform the

platform graph into a weighted bipartite graph by

splitting each node Pj into an outgoing node Psend
j and

an incoming node Precv
j . Each edge from Psend

j to Precv
k is

weighted by the length of the communication tj;k. At any

given time-step, we can schedule at most two commu-

nications involving a given processor, one in emission

and the other in reception. Thus, at a given time step,

only communications corresponding to a matching in the

bipartite graph can be performed simultaneously. There-

fore, we need to decompose the weighted bipartite graph

into a sum of matchings. The desired decomposition of

the graph is in fact an edge coloring. The weighted edge

coloring algorithm of [12, vol. A, chapter 20] provides in

time OðjEj2Þ a number of matchings which is polynomial

in the size of the platform graph (in fact, there are at most

jEj matchings). Moreover, the overall weight of the

304 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 16, NO. 4, APRIL 2005

Fig. 5. Broadcasting a message from Ps using a DAG (throughput: 4/5). (a) Using a DAG and (b) corresponding schedule.

matchings is equal to the maximum weighted degree of

any Psend
j or Precv

j node, so that we can use these

matchings to perform the different communications. tu
We come back to the example given in Fig. 5, for whichwe

claimed to obtain a throughput of 4=5: This is in fact the value
returnedby the linearprogramon this example. The schedule
constructed in theproof [11] is represented inFig. 6. Fig. 6a is a
basic step of the schedule. Once pipelined, it gives the
schedule of Fig. 6b. The last step is to use the edge-coloring
algorithm to create a schedule where several receptions or
emissions never overlap on a node. This algorithm decom-
poses the bipartite graph of the communications (Fig. 6c) into
three matchings (Figs. 6d, 6e, and 6f). This leads to the final
schedule of Fig. 6g.

5 SERIES OF BROADCASTS ON A GENERAL

PLATFORM

In this section, we give the optimal solution to the SERIES
problem for an arbitrary platform graph, which may include
cycles. We proceed in several steps, using technically

involved theoretical results from linear programming, net-
work flows, and graph theory.

5.1 Sketch of Proof

As before, the target platform graph is modeled by a
directed graph G ¼ ðV ;E; cÞ. Each edge ðPj; PkÞ 2 E is
labeled by its capacity cj;k, i.e., the time needed to transfer
a unit-size message from Pj to Pk. The transfer time for Z

different messages between Pj and Pk is equal to Zcj;k. Each

node operates under the one-port model, so that both
incoming and outgoing communications have to be
performed sequentially.

There is a large number of unit-size messages to
broadcast. Initially, the source processor Ps holds all these
messages. Our aim is to derive a periodic algorithm that
achieves the optimal throughput TP, defined as the ratio of
the number of messages broadcast per time-period T in

steady-state, over the duration T of the period. Not only do
we have to compute the optimal throughput TP, but also,
we have to provide the actual construction of the periodic
schedule. Our goal is to obtain a compact description of this

BEAUMONT ET AL.: PIPELINING BROADCASTS ON HETEROGENEOUS PLATFORMS 305

Fig. 6. Solution for the example of a broadcast on a DAG. (a) Basic schedule, (b) pipelined communications, (c) bipartite graph, (d) matching M1,

(e) matching M2, (f) matching M3, and (g) final schedule.

schedule: the description of the behavior of each node

during one period (i.e., the size of the code) must be

polynomial in the size of the initial data. The sketch of our

approach is the following:

1. We express the conditions that must be fulfilled at
steady state by any periodic solution to the SERIES
problem by means of a linear program. The solution
of this linear program provides a lower bound for
the completion time.

2. From the solution of the linear program, we derive a
set of weighted trees that will be used to broadcast
the different messages. We prove that the total
weight of the trees enables us to reach the lower
bound computed at the previous step.

3. From the set of trees, we derive a periodic solution,
and we prove that it is possible to write the code of
the broadcast algorithm with a size polynomial in
the size of the initial data.

5.2 Lower Bound

In what follows, we give a set of linear constraints that must

be fulfilled by any periodic solution at steady-state. We

normalize the solution so that one unit-size message is

broadcast to each processor every T � time-steps, and we

aim at minimizing the period T �. Note that this is the dual

problem of Section 4, where we aimed at maximizing the

number of messages broadcast per time-unit. However, we

(try to) keep similar notations: nj;k denotes the number of

messages that transit along edge ðPj; PkÞ, and tj;k is the total

occupation time of that edge. But things get more

complicated, and we need new variables xj;k
i , as explained

below.
For any node Pj, we denote by N outðPjÞ its output

neighbors, i.e., the set of nodes Pk such that ðPj; PkÞ 2 E;

similarly, N inðPjÞ is the set of the input neighbors of Pj, i.e.,

nodes Pk such that ðPk; PjÞ 2 E.
Since we deal with broadcast operations, the same

messages are sent to all the nodes. But, because of the

pipelining, several different messages are likely to circulate

simultaneously in the network. We fictitiously distinguish

the messages that are sent by the source Ps to each

processor Pi, even in the end the same messages will have

been sent, but maybe according to a different ordering, and

via different routes. More precisely, we denote by xj;k
i ; 8Pi 2

V ; 8ðPj; PkÞ 2 E the fractional number of unit-size messages

sent by the source Ps to Pi and that transit on the edge

between Pj and Pk:

Source and destination: The first set of constraints states

that the total number of messages destined to Pi and

which are sent from the source Ps every period is indeed

1; also, the total number of messages which are actually

received by Pi every period is also equal to 1:

8i;
X

Pj2N outðPsÞ

xs;ji ¼ 1 ð7Þ

8i 6¼ s;
X

Pj2N inðPiÞ

xj;i
i ¼ 1: ð8Þ

Conservation law: The second set of constraints states a
conservation law at any intermediate processor Pj 6¼
Ps; Pi for the messages sent to Pi:

8j; Pj 6¼ Ps and Pj 6¼ Pi;
X

Pk2N inðPjÞ

xk;j
i ¼

X
Pk2N outðPjÞ

xj;k
i : ð9Þ

This constraint reads: for each index i and each
intermediate processor Pj, j 6¼ i, the number of messages
destined to Pi which arrive at Pj each time-period is the
same as the number of same type messages that go out of
Pj. This conservation law is only valid in steady-state
operation, it does not apply to the initialization and clean-
up phases.

Link occupation: The following set of constraints is related
to the number of distinct messages that are transferred
through each edge. Let us denote by nj;k the total
number of messages that transit on the communication
link between Pj and Pk. We know that for each i, the
fraction xj;k

i of the messages sent to Pi does transit on this
link. The main difficulty is that the messages transiting
on the link and sent to different Pi’s may be partly the
same, since the same messages are overall sent to all the
nodes. Therefore, the constraint nj;k ¼

P
i x

j;k
i , that

would hold true for a scatter operation, may be too
pessimistic. Since our aim is to find a lower bound for
the execution time, we consider that all the messages
transiting between Pj and Pk are all subsets of the same
set, namely, the largest one. In other words, we write the
following constraints for the occupation time tj;k of the
link ðPj; PkÞ:

8ðPj; PkÞ 2 E; nj;k ¼ max
i

xj;k
i ð10Þ

8ðPj; PkÞ 2 E; tj;k ¼ nj;kcj;k: ð11Þ

We also need to write down the constraints stating that
communication ports for both incoming and outgoing
communications are not saturated (one-port model). Let
t
ðinÞ
j be the time spent by Pj for incoming communications,
and t

ðoutÞ
j the time spent for outgoing ones:

8j; t
ðinÞ
j ¼

X
Pk2N inðPjÞ

tk;j ð12Þ

8j; t
ðoutÞ
j ¼

X
Pk2N outðPjÞ

tj;k: ð13Þ

Execution time: The last set of constraints is related to the
overall period length T � required for broadcasting a unit
size message. The constraints simply state that T � is
larger than the occupation time of any edge and any
incoming or outgoing communication port:

8j; k; T � � tj;k; ð14Þ
8j; T � � t

ðinÞ
j ; ð15Þ

8j; T � � t
ðoutÞ
j : ð16Þ

Finally, we gather all the constraints into the following
linear program, which provides a lower bound for T �, the
time needed to broadcast one unit-size message:

306 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 16, NO. 4, APRIL 2005

Steady-State Broadcast Problem on a Graph SSBðGÞ
Minimize T �;

subject to

8i;
P

Pj2N outðPsÞ x
s;j
i ¼ 1 ð7Þ

8i 6¼ s;
P

Pj2N inðPiÞ x
j;i
i ¼ 1 ð8Þ

8j; Pj 6¼ Ps and Pi;
P

Pk2N inðPjÞ x
k;j
i ¼P

Pk2N outðPjÞ x
j;k
i ð9Þ

8ðPj; PkÞ 2 E; nj;k ¼ maxi x
j;k
i ð10Þ

8ðPj; PkÞ 2 E; tj;k ¼ nj;kcj;k ð11Þ
8j; t

ðinÞ
j ¼

P
Pk2N inðPjÞ tk;j ð12Þ

8j; t
ðoutÞ
j ¼

P
Pk2N outðPjÞ tj;k ð13Þ

8j; k; T � � tj;k ð14Þ
8j; T � � t

ðinÞ
j ð15Þ

8j; T � � t
ðoutÞ
j ð16Þ:

8>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>:

5.3 Weighted Broadcast Trees

The solution of the linear program clearly provides a lower

bound for the period length needed to broadcast one unit-

size message. Nevertheless, it is not clear that this bound

can be achieved, because of the assumption stating that all

the messages transiting on a given edge are all subsets of

the largest set (11). In this section, we first prove that it is

possible to find a set of broadcast trees realizing exactly the

lower bound, using Edmond’s Branching theorem. Unfor-

tunately, the number of trees produced by this theoremmay

be exponential in the problem size. Fortunately, there exists

a weighted version of Edmond’s Branching theorem, that

produces the desired polynomial number of trees.

5.3.1 Broadcast Trees and Edmond’s Branching

Theorem

Edmond’s Branching theorem applies to nonweighted

graphs only, so we transform the previous graph, weighted

by the nj;k, into a multigraph. Let us denote by N the least

commonmultiple of all the denominators of the nj;k’s and the

xj;k
i ’s, so that 8i; j; k, Nnj;k, and Nxj;ki have integer values.

Moreover, let usdenotebyGðmÞ ¼ ðV ;EÞ themultigraph such

that there exists exactly Nnj;k edges between Pj and Pk.
Edmond’s branching theorem [13] shows the relation-

ship between the number (denoted as �ðG;P0Þ) of edges

whose deletion makes some vertex Pi unreachable from Ps

and the number of edge-disjoint spanning trees rooted at Ps.

Theorem 2 (Edmond’s Branching Theorem). The number of

edge-disjoint spanning trees rooted at P0 is exactly �ðG;P0Þ.

We know prove that the number of edges whose deletion

makes some vertex unreachable from the source is in fact N .

Theorem 3. �ðG;P0Þ ¼ N .

Proof. We prove this theorem by in two steps:

. �ðG;P0Þ � N : Consider any Pi 2 V distinct from
the source Ps. The values x

j;k
i define a flow of total

weight N between Ps and Pi. Indeed, we have:

8i;
P

Pj2N outðPsÞ
Nxs;j

i
¼N by ð7Þ

8j;
P

Pj2N inðPiÞ
Nxj;ii ¼N by ð8Þ

8j;Pj 6¼P0 and Pi;
P

Pk2N
inðPjÞ

Nxj;ki ¼
P

Pk2N
outðPjÞ

Nxk;ji by ð9Þ:

8><
>:
Therefore, by the Max-flow, Min-cut Theorem of
Ford and Fulkerson [14], the minimal cut of G

between Ps and Pi is at least N , so that at least N
edges have to be deleted in order to disconnect Ps

and Pi. Since the above property holds true for
any Pi, then �ðG;P0Þ � N .

. �ðG;P0Þ � N . Suppose that �ðG;P0Þ ¼ N 0 > N .

Then, by the Max-flow, Min-cut Theorem of Ford

and Fulkerson, for each Pi, there exists a flow a

weight N 0 in G between Ps and Pi. Let y
j;k
i denote

thevalue of this flowon the edgebetweenPj andPk

(clearly, yj;ki � Nnj;k by construction), and let us

denote by zj;ki ¼ yj;ki
N 0 , so that the z

j;k
i ’s define a flowof

weight 1 between Ps and Pi. Then,

8i;
P

Pj2N outðPsÞ
zs;ji ¼1 ð7Þ

8i;
P

Pj2N inðPiÞ
zi;ji ¼1 ð8Þ

8j;Pj 6¼Ps and Pj 6¼PiP
Pk2N

inðPjÞ
zj;ki ¼
P

Pk2N
outðPjÞ

zk;ji ð9Þ

8ðPj;PkÞ2E; n0
j;k¼maxi z

j;k
i �N

N 0nj;k ð10Þ
8ðPj;PkÞ2E; t0j;k¼n0

j;kcj;k�
N
N0tj;k ð11Þ

8j; t
0ðinÞ
j ¼

P
Pk2N

outðPjÞ

t0
j;k
�N

N 0t
ðinÞ
j ð12Þ

8j; t
0ðoutÞ
j ¼

P
Pk2N

outðPjÞ

t0
j;k
�N

N 0t
ðoutÞ
j ð13Þ:

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:
Therefore, therewould exist a solution of the linear
program with a completion time of N

N 0 T
� < T �,

which is a contradiction. Thus, �ðG;P0Þ � N . tu
Therefore, by Edmond’s Branching theorem, there exist

N disjoint broadcast trees in Gm. There exist several
implementations of Edmond’s Branching theorem, but the
number of different trees is of order OðNÞ. Unfortunately, a
solution consisting of N broadcast trees is not compact
enough for our purpose, since its encoding would take at
least of order OðN jV jÞ. Indeed, since N is the least common
multiple of the denominators of the xj;k

i s and the nj;ks, it can
be encoded in size of order jV jjEj logðmaxðxj;k

i ; nj;kÞÞ. More-
over, the xj;k

i s and the nj;ks are the solution of a linear
system, whose right-hand side and left-hand size matrix
coefficients are initial data. Therefore, N can be encoded in
polynomial size. Nevertheless, the encoding of the trees
would take at least jV jN bits, and would therefore be
exponential in the size of original data. Fortunately, there
exists a weighted version of Edmond’s Branching theorem
which produces a polynomial number of trees, as shown in
next section.

5.3.2 Weighted Version of Edmond’s Branching

Theorem

We use the following result, whose proof can be found in
[12, vol. B, chapter 53].

Theorem 4. Let G ¼ ðV ;E;Nnj;kÞ denote a weighted directed
graph. There exist kT trees T1; . . . ; TkT trees, with integer

BEAUMONT ET AL.: PIPELINING BROADCASTS ON HETEROGENEOUS PLATFORMS 307

weights �1; . . . ; �kT , such that 8j; k;
P

l �l�
T
j;kðTlÞ � Nnj;k,

where �T
j;kðTlÞ ¼ 1 if ðPj; PkÞ 2 Tl and 0 otherwise, and such

that
P

l �l is maximized. Moreover, the trees can be found in

strongly polynomial time and by construction, kT � jV j3 þ jEj.

We then have the following lemma, whose proof is quite

similar to the proof of Theorem 3 and uses the transforma-

tion of G into a multigraph.

Lemma 1.
P

l �l ¼ �ðG;P0Þ ¼ N .

Finally, we prove that the description using a set of

weighted trees is not too large:

Lemma 2. The set of trees can be encoded in polynomial size with

respect to initial data.

Proof. The number of trees is bounded by jV j3 þ jEj and,
therefore, the set of trees can be encoded in size of order

jV jðjV j3 þ jEjÞ. Moreover, 8l; �l � Nmaxnj;k, and both N

and maxnj;k, can be encoded in polynomial size with

respect to the initial data, as proved above. tu

Therefore, the weighted version of Edmond’s Branching

theorem produces in polynomial time a set of weighted

trees, whose encoding is compact enough, for our purpose.

We will use these trees in order to broadcast the different

messages. In what follows, let mj;k be the overall number of
messages that transit between Pj and Pk on the different
trees, i.e.,

mj;k ¼
X
l

�l�
T
j;kðTlÞ � Nnj;k: ð17Þ

Moreover, since the overall weight of the trees is N , and
all the trees span the whole platform, we have:

8k;
X

Pj2N inðPkÞ

mj;k ¼ N: ð18Þ

To conclude this section, we point out that we may have
mj;k < Nnj;k on some edges. Consider the toy-example in
Fig. 7. Not all communications arising from the linear
program SSBðGÞ are actually used in the trees: Some are
discarded, because they do not improve the throughput of
the broadcasts; but they do not interfere with other
communications either. In other words, these communica-
tions are “useless” but “harmless.”

5.4 Communication Scheduling

Our goal is to use the broadcast trees defined above to
perform the series of broadcasts. Thus, we need to find a
schedule for communications. Indeed, since several broad-
cast trees will be used, node Pk will receive messages from

308 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 16, NO. 4, APRIL 2005

Fig. 7. Example where mj;k < Nnj;k. The optimal steady-state broadcast time T � for one message is 5 time-units, due to edge ðPa; PbÞ. Fig. 7b
describes the results multiplied by the least common multipleN ¼ 2, and Fig. 7c reports the maximum values of Nxj;ki on each edge. Figs. 7d and 7e
are the two broadcast trees extracted from the previous figure, each of them with a weight of �l ¼ 1. Finally, Fig. 7f represents the sum of these trees.
On the edge ðPc; PeÞ, we have mc;e < Nnc;e: This edge is used by only one broadcast tree, so mc;e ¼ 1, whereas Nnc;e ¼ 2 because all messages
targeting Pf are supposed to go through this edge in the optimal solution given by the linear solver, which is not the choice made when we use trees.
(a) Topology graph, with the communication cost of each edge, (b) result graph (Nxj;ki), (c) graph of the Nnj;k ¼ max

i
ðNxj;ki Þ, (d) first broadcast tree,

�1 ¼ 1, (e) second broadcast tree, �2 ¼ 1, and (f) sum of both trees—graph of the mj;k’s.

several nodes Pj and, since Pk is only able to handle one

receiving operation at the same time, communications to Pk

(and from Pj) need to be scheduled carefully. We revisit the

edge coloring theorem used in the proof of Theorem 1 with

more details, so as to extract disjoint matchings out of the

set of communications: In a word, the situation is more

complex here, because of the need to partition the

matchings themselves into the different broadcast trees

which they intersect with.

5.4.1 Weighted Bipartite Graph

As in the proof of Theorem 1, we construct a weighted

bipartite graph GM ¼ ðV 0; E0;mj;kcj;kÞ to represent the set of

communications. Let us denote

V 0 ¼ V out [V in ¼ ðPout
1 ; . . . ; P out

p Þ [ðPin
1 ; . . . ; P in

p Þ;

where p ¼ jV j is the number of processors. In the bipartite

graph, the edge between Pout
j and Pin

k is weighted by the

quantity mj;kcj;k, which is the time necessary to transfer the

overall amount of data transiting on this edge on the

different trees. In order to schedule the communications, we

use the refined version of the Edge Coloring Lemma (see [12,

vol. A, chapter 20]).

Theorem 5. Let GM ¼ ðV ;E0;mj;kcj;kÞ be a bipartite weighted

graph. There exist kM matchings M1; . . . ;MkM , with integer

weights �1; . . . ; �kM , such that

8j; k;
X
i

�i�
M
j;kðMiÞ ¼ mj;kcj;k; ð19Þ

where �M
j;kðMiÞ ¼ 1 if ðPj; PkÞ 2 Mi and 0 otherwise, andX

i

�i ¼ maxðmax
j

X
k

mj;kcj;k;max
k

X
j

mj;kcj;kÞ:

Moreover, the matchings can be found in strongly polynomial

time and by construction,

kM � jEj:

We now prove that
P

i �i is not greater than NT �.

Lemma 3.
P

i �i � NT �.

Proof. By (17), mj;k � Nnj;k. Thus,X
j

mj;kcj;k � N
X
j

nj;kcj;k � NT � by ð13Þ and ð16Þ

and
X
k

mj;kcj;k � N
X
k

nj;kcj;k � NT � by ð12Þ and ð15Þ:

Thus, since
P

i �i ¼ maxðmaxj
P

k mj;kcj;k;maxk
P

j mj;k

cj;kÞ, then
P

i �i � NT �.

In fact, the inequality is indeed an equality, but the
simplest way to show it is to exhibit the periodic
schedule (see below). tu

5.4.2 Broadcasting Algorithm

In this section, we give the precise communication

scheduling during one period, i.e., the sketch of the code

used to implement the broadcasts in steady state. Let us

define, 8ðPj; PkÞ such that mj;k 6¼ 0,

Mðj;kÞ ¼fi; ðPout
j ; P in

k Þ 2 Mig
the set of matchings containing ðPout

j ; P in
k Þ

and

T ðj;kÞ ¼ fl; ðPj; PkÞ 2 Tlg the set of trees containing ðPj; PkÞ:

Thus, we can notice that

by ð19Þ; 8ðPj; PkÞ;
X

i2Mðj;kÞ

�i ¼ mj;kcj;k

and by ð17Þ; 8ðPj; PkÞ;
X

l2T ðj;kÞ

�l ¼ mj;k:

Let us denote by

s ¼ lcm
j;k

X
i2Mðj;kÞ

�i

 !
: ð20Þ

In the following, we exhibit an optimal periodic

schedule: the period length is T per ¼ NsT �, and Ns

messages are broadcast every T per time-steps, thereby

achieving the optimal throughput 1=T �.
Let ml

jðqÞ be the set of messages received by node Pj

from its father in the tree Tl during the qth period. The

sketch of the scheduling algorithm during the ith period is

depicted in Fig. 8.
We prove the correctness of this algorithm as follows:

Duration of step i: In order to estimate the duration of step i,

we need to evaluate, for eachPj such that ðPout
j ; P in

k Þ 2 Mi,

the time needed by Pj to send all the messages:

X
l2T ðj;kÞ

�is�lcj;kP
i2Mðj;kÞ �i

¼ �isP
i2Mðj;kÞ �i

X
l2T ðj;kÞ

�l

 !
cj;k

¼ �isP
i2Mðj;kÞ �i

mj;kcj;k by ð17Þ

¼ �is by ð19Þ:

This result does not depend on j. Furthermore, the

communications involving different Pj’s can be handled in

BEAUMONT ET AL.: PIPELINING BROADCASTS ON HETEROGENEOUS PLATFORMS 309

Fig. 8. Sketch of the scheduling algorithm during the ith period.

parallel, because they belong to a matching. Therefore, step i
can be executed within �is time-units.

Length of the period: The duration of the period T per is the
sum of the duration of the different steps:X

i

�is � NT �s ¼ T per:

Number of messages Mðr; j; kÞ received by Pk and coming
from Pj: During the rth period:

Mðr; j; kÞ ¼
X

i2Mðj;kÞ

X
l2T ðj;kÞ

�is�lP
i2Mðj;kÞ �i

¼ s
X

l2T ðj;kÞ

�l ¼ smj;k

by ð17Þ:

Total number of messages received by Pk: During the rth
period. Since all the messages are sent along the edges of
the different trees, all the messages received by Pk are
different, and are different from those received during
previous periods. Therefore, the overall number of
messages received by node Pk during one period is
given by

s
X
j

mj;k ¼ sN by ð18Þ:

Therefore, during one period of duration T per ¼ NsT �,
each node receives exactly Ns new different messages.
Therefore, the overall throughput of the SERIES algorithm
during one period is 1

T �, hence its optimality. Finally,
because the actual length of the period is the sum of the
duration of the different steps, we derive that

P
i �is ¼ T per,

hence
P

i �i ¼ NT �, as claimed in the proof of Lemma 3.

6 ASYMPTOTIC OPTIMALITY

Due to the lack of space, we informally state two important
results, which are both detailed (formal statement and
complete proof) in the extended version [11] of this paper.
These results are inspired by the work of Bertsimas and
Gamarnik [15], who use a fluid relaxation technique to
prove the asymptotic optimality of a simpler packet routing
problem.

6.1 Asymptotic Optimality for the SERIES Problem

The periodic schedule described in Section 5.4.2 is asymp-
totically optimal: Basically, no scheduling algorithm (even
nonperiodic) can execute more broadcast operations in a
given time-frame than ours, up to a constant number of
operations.

6.2 Asymptotic Optimality for the PIPELINED Problem

In the pipelined broadcast problem, the source processor
broadcasts a single (large) message of total size L, which
can be split into an arbitrary number of packets. To be
realistic, the model must include start-up overheads in the
communication times: Otherwise, with a cost linear in the
packet size, the best solution would be to have an infinite
number of infinitely small packets. Therefore, in this
section, we assume that the time to send a packet of size
nj;k from Pj to Pk is �j;k þ nj;kcj;k. We include the start-up
costs in the definition of the platform graph, which becomes

G ¼ ðV ;E; c; �Þ. The PIPEðV ;E; c; �; LÞ problem is to mini-
mize the time needed to broadcast the initial message of
size L, i.e. to find the number and size of the packets, and a
routing scheme for each packet, so that the total execution
time is as small as possible.

Using again the periodic schedule described in
Section 5.4.2, we can prove a result of asymptotic
optimality for the PIPE optimization problem. This is a
surprising result, because the PIPE problem deals with
makespan minimization, not throughput optimization.
The key idea is to determine a number of packets �
such that both 1) the size of each packet L=� is large
enough so that start-up times have a little overhead on
the execution time, and 2) the number � of packets is
large enough so that the initialization and the clean-up
phase can be neglected in front of the duration of steady-
state operation. It is shown in [11] how the choice of
� ¼ Oð

ffiffiffiffi
L

p
Þ enables to achieve both goals 1) and 2),

thereby leading to an asymptotically optimal schedule.

7 EXPERIMENTS

In this section, we work out a complete example. The
platform is generated by Tiers, a random generator of
topology [16]. The bandwidth of the links are randomly
chosen, and the topology is represented on Fig. 9a.

Fig. 9b shows the results of the linear program SSBðGÞ.
The edges of this graph represent communications, and
their label is a list of transfers: if edge ði; jÞ has the item yðkÞ
in its list, it means that Nxi;jk ¼ y, so in the steady-state
integer solution, y messages go through edge ði; jÞ to reach
Pk. Here, the throughput achieved is 2 messages per period
of 152 time-units.

From these communications, we extract two broadcast
trees, which are represented in Fig. 10, where both the
logical tree and the communications extracted from Fig. 9b
are mentioned. We point out that not all communications
arising from the linear program SSBðGÞ are actually used in
the trees: some are redundant (hence, useless). The same
observation was made for the toy example at the end of
Section 5.3.2. For example, there is a cycle between node P1

and P8 for transfers, whose targets are nodes P3; P5; P6, and
P7. These communications do not improve the throughput
of the broadcast, but they do not interfere with other
communications: Indeed, the maximum of all communica-
tions on these edges is Nx1;8 ¼ Nx8;1 ¼ 1. Extracting trees
from the solution of the linear program enables us to neglect
such “parasitic” communications.

8 RELATED WORK

The atomic broadcast problem has been studied under
different models to deal with the heterogeneity of the target
architecture. Banikazemi et al. [17] consider a simple model
in which the heterogeneity among processors is character-
ized by the speed of the sending processors. In this model,
the interconnection network is fully connected (a complete
graph), and each processor Pi requires ti time-units to send
a (normalized) message to any other processor. The authors
discuss that this simple model of heterogeneity can well
describe the different communication delays in a hetero-
geneous cluster. They introduce the Fastest Node First

310 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 16, NO. 4, APRIL 2005

(FNF) heuristic: To construct a good broadcast tree, it is
better to put fastest processors (processors that have the
smallest sending time) at the top of tree. Some theoretical
results (NP-completeness and approximation algorithms)
have been developed for the problem of broadcasting a
message in this model: see [18], [19], [20].

A more complex model is introduced in [21]: it takes not
only the time needed to send a message into account, but
also the time spent for the transfer through the network,
and the time needed to receive the message. All these three
components have a fixed part, and a part proportional to
the length of the message.

Yet, another model of communication is introduced in
[22], [23]: the time needed to transfer the message between
any processor pair ðPi; PjÞ is supposed to be divided into a
start-up cost Ti;j and a part depending on the size m of the
message and the transmission rate Bi;j between the two
processors, m

Bi;j
. Since the message size is a constant in the

case of a broadcast, the total communication time between
Pi and Pj is Ci;j ¼ Ti;j þ m

Bi;j
. In [22], some heuristics are

proposed for the broadcast and the multicast using this
model.

All previous models assume the one port protocol, which
we used throughout this paper: a given processor can send

data to at most one neighbor processor at a time. Usually,
overlapping this operation with one receiving (of indepen-
dent data) is allowed.

Other collective communications, such as multicast,
scatter, all-to-all, gossiping, and gather (or reduce) have
been studied in the context of heterogeneous platforms: see
[24], [25] and the references provided in [11].

As mentioned in the introduction, Moore and Quinn [9]
and Desprez et al. [10] already investigated the Series of
broadcasts problems, but with a different perspective: they
focus onoptimizing their performance of a series of broadcast
operations from distinct source nodes. In this problems,
either we look for the optimal order (that is the case in the
paperofMooreandQuinn), or theorderof the sending source
nodes is fixed (in the paper of Desprez et al.), but in all cases,
the goal is to minimize the contention between several
concurrent broadcasts from distinct sources. These studies
are done on homogeneous networks, most of the examples
and simulations are conductedonhypercube. Themeasure of
the performance is the makespan of the (short) series of
broadcasts.

The main difference in our approach is that we aim at
maximizing the throughput of a series of broadcasts from
the same source, which is close to a fluid broadcast from a
source node, by taking into account the heterogeneity of the
platforms: If several paths connect a node to another, they

BEAUMONT ET AL.: PIPELINING BROADCASTS ON HETEROGENEOUS PLATFORMS 311

Fig. 9. Experiments on a given topology. (a) Topology. Edge e is labeled

by its bandwidth bwðeÞ. The cost of a transfer is cðeÞ ¼ 1; 000=bwðiÞ for a
single message. (b) Communication graph.

Fig. 10. Broadcast trees. (a) First broadcast tree (broadcasting

1 message) and (b) second broadcast tree (broadcasting 1 message).

might be used concurrently to increase the throughput of
the operation. Although both problems are known as series
of broadcasts, they strike different questions and call for
distinct answers.

9 CONCLUSION

In this paper, we have studied several broadcasting
problems on heterogeneous platforms. Our major objective
was to maximize the throughput that can be achieved in
steady-state mode, when a large number of same-size
broadcasts are done in a pipelined fashion, or when a single
large message is split into packets that are broadcast in
pipeline fashion too. Achieving the best throughput may
well require that the target platform is used in totality: we
have shown neither spanning trees nor DAGs are powerful
enough. In passing, note that determining in a given graph
the broadcast tree that achieves the best throughput among
all trees is a NP-complete problem [11].

We have shown how to compute the best throughput
using linear programming, and how to exhibit a periodic
schedule, first when restricting to a DAG, and then when
using a general graph. The polynomial compactness of the
description comes from the decomposition of the schedule
into several broadcast trees that are used concurrently to
reach the best throughput. It is important to point out that a
concrete scheduling algorithm based upon the steady-state
operation is asymptotically optimal, in the class of all
possible schedules (not only periodic solutions).

The recognition of broadcasting as a key communication
primitive is widely established. Because our approach
applies to the broadcast of a single (long) message as well
as to a succession of broadcasts, we believe that this is a key
improvement over existing results for heterogeneous plat-
forms. There have been several papers dealing with
broadcasting on heterogeneous platforms, however, they
only deal with heuristics devoted to the design of a single
spanning tree. We show that several trees should be used in
parallel, and we provide an efficient (polynomial) way to
determine the best way to orchestrate the communications
so as to squeeze the most out of the available platform
bandwidth.

An interesting problem would be to extend this work to
the case of the multicast operation, where the target
processors (the receivers) form a strict subset of the
computing resources. In this case, even determining the
best throughput in steady-state mode seems to be a
challenging problem.

ACKNOWLEDGMENTS

The authors thank the reviewers for their helpful comments
and suggestions, which greatly improved the final version
of the paper.

REFERENCES

[1] V. Kumar, A. Grama, A. Gupta, and G. Karypis, Introduction to
Parallel Computing. The Benjamin/Cummings Publishing Com-
pany, Inc., 1994.

[2] S.L. Johnsson and C.-T. Ho, “Optimum Broadcasting and
Personalized Communication in Hypercubes,” IEEE Trans. Com-
puters, vol. 38, no. 9, pp. 1249-1268, Sept. 1989.

[3] J. Watts and R. Van De Geijn, “A Pipelined Broadcast for
Multidimensional Meshes,” Parallel Processing Letters, vol. 5,
no. 2, pp. 281-292, 1995.

[4] Y.-C. Tseng, S.-Y. Wang, and C.-W. Ho, “Efficient Broadcasting in
Wormhole-Routed Multicomputers: A Network-Partitioning Ap-
proach,” IEEE Trans. Parallel and Distributed Systems, vol. 10, no. 1,
pp. 44-61, Jan. 1999.

[5] H. Ko, S. Latifi, and P. Srimani, “Near-Optimal Broadcast in All-
Port Wormhole-Routed Hypercubes Using Error-Correcting
Codes,” IEEE Trans. Parallel and Distributed Systems, vol. 11, no. 3,
pp. 247-260, Mar. 2000.

[6] S.-Y. Wang and Y.-C. Tseng, “Algebraic Foundations and Broad-
casting Algorithms for Wormhole-Routed All-Port Tori,” IEEE
Trans. Computers, vol. 49, no. 3, pp. 246-258, Mar. 2000.

[7] M. Snir, S.W. Otto, S. Huss-Lederman, D.W. Walker, and J.
Dongarra, MPI the Complete Reference. The MIT Press, 1996.

[8] K. Hwang and Z. Xu, Scalable Parallel Computing. McGraw-Hill,
1998.

[9] J. Moore and M. Quinn, “Generating an Efficient Broadcast
Sequence Using Reflected Gray Codes,” IEEE Trans. Parallel and
Distributed Systems, vol. 8, no. 11, pp. 1117-1122, Nov. 1997.

[10] F. Desprez, P. Fraigniaud, and B. Tourancheau, “Successive
Broadcast on Hypercube,” Technical Report CS-93-210,The Univ.
of Tennessee—Knoxville, 1993.

[11] O. Beaumont, A. Legrand, L. Marchal, and Y. Robert, “Optimizing
the Steady-State Throughput of Broadcasts on Heterogeneous
Platforms Heterogeneous Platforms,” Technical Report RR-2003-
34LIP, ENS Lyon, France, June 2003.

[12] A. Schrijver, Combinatorial Optimization: Polyhedra and Efficiency,
series on algorithms and combinatorics, Springer-Verlag, vol. 24,
2003.

[13] D.B. West, Introduction to Graph Theory. Prentice Hall, 1996.
[14] T.H. Cormen, C.E. Leiserson, and R.L. Rivest, Introduction to

Algorithms. The MIT Press, 1990.
[15] D. Bertsimas and D. Gamarnik, “Asymptotically Optimal Algo-

rithm for Job Shop Scheduling and Packet Routing,” J. Algorithms,
vol. 33, no. 2, pp. 296-318, 1999.

[16] K. Calvert, M. Doar, and E. Zegura, “Modeling Internet
Topology,” IEEE Comm. Magazine, vol. 35, no. 6, pp. 160-163, June
1997.

[17] M. Banikazemi, V. Moorthy, and D.K. Panda, “Efficient Collective
Communication on Heterogeneous Networks Of Workstations,”
Proc. 27th Int’l Conf. Parallel Processing (ICPP ’98), 1998.

[18] N. Hall, W.-P. Liu, and J. Sidney, “Scheduling in Broadcast
Networks,” Networks, vol. 32, no. 14, pp. 233-253, 1998.

[19] P. Liu and T.-H. Sheng, “Broadcast Scheduling Optimization for
Heterogeneous Cluster Systems,” Proc. SPAA 2000, 12th Ann.
ACM Symp. Parallel Algorithms and Architectures, pp. 129-136, 2000.

[20] P. Liu, “Broadcast Scheduling Optimization for Heterogeneous
Cluster Systems,” J. Algorithms, vol. 42, no. 1, pp. 135-152, 2002.

[21] M. Banikazemi, J. Sampathkumar, S. Prabhu, D. Panda, and P.
Sadayappan, “Communication Modeling of Heterogeneous Net-
works of Workstations for Performance Characterization of
Collective Operations,” Proc. HCW ’99, Eighth Heterogeneous
Computing Workshop, pp. 125-133, 1999.

[22] P. Bhat, C. Raghavendra, and V. Prasanna, “Efficient Collective
Communication in Distributed Heterogeneous Systems,” Proc.
ICDCS ’99 19th Int’l Conf. Distributed Computing Systems, pp. 15-24,
1999.

[23] “Adaptive Communication Algorithms for Distributed Hetero-
geneous Systems,” J. Parallel and Distributed Computing, vol. 59,
no. 2, pp. 252-279, 1999.

[24] P. Liu and D.-W. Wang, “Reduction Optimization in Hetero-
geneous Cluster Environments,” Proc. 14th Int’l Parallel and
Distributed Processing Symp. (IPDPS 2000), 2000.

[25] R. Libeskind-Hadas, J.R.K. Hartline, P. Boothe, G. Rae, and J.
Swisher, “On Multicast Algorithms for Heterogeneous Networks
of Workstations,” J. Parallel and Distributed Computing, vol. 61,
no. 11, pp. 1665-1679, 2001.

312 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 16, NO. 4, APRIL 2005

Olivier Beaumont received the PhD degree
from the Université de Rennes in 1999. He is
currently an associate professor in the LaBRI
laboratory in Bordeaux. His main research
interests are parallel algorithms on distributed
memory architectures.

Arnaud Legrand received the PhD degree from
Ecole normale supérieure de Lyon in 2003. He is
currently a postdoctoral researcher in the LIP
laboratory at ENS Lyon. He is mainly interested
in parallel algorithm design for heterogeneous
platforms and in scheduling techniques.

Loris Marchal is currently a PhD student in the
LIP laboratory at ENS Lyon. He is mainly
interested in parallel algorithm design for hetero-
geneous platforms and in scheduling techni-
ques. He is a student member of the IEEE and
the IEEE Computer Society.

Yves Robert received the PhD degree from
Institut National Polytechnique de Grenoble in
1986. He is currently a full professor in the
Computer Science Laboratory LIP at ENS Lyon.
He is the author of four books, 90 papers
published in international journals, and 110 pa-
pers published in international conferences. His
main research interests are scheduling techni-
ques and parallel algorithms for clusters and
grids. He is a senior member of the IEEE and the

IEEE Computer Society, and serves as an associate editor of IEEE
Transactions on Parallel and Distributed Systems.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

BEAUMONT ET AL.: PIPELINING BROADCASTS ON HETEROGENEOUS PLATFORMS 313

